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ABSTRACT

Instability and fl w transition of a vortex ring impinging on a wall were investigated by means
of large-eddy simulation for two vortex core thicknesses corresponding to thin and thick vortex
rings. Various fundamental mechanisms dictating the fl w behaviours, such as evolution of vortical
structures, instability and breakdown of vortex rings, development of modal energies, and transition
from laminar to turbulent state, have been studied systematically. Analysis of the enstrophy of
wrapping vortices and turbulent kinetic energy (TKE) in fl w fiel indicates that the formation and
evolution of wrapping vortices are closely associated with the fl w transitionto turbulent state. It is
found that the temporaldevelopmentof wrapping vortices and the growth rate of axial fl w generated
aroundthe circumference of the core region for the thin ring are faster than those for the thick ring.
The azimuthal instabilities of primary and secondary vortex rings are analysed and the development
of modal energies reveals the fl w transition to turbulent state. The law of energy decay follows a
characteristic k−5/3 law, indicating that the vortical fl w has become turbulent. The results obtained
in this study provide physical insight into the understandingof the instability mechanisms relevant
to the vortical fl w evolution.

Keywords: Large eddy simulation; Vortical structure; Instability; Transition; Turbulent fl w.

1. INTRODUCTION

Vortex rings widely exist in nature and engi-
neering and can be considered as one typical
vortex motion (Shariff and Leonard 1992). The
interaction of a vortex ring with a fla wall
has been studied numerically and experimen-
tally (e.g. Boldes and Ferreri 1973; Walker
et al. 1987; Orlandi 1990; Lim et al. 1991;
Chu et al. 1993; Fabris et al. 1996; Cheng
et al. 2010; Couch and Krueger 2011). How-
ever, these studies are mainly limited to rel-
atively low-Reynolds-number fl w regime and
the highest Reynolds number in these studies
is about 2840 (Walker et al. 1987). The ex-
perimental study (Walker et al. 1987) has re-
vealed that the primary vortex ring no longer
remains stable as it approaches the wall at high
Reynolds number. When the Reynolds number
is high enough, the interaction can lead to the
breakdown of vortex rings and transitionto tur-
bulent state (Orlandiand Verzicco 1993; Archer
et al. 2010). Thus, the instability of vortex rings

and transition to turbulence need to be investi-
gated for a vortex ring impinging on a wall in
the high-Reynolds-numberregime.

The evolution of a free vortex ring is a pro-
totypical vortical fl w relevant to some funda-
mental behaviours, such as growth, instability,
breakdown and transition of vortex ring. Ex-
tensive investigations have been carried out the-
oretically (Crow 1970; Widnall et al. 1974;
Widnall and Tsai 1977), experimentally (Wid-
nall and Sullivan 1973; Dazin et al. 2006; Gan
et al. 2011), and numerically ( Shariff et al.
1994; Bergdorf et al. 2007; Archer et al. 2008).
Krutzsch (1939) firs studied the instability of
vortex ring and found that the vortex ring be-
comes unstable with some stationary waves dis-
tributed around its azimuthal direction. Crow
(1970) investigated the aircraft trailing vortices
and presented the development process of the
vortex instability. Then Widnall and Sullivan
(1973) verifie experimentally that the station-
ary azimuthal waves grow in the surface at 45◦
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relative to the propagation direction of vortex 
ring, and the wave  number depends on the slen-
derness ratio of core radius to ring radius. Wid-
nall and Tsai (1977) gave  the theoretical ex-
planation of the instability and indicated that a 
straining fiel  in the neighbourhood of the vor-
tex core leads to the amplificatio  of small per-
turbation. Shariff  et al. (1994) established a 
viscous  correction to the growth rate proposed 
by Widnall and Tsai (1977) based on their di-
rect numerical simulation (DNS) results. Dazin 
et al. (2006) experimentally investigated the 
linear and nonlinear stages  of vortex ring de-cay 
and noticed that the straining fiel  causes the 
instability. Bergdorf et al. (2007) numer-ically 
studied the evolution of vortex rings at ReΓ = 
7500  based on the circulation of the vor-tex ring 
and demonstrated the formation of a se-ries of 
hair-pin vortices during the early turbu-lent 
stage.  Archer et al. (2008) further investi-gated 
the effects  of Reynolds number and core 
thicknesses on the vortex ring evolution from 
laminar to the early turbulent regime and indi-
cated that the onset of the turbulent state is asso-
ciated with the formation of a series of hairpin 
vortices.

