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ABSTRACT 

The paper presents a new method for in site discharge estimation in pressured pipes. The method consists in 
using the water hammer equations solved with the method of characteristics with an unsteady friction factor 
model. The differential pressure head variation measured during a complete valve closure is used to derive the 
initial flow rate, similarly to the pressure-time (Gibson) method. The method is validated with a numerical 
experiment, and tested with experimental laboratory measurements. The results show that the proposed 
method can reduce the discharge estimation error by 0.6% compared to the standard pressure-time (Gibson) 
method for the flow rate investigation. 

Keywords: Pressure measurement; Method of characteristics; Unsteady friction factor; Discharge evaluation; 
Hydropower.  

NOMENCLATURE 

A cross-section area of the pipeline  
a pressure wave speed  
B0 pressure amplitude corresponding to the 

fundamental harmonic of the free pressure 
oscillation  

C- negative characteristic
C+ positive characteristic  
C* vardy’s shear decay coefficient 
D pipe diameter  
dH pressure head difference 
dH0 steady state pressure head difference 
E pipe walls Young modulus  
e bulk modulus  
f friction factor  
fq quasi-steady friction factor  
g acceleration due to gravity  
H pressure head  
h the oscillation damping decrement 
k brunone friction coefficient  
L length of the measuring segment  

q leakage flow 
Q steady-state discharge 
Q0 initial guess for discharge 
Qref reference value for discharge  
T the pressure wave period 
t independent temporal variable  
t1 beginning of the analysed time-history  
t2 end of the initial steady state  
t3 end of the transient state corresponding to 

the forced flow rate change  
t4 end of the analysed time-history  
V bulk velocity  
x independent spatial variable  

Δp differential pressure  
ε pipe wall thickness  
μ arbitrary value  
ω the circumferential wave frequency 
ζ pressure drop due to viscous losses 
ρ density of the flowing liquid  

1. INTRODUCTION 

In the field of efficiency measurement with 
application to hydraulic machinery, the discharge is 

the most difficult parameter to determine 
accurately. The more precise is its estimation, the 
more reliable the turbine hydraulic efficiency will 
be. 
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For in site discharge measurement, there are several 
methods presented in the international standard IEC 
60041 (1991) which can be applied for discharge 
measurement in pipes: velocity-area method, 
pressure-time or tracer methods. The 
thermodynamic and ultrasound methods may also 
be used. All of these methods have a good accuracy 
if used in the recommended conditions. The 
pressure-time method is the simplest in terms of 
costs and requirements when pressure taps are 
available. 

The pressure-time method, Gibson (1923), is based 
on the second law of Newton, conservation of 
momentum, and consists in measuring the pressure 
difference between two pipe cross-sections, during 
a flow stop due to a valve closure for example. The 
discharge is computed using the following equation: 

 
0

tA
Q p dt q

L



    ,                 (1) 

where: Q is the unknown discharge before closure, 
A is the pipe cross-section area, ρ is the liquid 
density, Δp is the measured pressure difference, ζ is 
the pressure loss between the two measuring cross-
sections, L is the length between the two measuring 
sections and q is the leakage flow after the valve 
closure, present when some gaps exist after 
complete closure. 

The method requires certain conditions for a good 
flow estimation: the distance between the two 
measuring cross-sections (the measuring length) 
must be greater than 10 m (L > 10 m), the product 
between this distance and the steady state flow 
velocity must be higher than 50 m2/s (V·L >50 
m2/s). 

The improvement of the discharge determination 
method has concerned the researchers in the last 
years. Jonsson et al. (2012) developed the unsteady 
Gibson method by implementing an unsteady 
friction factor, using the Brunone model. The 
obtained procedure was tested and validated in 
situations outside the standard limitations, using 
numerical and laboratory data. Later, the method 
was validated with on-site experimental tests by 
Dunca et al. (2013). 

Adamkowski and Janicki (2010), Adamkowski 
(2012) showed that the standard pressure-time 
equation for discharge estimation doesn’t consider 
the residual pressure oscillations that appear after 
the valve closure. In order to accomplish that, he 
introduced a term that modifies the integration 
upper limit for the estimation of the discharge in 
Eq. (1). The results obtained by applying this 
procedure were shifted systematically towards a 
lower value of the discharge. This led to a shift in 
the discharge estimation error, but did not increase 
the estimation precision in all analysed cases. 

