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ABSTRACT 

Coefficients or hydrodynamic derivatives of autonomous underwater vehicles (AUVs) play a key role in their 

design and maneuverability. Using a suitable method to estimate these coefficients serves as a time efficient 

approach to raise the achievable precision in the design and control of AUVs. This paper estimates 

hydrodynamic derivatives of an AUV using computational fluid dynamics (CFD) for the wings and body. 

CFD modeling was performed to simulate captive model tests including straight line and planar motion 

mechanism (PMM). In such runs, the process was implemented separately for the wing and body. 

Experimental tests for the same AUV in the water tunnel were carried out for CFD validation. Comparing the 

numerical results to the experimental data, it was shown that the modeling method is able to estimate these 

coefficients at reasonable accuracy. The proposed modeling method was proved to be efficient in estimating   

hydrodynamic derivatives and hence can reduce associated computational costs with the process of detail 

design of AUVs.  
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NOMENCLATURE 

1ε 2ε μC ,C ,C  turbulence constants 

D drag force 

yyI  mass moment of inertia about y-axis 

k turbulent kinetic energy  

l model length   

L lift force 

m mass of AUV 

M moment about y-axis 

HM  hydrodynamic moment about y-axis 

inM  in phase components of the recorded 

heave moment during a PMM testout  

Mout phase components of the recorded 

heave moment during a PMM test 

q qM ,M  linear hydrodynamic coefficients of 

pitch moment 

q|q|M  nonlinear hydrodynamic coefficient of 

pitch moment 

w wM ,M  linear hydrodynamic coefficient of 

heave moment                    

w|w|M  nonlinear hydrodynamic coefficient of 

heave moment  

P Reynolds-averaged pressure 

q,q  angular pitch velocity and acceleration  

Re  Reynolds number 

Gx  center of gravity in x-direction 

w, w  heave velocity and acceleration  

+

y  non-dimensional distance of the  

 first node near to the wall 

Z  force the z direction 

HZ  hydrodynamic force the z direction 

inZ  in phase components of the recorded 

heave force during a PMM test  

outZ  out phase components of the recorded 

heave force during a PMM test 

q qZ ,Z  linear hydrodynamic coefficient of 

pitch force 

q|q|Z  nonlinear hydrodynamic coefficient 

 of force as functions of  pitch velocity 

,w wZ Z  linear hydrodynamic coefficients of 

heave force  

w|w|Z  nonlinear coefficient of force as 

functions of  heave velocity 

0z  amplitude of oscillation  

Α angle of attack 
ε  viscous dissipation rate of turbulent 

kinetic energy 

0θ  angular amplitude of oscillation   
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t time  

U model velocity 

u  acceleration the x direction   

i jU ,U  mean velocity components of fluid 

i ju ,u  fluctuation velocity components of fluid 

X  force in the x direction 

 

μ  fluid dynamic viscosity 

tμ  eddy viscosity 

ρ  flow density 

kσ ,   turbulence Prandtl number for k and ε 

ω  circular frequency of oscillation 

1. INTRODUCTION 

Due to their applications in deep-sea explorations, 

hydrographic surveying, and defense operations, 

AUVs have gained particular considerations in 

terms of research and development in recent years. 

Control and stability specifications are found by 

solving the equations of motion for maneuvering. In 

such equations, hydrodynamic forces and moments 

are expressed by Taylor expansion as a function of 

AUV kinetic parameters and a series of constants 

called hydrodynamic coefficients or derivatives. 

The constants are divided into two groups: 

derivatives resulting from the AUVs’ velocity, and 

those of their acceleration. The derivatives of 

velocity and acceleration relate hydrodynamic 

forces and moments to the velocity and acceleration 

of an AUV, respectively. It is necessary to apply a 

reliable method for estimating hydrodynamic 

derivatives so as to reduce design costs while 

improving AUV performance even in pre-

construction phase. Hydrodynamic derivatives can 

be determined via four types of methods: analytical, 

semi-empirical, numerical and experimental 

methods. An analytical method can well predict the 

hydrodynamic derivatives relating to acceleration. 

However, due to elimination of viscosity effects, it 

may not work well when calculating velocity 

derivatives. Semi-empirical methods may not 

address highly complicated geometries. The most 

reliable methods are proved to be experimental 

ones. The most common experimental method is 

conducting static and dynamic captive model tests 

in towing tanks and water cannel (Julca Avila et al. 

2012; Zhang and Zou 2013; Krishnankutty 2014). 

These tests include straight line, rotating arm, and 

planar motion mechanism tests. They are time-

consuming tests to be undertaken in cost-intensive 

facilities, making them economically non-feasible 

for preliminary design phase. Computational fluid 

dynamics (CFD) methods not only are not as 

difficult, cost-intensive, and time-consuming as 

experimental methods, but also do not need any 

PMM equipment. Compared to analytical and semi-

empirical methods, CFD methods are seen to be 

more applicable yet accurate. In a CFD method, 

static and dynamic captive model tests are 

simulated in order to estimate hydrodynamic 

derivatives.  