Compared with the studies of the instability of 
free vortex rings, the investigation relevant to 
the instability of a vortex ring impinging on a 
wall  is still scarce.  Walker et al. (1987) exper-
imentally investigated the vortical structures at 
564 ≤ Re ≤ 2840.  They observed that the wave-
like instability of vortical structures is gener-
ated and the ejection of secondary vortex ring is 
formed at high Reynolds number. Orlandi and 
Verzicco (1993) numerically analysed the 
azimuthal instabilities at Re = 1250  by impos-
ing an initial azimuthal perturbation on the pri-
mary vortex ring and identifie  a response per-
turbation in the secondary ring. Archer et al.
(2010) then studied a laminar vortex ring im-
pacting a free surface using direct numerical 
simulation (DNS) and found that the instability 
transfers from short-wavelength instability to 
long-wavelength instability. The transfer hap-
pens through the rotation of wavy  inner core 
structure and the shedding of outer core vor-
ticity. Recently,  Masuda et al. (2012) and 
Yoshida et al. (2012) experimentally studied the 
interaction of a vortex ring with a granular layer 
at 1500  ≤ Re ≤ 4100.  They found that the wavy  
secondary vortex ring develops into hair-pin 
vortices and the hair-pin vortices then wrap 
around the primary vortex ring in the late stage 
of the interaction.

In this paper, large eddy simulation is utilized to 
investigate the instability and flo  transi-

tion of a vortex ring impinging on a wall at
high Reynolds number Re = 4 × 104. The
purpose is to achieve an improved understand-
ing of some of the fundamental phenomena in-
volved in this fl w, including evolution of vor-
tical structures, instability of primary and sec-
ondary vortex rings, breakdown of vortex rings,
and transitionof the fl w from laminar to turbu-
lent regime.

2. MATHEMATICAL FORMULATION
AND NUMERICAL METHODS

To investigate a vortex ring impinging on a fla
wall, the three-dimensional Favre-filtere com-
pressible Navier-Stokes equations in general-
ized coordinates are used. The equation of state
for an ideal gas is used and the molecular vis-
cosity is assumed to obey the Sutherland law.
We use the far-fiel variables and the initial ra-
dius of vortex ring to non-dimensionalize the
equations, which can be expressed as

∂ρ̄
∂t

+
∂(ρ̄ũi)

∂xi
= 0, (1)

∂(ρ̄ũi)

∂t
+

∂(ρ̄ũiũ j)

∂x j
=− ∂p̄

∂xi
+

∂(τ̃i j − τSGS
i j +DSGS

i j )

∂x j
,

(2)

∂ρ̄Ē
∂t

+
∂[(ρ̄Ē + p̄)ũi]

∂xi
=

∂
∂xi

(−q̃i + ũ j τ̃i j + J SGS
i

+σSGS
i −QSGS

i −HSGS
i ),

(3)

where an overbar denotes the spatial filte and a
tilde the Favre filte . The variables ρ, ui, p and E
represent the density, velocity component,pres-
sure and specifi total energy, respectively. The
diffusive flu es are given by

τ̃i j = 2µ̃S̃i j −
2
3

µ̃δi jS̃kk. (4)

The subgrid closure terms in equations (2) and
(3) are define as

τSGS
i j = ρ̄(ũiu j − ũiũ j), (5)

HSGS
i =Cp

(
ρ̄ũiT − ρ̄ũiT̃

)
, (6)

J SGS
i =−1

2
ρ̄( ˜uiukuk − ũiũkuk), (7)

DSGS
i j = (τ̄i j − τ̃i j), (8)
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Fig. 1. Schematic diagram of a vortex ring
approaching a flat wall.

QSGS
i = q̄i − q̃i, (9)

σSGS
i = (u jτi j − ũ j τ̃i j). (10)

In order to model the subgrid closure terms
terms, dynamic Smagorinsky model for com-
pressible flows proposed by Moin et al. (1991)
is employed. The anisotropic part of the dy-
namic subgrid-scale (SGS) stresses is treated
by using the Smagorinsky model (Smagorinsky
1963), while the isotropic part is modelled with
a formulation proposed by Yoshizawa (1986).
A detailed description of the SGS models have
been given in the previous paper (Moin et al.
1991).

The governing equations are numerically solved
by a finite-volume method. As employed in our
previous work (Ren et al. 2015), the convec-
tive terms are discretized by a second-order cen-
tered scheme and the viscous terms by a fourth-
order central scheme. The time advancement
is performed using an implicit approximate-
factorization method with sub-iterations to en-
sure the second-order accuracy.