Further, Adamkowski and Janicki (2013) developed 
another procedure that considers both the liquid 
compressibility and the pipe walls deformability via 
the speed of sound, a. It uses the water hammer 
equations in which the quantity represented by the 

pressure head H was replaced by the pressure head 
difference dH. The method of characteristic (MOC) 
was used to solve the equations. 

In the present work, a development based on the 
method described  by Adamkowski and Janicki 
(2013) using the water hammer equation is 
proposed, by using an unsteady model for the 
friction factor instead of a constant one. The 
numerical implementation of the model is made 
considering the most appropriate numerical scheme 
(explicit derivative scheme or implicit derivative 
scheme). The resulted procedure is tested on a 
numerical set of data and validated with 
experimental data. The method accuracy is 
compared to those achieved with the standard 
pressure-time and unsteady pressure-time methods. 

2. METHOD 

The equations describing the fast variation of the 
flow in 1-dimensional pressurized pipes are the 
continuity equation and the momentum equation 
(Eq. (2) and Eq. (3)). 

0
2


x

H
V

t

H

x

V

g

a










1F                 (2) 

0
2


D

VV
f

x

H
g

x

V
V

t

V










2F               (3) 

where: x is the axial distance, t is the time, V is the 
mean flow velocity, H is the pressure head, g is the 
acceleration due to gravity, f is the friction factor, D 
is the pipe diameter and a is the pressure wave 
speed. The parameter a depends on the pipe walls 
Young modulus E, liquid density ρ, and bulk 
modulus e, pipe wall thickness, ε and diameter, D, 
according to the relation: 

   EeDa   1 . 

These equations can be solved using various 
numerical methods (Karney and McInnis, 1992, 
Chaudlhry, 1987). The method of characteristics 
(MOC) is one of the most frequently used methods 
to solve this system. It consists in writing the two 
equations as a linear combination of them, as: 

1 2 0  F F F                                  (4) 

where the parameter μ has an arbitrary value. Thus, 
Eq. (4) becomes: 
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where two values for the parameter μ are selected to 
obtain the total derivatives of H and V between the 
brackets. These are μ = ±a/g and then, according to 
Wylie and Streeter (1993), Eqs. (2) and (3) can be 
replaced by two ordinary differential equations, i.e., 
Eq. (6) valid along the positive characteristic, C+ 
( adtdx  ), and Eq. (7) valid for the negative 
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characteristic, C- ( adtdx  ), respectively: 
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In this way, a relation between the flow parameters, 
V and H, during the water hammer phenomenon is 
determined. To solve Eqs. (6) and (7), an explicit 
numerical scheme is employed with diamond grid 
scheme for interpolation, as recommended by 
Vitkovsky et al. (2000). Because V << a, on a grid 
as in Fig. 1, the following discrete expressions are 
obtained along C+ ( adtdx  ) from Eq. (6), and 

along C- ( adtdx  ) from Eq. (7), respectively 

according to Bergant et al. (2001): 
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Fig. 1. Characteristics in the plane xOt. 

 
By solving the two equations, the flow parameters V 
and H in the current point P can be obtained. 

The model proposed in the present paper is based 
on rewriting the water hammer classical equations 
in the form presented by Adamkowski and Janicki 
(2013). The pressure head H and the flow velocity 
V are replaced with the pressure head difference, 
dH, between two cross-sections and the discharge, 
Q (Eq. 10 and Eq. 11): 

- along the positive characteristic C+  
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- along the negative characteristic C-  
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The model developed by Adamkowski and Janicki 
(2013) aims to obtain the discharge flowing through 
a pipe using the pressure head difference measured 
between two cross-sections, as the pressure-time 
method. In the method, the effects of liquid 
compressibility and pipe walls deformability are 
considered using the Eq. (10) and (11) via the speed 
of sound, a. The computational procedure implies 
defining certain moments in time, which 
characterize the water hammer transient 
phenomenon (Fig. 2):  

- t1 – beginning of the analysed time-history 

- t2 – end of the initial steady state 

- t3 – end of the transient state corresponding to 
the forced flow rate change 

- t4 – end of the analysed time-history. 
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Fig. 2. Differential pressure variation and time 

definition. 
 
The values of t2 and t3 correspond to the time 
interval in which the flow is completely stopped. 
The time corresponding to the end of the transient 
stage, t3, is difficult to define being a present 
research subject. In the classical pressure time 
method for discharge determination, the IEC 41 
standard presents a way to estimate this final 
integration time. Adamkowski (2012) proposed a 
way to determine this integration time by solving 
the definite integral: 

 
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               (12) 

where B0, T 2 ,    1ln1  ii BBTh  and T 

are the pressure amplitude corresponding to the 
fundamental harmonic of the free pressure 
oscillation, the circumferential wave frequency, the 
oscillation damping decrement and the pressure 
wave period (Fig. 3). The solution of Eq. (12) is the 
value of the time corresponding to the end of the 
transient stage, τ =t3. 
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Fig. 3. Free pressure oscillation after valve 

closure. 
 