Straight line tests are used to estimate linear and 

non-linear derivatives coming from linear velocity. 

Steady CFD methods are applied based on 

Reynolds Averaged Navier-Stokes (RANS) 

equations to simulate straight line tests. Bellevre et 

al. (2000) employed a translational and rotational 

model based on RNAS in the steady state to 

estimate velocity hydrodynamic derivatives. Wu et 

al. (2005) simulated the straight line tests for 

SUBOFF model with or without an angle of attack 

close to the infinite level bottom model. This study 

assessed the effects of the motion-near-bottom on 

hydrodynamic forces. Using RANS, Tyagi and Sen 

(2006) evaluated the coefficients related to 

transverse velocity. Barros et al. (2008) developed a 

numerical technique to estimate force coefficients 

from underwater hulls with different angles of 

attack. CFD results were compared to semi-

empirical and empirical results. Among other 

dynamic model tests, PMM tests are seen to be 

more useful as they provide required data for 

estimating velocity and acceleration derivatives. In 

CFD, unsteady RANS equations are applied to 

simulate PMM tests. Considering the effects of free 

surface and using a CFD parallel code, Broglia et 

al. (2007) studied the flow around KVLCC2 tanker 

during a pure swaying maneuver. With respective 

relative errors of 5.5 and 20 percent, lateral forces 

and yaw moment calculated by this method were 

found to be well corresponded to experimental data. 

Philips et al. (2007) used unsteady RANS modeling 

of PMM test for Autosub model to estimate velocity 

and acceleration derivatives. Zhang et al. (2010) 

proposed a new method for simulating 

hydrodynamic coefficient tests using FLUENT 

CFD. They applied calculated hydrodynamic 

coefficients to create a hydrodynamic model. Malik 

et al. (2013) simulated PMM test by CFD for an 

elliptical axisymmetric geometry of 1:6 scale. They 

achieved highly accurate results using Fluent along 

with active meshing and zoning of the 

computational field to perform pure heave and pitch 

motions. Generating low-volume and high-quality 

grid for an AUV body along with wings to simulate 

static and dynamic captive model tests renders both 

cost-intensive and time-consuming. With 

unstructured grids, the number of cells in 

computational domain increases reducing the 

quality of meshing around AUV wings and body. 

Increased number of cells in unsteady simulation 

would necessitate the use of a powerful probably 

expensive processor. Low-quality meshing can 

generate serious problems in the estimation of 

hydrodynamic coefficients.  

To reduce the incurred cost of calculations, this 

paper presents a numerical modeling approach, 

based on captive model tests, for the estimation of 

hydrodynamic derivatives of body and wing. In 

such an approach, wing and body are individually 

simulated. The paper is organized in three main 

sections: the first section introduces AUV model 

and the theory of estimating hydrodynamic 
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derivatives; the second section presents the CFD 

modeling details; and the third section submits 

conclusion and compares the results with 

experimental data.  

2. AUV MODEL AND TYPES OF TESTS 

To calculate hydrodynamic derivatives of an AUV, 

the dynamic equations of the rigid body should be 

extracted (Fossen 1994). The HydroLab 500, which 

can be seen in Fig. 1, is an optimally-designed 

AUV designed and developed in Iran University of 

Science and Technology for investigation purposes. 

It is controlled by four wings located at the end of it 

in cross shape.  

 

 
Fig. 1. HydroLab 500 and the coordination 

system. 

 

Space-fixed and body-fixed coordinate systems are 

employed to describe the dynamic equations. 

Assuming that the AUV moves just in the ZX 

plane, the motion equations can be described as 

follows (Philips et al. 2007): 

X mu                                                                  (1) 

. (m.U)GZ mw m x q q                                    (2) 

( . ) ( )q ( . . ).qG yy GM m x w I m x U                         (3) 

w  and w  are the linear velocity and acceleration, 

and q  and q  are the angular velocity and 

acceleration, respectively. U  is the initial velocity, 

m is the mass of AUV, 
yyI  is the  mass moment of 

inertia about y-axis, and 
Gx  is the coordinates of 

center of gravity in x-direction. M , Z  and X are 

external forces and moments imposed to AUV, 

which can be divided into hydrostatic, control, 

propulsion, and hydrodynamic ones. In dynamic 

equations, hydrodynamic forces and moments can 

be expressed as a function of kinematic parameters 

and a series of constants known as hydrodynamic 

coefficients or derivatives, by using Taylor series. 