3. COMPUTATIONAL OVERVIEW AND
VALIDATION

3.1 Computational Overview

As shown in Fig. 1 for the sketch of a vor-
tex ring impacting on a wall, a vortex ring with
radius R0 is initially placed at xxxccc = (0,0,H),
where H is the distance between the vortex ring
center and the wall. The initial vorticity distri-
bution of the vortex ring is assigned by a Gaus-
sian function and initial translational speed of

the ring can be estimated as (Saffman 1978)

us =
Γ0

4πR0
(ln

8R0

σ0
− 1

4
), (11)

where σ0 is the initial core radius and Γ0 is the
initial circulation of vortex ring. To deal with
the instability of the vortex ring, an azimuthal
disturbance is introduced by imposing a radial
displacement on the axis of the ring and the
local radius R(θ) can be expressed as (Archer
et al. 2008)

R(θ) = R0[1+ζg(θ)], (12)

g(θ) =
N

∑
n=1

An sin(nθ)+Bn cos(nθ), (13)

where ζ is a small parameter and is chosen as
2 × 10−4 by following the previous selection
(Bergdorf et al. 2007; Archer et al. 2008), and
g(θ) represents the sum of a set of N Fourier
modes with N = 32 used here.

In the present study, we consider two typical
cases for thin and thick vortex rings with the
slenderness ratio σ0/R0 = 0.2 and 0.4, respec-
tively. For both the cases, the Reynolds number
based on the initial translational speed and di-
ameter of the vortex ring is Re= 4×104. Based
on our tests, the computational domain extends
for 16R0 in the x- and y-directions and 12R0 in
the vertical or z-direction, i.e. Lx = Ly = 16R0
and Lz = 12R0. The time step is chosen as
∆t = 0.005. The grid-spacing is uniform in the
x- and y-directions, and grid stretching is em-
ployed in the z-direction to increase the grid res-
olutions near the wall surface. The minimum
size of the grid is ∆z= 10−5R0. It is ensured that
there are at least 40 nodes in the vorticity thick-
ness on the wall in the attached boundary-layer
region. The vortex rings are initially placed
at H = 6R0. Following the previous treatment
(Swearingen et al. 1995; Archer et al. 2010),
periodic boundary conditions are used in the
x- and y-directions. The computational domain
chosen in the present study is sufficiently large
to ensure that the effects of the periodicity are
very small. No-slip boundary condition is em-
ployed on the wall and a far-field boundary con-
dition is applied at z = Lz.

3.2 Validation

To validate the present simulation, we investi-
gate the instability of free thin and thick vortex
rings and compare with the numerical results of
Shariff et al. (1994) and Archer et al. (2008).
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As listed in Table 1 for two vortex rings, we
have obtained the most amplifie mode k = 9
for the thin ring and k = 6 for the thick ring,
which are the same as the previous results.
Moreover, the agreement is also established in
table 1 by comparison the present growth rate
with the viscous correction αS and αA obtained
by Shariff et al. (1994) and Archer et al. (2008),
respectively, where the growth rate for mode k
is define as αk = (dEk/dt)/(2Ek) with Ek the
perturbationenergy of the mode.

Table 1 Comparison of the present growth
rate ααα with the viscous prediction αααSSS of

Shariff et al. (1994) and αααAAA of Archer et al.
(2008) at ttt === 555222...555

Case σ0/R0 ReΓ k α αS αA
A 0.200 7500 9 0.116 0.119 0.112
B 0.413 5500 6 0.080 0.090 0.072

4. RESULTS AND DISCUSSION

4.1 Vortical Structures

The evolutions of vortical structures for the thin
vortex ring are shown in Fig. 2. When the vor-
tex ring moves close to the wall, a thin vortic-
ity layer is generated on the wall. Then, the
stretching and deformation of the primary ring
occur. Further, the formed vorticity layer on the
wall grows rapidly due to the radially adverse
pressure gradient induced by the primary ring,
and results in the generation of secondary vor-
tex ring and lifting up from the wall, as shown
in Fig. 2(a). The interaction of the secondary
and primary rings decelerates the expansion of
the primary ring and induces the primary ring
to reboundfrom the wall in Fig. 2(b). Then, the
secondary vortex ring penetrates into the inte-
rior of the primary ring as shown in Figs. 2(c,d).
Due to the growth of the azimuthal perturba-
tion, the secondary ring evolves into a wavy-
like structure. Meanwhile, a tertiary vortex ring
and the induced vorticity layer separated from
the wall are formed. During the above pro-
cess, the strong azimuthal instability leads to the
large deformation of the secondary ring. The
strength and wavenumber of the azimuthal in-
stability of primary and secondary vortex rings
will be analysed in detail below. Moreover, it
is observed from Figs. 2(d) and 2(e) that a se-
ries of loop-like vortices (Krishnamoorthy and
Marshall 1998; Krishnamoorthy et al. 1999;
Gossler and Marshall 2001) and hair-pin vor-
tices (Hon and Walker 1991; Adrian 2007; Liu
and Chen 2011) wrapping around the vortex
rings are formed. With the evolution of vortical
structures, it is seen that the strength and num-
ber of the wrapping vortices are increased con-