In the method presented by Adamkovski, the 
friction factor f is considered constant. This 
hypothesis is acceptable for pipes with high 
roughness and a quasi-steady-transient 
phenomenon, i.e., slow transient. For unsteady 
flows, there are several friction models presented in 
the literature (Karney and McInnis, 1992, Bergant 
et al., 2001, Bahrani and Nouar, 2014). Bergant et 
al. (2001) analysed some of the friction models 
obtaining the best results with the Brunone model. 
This model gave good results in other studies as 
Jonsson et al. (2012) and Dunca et al. (2013). In the 
present work, the model is implemented in the 
method proposed by Adamkowski to evaluate 
possible improvement in the error associated with 
the discharge estimation. 

The Brunone model is described by Bergant et al. 
(2001). It consists in expressing the friction factor f 
as: 
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where fq is the quasi-steady friction factor, k is the 
Brunone friction coefficient, tV   is the 

instantaneous local acceleration and xV  is the 

instantaneous convective acceleration. The 
coefficient k can be determined either by trial and 
error method or analytically using the Vardy’s 
coefficient (Vardy’s shear decay coefficient C*), 

2*Ck  , empirically calibrated. Coefficient C* 

is 0.00476 for laminar flows while for turbulent 
flows is computed using the equation: 

 05.0Re3.14log

*

Re

41.7
C                (14) 

The quasi-steady part of the friction factor, fq, is 
computed using Darcy equation for laminar flow 
( Re64qf ) and the Haaland equation for 

turbulent flow: 
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The Brunone model was numerically implemented 
by solving the time derivative (local instantaneous 
acceleration) and the space derivative (convective 
instantaneous acceleration) with a diamond grid in 

an explicit derivative scheme Vitkovsky et al. 
(2000). 

Using the notations from Fig. 1, the local 
instantaneous accelerations from Eq. 13 are 
evaluated by     tVVtV MMM  /'  and 

    tVVtV NNN  /' , while the convective 

accelerations by     xVVxV MPM  /'  and 

    xVVxV PNN  /' . 

In order to evaluate the flow rate with the proposed 
evaluation procedure, the following information is 
needed: 

- pressure head difference, dH, measured between 
two cross-sections. An initial discharge value is 
imposed as initial guess for this code. 

- definition of the moments t1, t2, t3 and t4 based on 
the pressure head difference dH. The time value t3 
is determined by solving the Eq. (12). 

- geometrical characteristics of the pipe (D – 
diameter, E – pipe walls Young modulus, L – 
distance between the pressure head measuring 
sections), and the liquid properties (ρ – density, e – 
bulk modulus). 

A discretization grid is generated in the space-time 
domain, xOt (Fig. 1), in order to apply the method 
of characteristics. The procedure is iterative. An 
initial guess for the steady state discharge, Q0, is 
firstly made, and a value for f before valve closure 
is obtained by 
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where dH0 is the measured pressure difference in 
the steady state regime.  

Starting with these values for Q0, and f, in all grid 
points at the time t1, the MOC is applied during t1 – 
t4 time-interval, using the boundary conditions: 

- at upstream end (first measuring section): 

dH (t) = 0, while Q(t) results from Eq. (11) along C- 

- at downstream end (second measuring section): 

dH (t) according with measured data, while Q(t) 
results from Eq. (10) along C+ 

For any grid points in-between, the Eqs. (10) and 
(11) are used, to obtain the time variations of the 
pressure head difference dH and the discharge Q. 

In all computations, the Brunone unsteady friction 
factor, Eq. (13), is taken into account by the 
presented explicit scheme. 

A new value of the steady state flow rate Q0, is then 
derived as the average value of the discharge trace 
during the steady state t1 – t2 time-period.  

The obtained discharge value is compared with the 
previous one and if the difference between them is 
less than an imposed value the computation stops. If 
this condition is not accomplished, the computation 
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resumes with the new Q0.  

3. NUMERICAL VALIDATION 

The proposed model was developed in the 
MATLAB software and validated using a 
numerically generated case from which time 
variation of pressure head difference during a valve 
closure were obtained. 

In order to test the efficiency of the proposed 
method outside the limitations stipulated in the IEC 
41 standard for the pressure-time method, the time 
variations of the pressure head are numerically 
created considering two cases with a distance of 
0.9and 9 m between the two measuring sections. 
The data were generated considering the Brunone 
unsteady friction factor model and a valve closing 
function derived from experiments made by 
Jonsson et al. (2012). The normalized valve closure 
with time duration of 4 s is presented dimensionless 
in Fig. 4 and named here “experimental closure”. 
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Fig. 4. Valve closure function. 

 
Case 1 is a 4 m long pipe, with an inner diameter D 
= 0.3 m. The water is supplied from a tank with a 
33.53 m head. The differential pressure head were 
obtained by solving the water hammer equations 
with MOC in two cross-sections located at 0.9 m 
one from the other. The two measuring cross-
sections are located at 0.4 and 1.3 m from the 
downstream valve, respectively.  

Case 2 is a pipe with a length of 40 m, an inner 
diameter D = 0.3 m. The water is supplied from a 
tank with 33.53 m head. The considered upstream 
and downstream sections were located at 9 m one 
from the other. The two measuring cross-sections 
are located at 4 and 13 m from the downstream 
valve, respectively.  

In both cases, the pressure wave speed was 
considered equal to 900 m/s. 

Three values of discharge 0.16, 0.3 and 0.4 m3/s 
were considered to obtain pressure head variations. 
For both values of length and the three discharge 
values, 4 different methods for discharge evaluation 
were applied: 

- standard pressure-time method– steady Gibson 

- the method developed by Jonsson et al. (2012) – 
unsteady Gibson 

- the method developed by Adamkowski and 
Janicki (2013) – steady Adamkowski 

- the proposed method – here named unsteady 
Adamkowski 

The results are presented in figures 5 and 6 as 
relative errors of discharge obtained with each 
method compared to the reference value Qref, for the 
numerical generated data. 

    100%  refref QQQ                (17) 

Figure 5 shows that regardless of the distance 
between the measuring sections for pressure head 
difference the methods steady Gibson and steady 
Adamkowski provide approximately equal results: 
0.5% error for the discharge value 0.160 m3/s, -
0.05% for 0.3 m3/s and -0.2% for 0.4 m3/s. 
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Fig. 5. Discharge evaluation error for Case 1 - 

measuring length of 0.9 m. 

 
Both unsteady evaluation procedures (unsteady 
Gibson and unsteady Adamkowski) gave errors 
close to zero, as the differential pressure head data 
were obtained using the same unsteady friction 
model. In this way, the methods were in fact 
validated. With the two unsteady evaluation 
procedures, the errors were of 0.006% for the 
discharge value 0.160 m3/s, 0.003% for 0.3 m3/s 
and 0.002% for 0.4 m3/s. The difference between 
the steady and unsteady methods points out the 
potential error induced by assuming a constant 
friction factor. 

In Fig. 6, the steady evaluation procedures provide 
also similar results. Some differences appear 
between the two unsteady evaluation procedures 
results. The two unsteady methods are similar, 
beside the liquid compressibility and pipe walls 
deformability effects taken into account in the 
proposed method. A sensibility analyse was 
performed to highlight this difference. 
 
A new simulation was performed in order to obtain 
a differential pressure head trace with a sharper 
closure of the valve (Fig. 7). The results from the 
four evaluating procedures using the new generated 
data are presented in Table 1. 
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Fig. 6. Discharge evaluation error for Case 2 -

measuring length of 9 m. 
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Fig. 7. Sharper valve closure function. 

 
A sharper valve closure leads to an increase of the 
difference between the unsteady methods. This 
emphasises the influence of liquid compressibility 
and pipe walls deformability over the method 
precision. 
 

Table 1 Discharge estimation errors for new 
simulated data with sharper closure 

 Error [%] 

Method 
Steady 
Gibson 

Unsteady 
Gibson 

Steady 
Adamkowski

Unsteady 
Adamkowski 

Sharper 
closure 

0.38 0.18 0.38 0.05 

Experi- 
mental 
closure 

0.47 0.14 0.47 0.06 

 

Another important aspect of the method is the 
correct choice of the time when the free pressure 
oscillations begin to occur, t3. In his study, 
Adamkowski and Janicki (2013) emphasized that 
his method is very sensitive to it. Different values 
for t3 were tested with Adamkowski method in Case 
1 and the discharge estimation error was not 

significantly influenced. For Case 2, the correct 
choice of t3 had an important effect over the error 
by doubling it. The time t3 is thus of importance 
when the compressibility effects becomes 
significant. 