siderably as shown in Figs. 2(e,f). Finally, the
complicated interactions of the vortex rings as
well as the hair-pin and loop-like vortices in the
fl w fiel lead to the vortical structures break-
down into the small-scale vortices, and further
result in the vortical fl w transition to turbulent
state which will be analysed below.

For the thick vortex ring, the formation of the
secondary vortex ring is similar to that for the
thin vortex ring case described above. After the
secondary ring locates above the primary ring,
it moves far away from the wall and gradually
shrinks over the primary ring, as shown in Figs.
3(a,b). Correspondingly, the azimuthal insta-
bilities of the primary and secondary rings are
strengthened and the loop-like vortices wrap-
ping around the vortex rings are enhanced dur-
ing the evolution. Finally, the complicated inter-
actions of these vortices induce the breakdown
of vortices and the fl w transition to turbulent
state, as shown in Fig. 3(d).

Comparing the evolution of vortical structures
for the thinand thick vortex rings, the secondary
ring moves toward the wall for the thin ring
and away the wall for the thick ring, consistent
with the experimental findin for high Reynolds
number (Walker et al. 1987). The different
properties are associated with the translational
velocity of the secondary ring induced by the
primary ring. Moreover, the temporal develop-
ment of a series of loop-like and hair-pin vor-
tices wrapping aroundthe rings for the thin vor-
tex ring is faster than that for the thick vortex
ring. This behaviour indicates that the instabil-
ity for the thin ring evolves faster than one for
the thick ring, consistent with the prediction of
free vortex rings (Archer et al. 2008).

4.2 Instability of Vortex Rings

The perturbation growth relevant to the az-
imuthal instability is analysed in the early stage
of a vortex ring impinging on a wall. Based
on the previous analysis (Shariff et al. 1994,
Archer et al. 2010), we use the root mean
square value of the azimuthal velocity uθrms of
vortex ring to indicate the alignment of the wavy
perturbation. Fig. 4. shows the contours of
uθrms for the thinring. At t = 15 in Fig. 4(a), the
ring is somewhat far away from the wall. It can
be observed that the plane in which the structure
aligns is inclined at approximately 45◦ to the
direction of ring propagation, which is consis-
tent with the experimental and numerical find
ings for a free vortex ring (Shariff et al. 1994).
Then, as the vortex ring evolves to the wall, the
plane gradually rotates with an inclined angle
from 55◦ at t = 20 to 68◦ at t = 25 in Fig. 4(b,c)
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(a) (b)

(c) (d)
Loop-like vortices

(e)
Hair-pin vortices (f)

Fig. 2. Evolution of vortical structures visualized by an isosurface of the QQQ criterion with
QQQ === 111 for thin vortex ring: (a) ttt === 222222...555, (b) 222555...000, (c) 222777...555, (d) 333000...000, (e) 333222...555, (f) 333777...555.

(a) Loop-like vortices (b)

(c) (d)

Fig. 3. Evolution of vortical structures visualized by an isosurface of the QQQ criterion with
QQQ === 111 for the thick vortex ring: (a) ttt === 333555, (b) 40, (c) 45, (d) 50.
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Fig. 4. Evolution of uuuθθθrrrmmmsss for the thin vortex ring: (a) ttt === 111555, (b) 20, (c) 25, (d) 27.5.
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Fig. 5. Evolution of uuuθθθrrrmmmsss for the thick vortex ring: (a) ttt === 111555, (b) 20, (c) 25, (d) 27.5.

due to the wall effect. From the contour values,
the magnitude of uθrms increases, indicating the

perturbation growth during the ring evolution.
Furthermore, the perturbation of uθrms for the
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Fig. 6. Modal energies over all the simulated modes at several typical times: (a,c) primary
vortex ring, (b,d) secondary vortex ring; (a,b) thin vortex ring case, (c,d) thick vortex ring

case.

secondary vortex ring is obviously apparent in
Fig. 4(c,d) at t = 25 and 27.5, corresponding to
the vortical structures in Fig. 2(b,c). The am-
plitude of uθrms for the secondary ring is larger
than one for the primary ring in Fig. 4(d), indi-
cating that the perturbationgrowth is faster for
the secondary ring. In order to compare the per-
turbation growth for the thin and thick vortex
ring cases, Fig. 5. shows the contours of uθrms
for the thick vortex ring. It can be seen that the
increase of inclined angle and rotation of the
plane are similar to the thin ring case. While
the amplitude of uθrms for both the primary and
secondary rings is smaller than that for the thin
ring case at the same time, indicating the per-
turbation of the thick vortex rings grow more
slowly.

To quantitatively study the instability of vortex
rings, Fig. 6. shows the perturbation energy
Ek (Shariff et al. 1994, Archer et al. 2008)
in different azimuthal modes, where k repre-
sents the wavenumber of the instability modes
for the vortical structures. The perturbationcor-
responding to k = 0 is a simple displacement
of the entire core and can be associated with

Crow’s long-wavelength instability. The higher
order bending modes with k ≥ 1 have a more
complicated radial structure leading to internal
deformations of the vortical core. For the thin
primary vortex ring in Fig. 6(a), the modal ener-
gies are relatively weak at t = 10 and a peak oc-
curs for k = 11 at t = 20. This indicates that the
dominant mode is k = 11, consistent with the
theoretical estimate of the dominant mode ap-
proximately k = 2.26/σ0 (Shariff et al. 1994).
Then, the Ek is amplifie considerably for all the
modes and the peaks of subharmonics k = 22,
33, and 44 are apparent at t = 28. With the
evolution of the vortex ring, the energies at the
dominantmode and its subharmonics are trans-
ferred to other modes. The modal energies are
amplifie with temporal evolution and decay
smoothly with k at t = 35. Furthermore, with
the vortices breaking into small-scale ones, the
modal energies are gradually reduced at t = 40.
It is reasonably identifie that the law of energy
decay follows a characteristic k−5/3 law, indi-
cating that the vortical fl w has become turbu-
lent state (Laporte and Corjon 2000; Rees et al.
2012). Further, Fig. 6(b) shows the modal en-
ergies of secondary vortex ring. Similar to the
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Fig. 7. Axial flow of primary vortex rings:
(a) thin vortex ring, (b) thick vortex ring.

development of modal energies for the primary
ring, the dominantmode k = 11 exhibits a peak
at t = 23 and its subharmonics are apparent at
t = 28. Then, the energy transfers among the
modes with the evolution of vortical fl w and
finall exhibits the −5/3 decay law at t = 40.

The development of modal energies for the pri-
mary and secondary rings is shown in Fig.
6(c,d) for the thick ring case. Similar to the
thin ring case, the peaks of Ek reasonably cor-
respond to the dominant mode k = 6 and its
subharmonic modes k = 12 and 18. With the
evolution of vortical fl w, the energy decay fol-
lows the −5/3 law, such as the profil at t = 60.
Moreover, it is also seen that the peak values of
dominantmode and its subharmonic modes for
the thick ring are smaller than those for the thin
ring, which is related to the fact that the instabil-
ity growth for the thick ring is slower than that
for the thin ring.

Further, the axial fl w, which represents the cir-
cumferential fl w along the axis of the vortex
core (Maxworthy 1977), is investigated because
it is related to the vortex ring evolution to tur-
bulent state (Archer et al. 2008). As the axial
fl w reaches maximum at the center of the vor-
tex core, the axial fl w uθm and the core center

can be determinedby the interpolationfrom the
local azimuthal velocity uθ. Fig. 7. shows the
azimuthal distributions of axial fl w of the pri-
mary ring at several instants. As shown in Fig.
7(a) for the thinring, the amplitudeof uθm is rel-
atively small at t = 10 and grows quickly with
time to generate a pronounced axial fl w, such
as at t = 30 and 35. It is also seen that the num-
ber of wave-like curve is 11, consistent with the
dominantazimuthal mode k = 11. Similarly, as
shown in Fig. 7(b) for the thick ring, the ax-
ial fl w grows quickly and the numberof wave-
like curve also corresponds to the dominantaz-
imuthal mode k = 6. Compared to the temporal
evolution of the axial fl w for the thin and thick
rings, it is reasonably identifie that the growth
rate of axial fl w for the thin ring is faster than
that for the thick ring. Moreover, the axial fl w
should be due to an azimuthal pressure gradient
(Naitoh et al. 2002), which is associated with
the growth of azimuthal instability and the rele-
vant core stretching of vortex ring.