4. EXPERIMENTAL VALIDATION OF 

THE MODEL 

The second step of the study was testing the 
proposed method using experimental data. The 
available pressure traces were measured at the 
Waterpower Laboratory at NTNU (Jonsson, 2011) 
for three discharge values: 0.160, 0.300 and 0.400 
m3/s. The test rig (Fig. 8) consisted in a pipeline 
system supplied from a tank. The hydraulic head of 
the system was 9.75 m. The testing section of the 
setup had a length of 26.67 m and an inner diameter 
of 0.3 m. The pressure wave speed was determined 
from the experiment measurements to 900 m/s. The 
measuring sections for the differential pressure 
transducer were located at 9 m one from another. 
The first section was 4 m from the valve. The 
differential pressure transducer has a range of ±0.5 
bar and the accuracy of 0.25%. A magnetic 
flowmeter with an accuracy of 0.1% was mounted 
on the rig, so the discharge values measured could 
be used as reference for the accuracy analysis of 
proposed method. For each of the three discharge 
values, several tests were made, so the repeatability 
of the measurements could be assessed. 

 

 
Fig. 8. CAD drawing of the test rig 

(Jonsson, 2011). 
 
The discharge was estimated using the four 
procedures analysed in Section 3 with the numerical 
experiment. The results are presented as values of 
the relative error of the obtained discharge 
compared to the reference values in Fig. 9.  

 
The steady Adamkowski method gives the same 
result as the standard Gibson method for the lower 
discharge value (Q = 0.160 m3/s), but for the other 
two discharge values, the first method is less 
precise. Comparing the unsteady Gibson method 
and the unsteady Adamkowski method, the second 
one has smaller errors in discharge evaluation. 

The error values of the proposed method (unsteady 
Adamkowski) do not exceed ±0.1% for the range of 
investigated discharge values. In case of the lower 
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value of discharge, 0.160 m3/s, implementing the 
unsteady friction factor in Adamkowski method 
leads to a decrease of the discharge evaluation error 
by almost 0.6%. The proposed method gives better 
results than the standard Gibson and the unsteady 
Gibson methods, the discharge estimation error 
being decreased with 0.35% compared with the 
unsteady Gibson method error. This is due to the 
importance of liquid compressibility and pipe walls 
elasticity, which are not considered in the two 
mentioned methods. 
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Fig. 9. Discharge evaluation error using 

laboratory data. 

 

For the other two discharge values the errors 
obtained using the proposed method are comparable 
with those obtained with the unsteady Gibson 
method: 0.03% for 0.300 m3/s and -0.08% for 0.400 
m3/s. 

The influence of the correct choice of the moment 
when the free pressure oscillations occur, t3, was 
considerable in this phase of the study. Choosing 
another moment then the one indicated by 
Adamkowski and Janicki (2013) in his study 
doubles the discharge evaluation error. 

5. CONCLUSIONS 

The paper presents a new model developed to 
evaluate the discharge based on pressure head time 
variation measurements during transient regimes, 
similar to the standard pressure-time method (also 
known as Gibson method).  

The model consists in solving the water hammer 
equations in which an unsteady friction factor 
model is implemented. As boundary condition, the 
differential pressure head measured between two 
sections, during the entire transient regime is used. 
The novelty of the method resides into taking into 
account both the liquid compressibility and the pipe 
walls deformability, and the unsteady character of 
the hydraulic losses, unlike the previous methods. 

The model was validated in a numerical experiment 
and used to evaluate the discharge based on 
laboratory measurements. In the numerical 
experiment two lengths of the pipe were considered 
(4 and 40 m) and the differential pressure head was 
extracted between two sections situated at 0.9 and 9 
m one from the other (both measuring lengths being 

lower than the standard limit of 10 m). The results 
showed that the effect of liquid compressibility and 
pipe walls deformability influences the discharge 
evaluation procedures accuracy. Also, taking into 
account the correct time for the end of the transient 
stage, the error can be considerably decreased.  

Using the laboratory experimental data, the 
proposed method obtained a discharge estimation 
error between ±0.08% for the entire analysed 
discharge values range. Implementing the unsteady 
friction factor together with the correct choice of 
the end of the transient stage led to an estimation 
error reduction of about 0.6%, which can be very 
important in site efficiency tests. 

In future works, the proposed method for discharge 
evaluation will be used on in site measured detain 
order to test its efficiency for different discharge 
value ranges and in different evaluation conditions. 
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