4.3 Flow behaviours in turbulent state

Based on the preceding discussion, after the
vortex rings breaking into small-scale vortices,
the transitionfrom laminar to turbulent state oc-
curs. To investigate the fl w evolution and the
relevant turbulent behaviour, we analyse the to-
tal turbulent kinetic energy (TKE), which is de-
fine as

TKE =
1
2

∫
(uuu′.uuu′)dV, (14)

where uuu′ represents the velocity fluctuation and
is define as uuu′ = ūuu−⟨ūuu⟩, and the integral do-
main is the whole fl w field

Figure 8 shows the evolution of total TKE
and enstrophy of the wrapping vortices, respec-
tively. Here the behaviour relevant to the TKE is
firs analysed. For the thin vortex ring, the TKE
remains nearly zero, corresponding to the lam-
inar fl w state. Then the TKE gradually grows
at approximately t = 24 and rapidly reaches its
maximum at approximately t = 40, represent-
ing the fl w transition to turbulence (Sreedhar
and Ragab 1994; Ragab and Sreedhar 1995).
Subsequently, in the turbulent state of vortical
fl w evolution, the TKE continuously decays
due to viscous effect. For the thick ring, the
TKE evolves slowly with respect to the thin
ring case and reaches its maximum at approx-
imately t = 54. Moreover, the strength of TKE
for the thick ring is smaller than that for the thin
ring, consistent with the behaviour relevant to
the modal energies in Fig. 6.
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Fig. 8. Evolution of (a) total turbulent kinetic energy and (b) enstrophy for the vortices
wrapping around the vortex rings in the whole domain.

The formation and evolution of the vortices
wrapping around the vortex rings, such as the
loop-like and hair-pin vortices, play an impor-
tant role in fl w transition from laminar to tur-
bulent state (Ragab and Sreedhar 1995; Archer
et al. 2008). Here, we will quantitatively exam-
ine the intrinsic connectionof the wrapping vor-
tices with the vortical fl w evolution and transi-
tion to turbulence. Based on our careful anal-
ysis of the vortical structures described in 4.1,
the wrapping vortices are mainly contributed by
the vorticity components in the radial and verti-
cal directions, i.e. ωr and ωz. Consequently, the
strength of the wrapping vortices can be mea-
sured by the total enstrophy in the whole fl w
field which is expressed as

Ωrz =
1
2

∫
(ω2

r +ω2
z )dV . (15)

Figure 8(b) shows the evolution of Ωrz. It is in-
teresting to notice that the profile of Ωrz and
TKE in Fig. 8(a) exhibit the similar manner.
The generation of Ωrz due to the loop-like and
hair-pin vortices is associated with the evolution
of TKE. This behaviour confirm that the intrin-
sic connectionof the wrapping vortices with the
vortical fl w transitionto turbulence.

5. CONCLUSION

In this study, a vortex ring impinges on a fla
wall at two different core thicknesses is investi-
gated. After the secondary vortex ring is gen-
erated on the wall, it is convected inward to
the center area of the primary ring for the thin
vortex ring case and moves far away from the
wall for the thick ring case. Finally, the interac-
tions of the vortical structures in the fl w lead to
the breakdown of large vortical structures into
small-scale vortices and the fl w transitionfrom

laminar to turbulent regime.

The development of azimuthal instability in the
primary and secondary vortex rings is investi-
gated. It is identifie that the dominant modes
for the thin and thick vortex rings are k = 11
and k = 6 respectively, consistent with the the-
oretical estimate k = 2.26/σ0 by Shariff et al.
(1994). Moreover, it is found that the azimuthal
instability for the thick ring grows and decays
more slowly thanthat for the thinring. The fl w
transition to turbulence is marked by the −5/3
decay law of perturbation kinetic energy spec-
tra.

Finally, we analyse the turbulent fl w after the
breakdown of the vortical structures. The tur-
bulent kinetic energy grows rapidly during the
transition process, until the vortical structures
become fully turbulent. It is identifie that the
loop-like and hair-pin vortices play an impor-
tant role in transferring the fl w to turbulence,
consistent with the isolated vortex ring evolu-
tion by Archer et al. (2008).
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