The heave force and moment resulting from 

hydrodynamic effects of flow are: 

| |

| |

| |

| |

H w w w w q

q q q

Z Z w Z w Z w w Z q

Z q Z q q

   

 
                 (4) 

| |

| |

| |

| |

H w w w w

q q q q

M M w M w M w w

M q M q M q q

  

  
                      (5) 

Where wZ , 
w w

Z , wM ,  and 
w w

M  are estimated 

by straight line runs and    wZ ,  wZ , wM , wM , 

 qZ ,  qZ ,    qM  and   qM  are estimated by PMM 

runs.  

2.1  Straight Line Tests 

 In straight line (static) tests, the model is located 

under a given angle with respect to the flow. The 

linear and angular acceleration are zero in these 

tests, so Eqs. 4 and 5 can be rewritten as follows: 

H w w w
Z Z w Z w w  
                                          (6) 

' ' 'H w w w
M M w M w w  

                               (7) 

' sin
w

w
U

  , 
HZ   and 'HM  are the non-

dimensional form of 
HZ  and 

HM , which have 

been non-dimensional by 2 21

2
U L  and 2 31

2
U L . 

L  is the model length  of the HydroLab 500, U  is 

the AUV velocity, and  is the flow density. 

Hydrodynamic coefficient due to velocity of AUV 

can be calculated by static runs. Shear stress and 

pressure distribution produce hydrodynamic forces 

and moments over the AUV surface. The resulting 

force is divided into lift (L) and drag (D) forces that 

are parallel and perpendicular to the free flow 

velocity, respectively (Fig.1). The force imposed on 

the body in the direction perpendicular to the 

longitudinal axis is equal to: 

sin cosZ D L                                              (8) 

2.2  PMM Maneuvers  

 PMM tests are divided into pure heave and pure 

pitch motions. As it can be seen in Fig. 2, the model 

is subjected to a harmonic motion with constant 

amplitude and frequency in the pure heave tests. . 

Such motion is consisted of  a harmonic oscillation 

along z axis and a forward velocity U. Considering 

that the model is passing a sine route, the pitch 

angle  , angular velocity q  and the angular 

acceleration q  would be equal to zero at all times. 

Vertical displacement z , vertical velocity w  and 

vertical acceleration w for pure heave motion are as 

below: 

2

sin

cos

sin

o

o

o

z z t

w z z t

w z z t



 

 



 

  

                                            (9) 

 Where 
0z  and   are the amplitude and 

circular frequency of the heave motion of 

AUV model, respectively. Considering pure 

heave motion  2q q o     regardless of 

nonlinear effects, Eqs. 4 and 5 can be rewritten as 

follows: 

H w wZ Z w Z w                                               (10) 

H w wM M w M w                                           (11) 

Substituting z , w  and w from Eq. 8 in Eqs.s 9 

and 10, we have: 
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   2
0sin cosH w o wZ Z z t Z z t           (12) 

   2
0sin cosH w o wM M z t M z t       (13) 

 

 

Fig. 2. Pure heave and pitch maneuvers. 

 
In pure pitch test (see Fig. 2), the desired motion is 

consisted of a harmonic motion in the direction of 

z  axis, a forward velocity U  and a harmonic 

motion for changing the angles. The velocity along  

x  is U  and along z , in the inertial coordinate is 

z . According to Fig. 3, the resultant velocity w  is 

tangent to the movement direction of AUV. This 

motion can be observed as a pure pitch motion in 

the body-fixed coordinate system, in which, the 

resultant linear velocity w  and the resultant linear 

acceleration w  equal with zero. For pure pitch 

motion we have: 

2

sin

cos

sin

o

o

o

t

q t

q t

  

   

   



 

  

                                          (14) 

0  is the angular amplitude of pure pitch motion. 

For pure pitch motion 0w w  , Eqs. 4 and 5 are 

rewritten as follows: 

   H q qZ Z q Z q                                             (15) 

   H q qM M q M q                                         (16) 

Substituting  , q and q  from Eq. 14 in Eqs. 15 and 

16, the following equations are obtained: 

     2 sin cosH q o q oZ Z t Z t          (17)  

    2 sin cosH o q oM t M t                (18) 

External force HZ  and external moment HM  

measured in pure heave and pitch tests can be 

decomposed by Fourier analysis into in-phase and 

out-phase components. 

sin cosH out inZ Z t Z t                               (19)  

sin cosH out inM M t M t                            (20)  

Equating the coefficients of sine and cosine 

functions in Eqs. 19 and 20 with Eqs. 12 and 13, 

respectively, and using least square method, 

   wZ ,   wZ ,     wM  and wM  can be estimated. 

Similarly,    qZ ,   qZ ,     qM and qM  can be 

estimated by equating the coefficients of sine and 

cosine functions in Eqs. 19 and 20 with Eqs. 17 and 

18 and using least square method. 

3. NUMERICAL PROCEDURE 

3.1  Mathematical Equations 

The flow around the model is resolved based on 

RANS. Assuming the fluid to be incompressible, 

the flow equations are as follows: 

1

1

i i
j

j i

U U P
U

t x x
j i

u u
U i jU

x x x x
j i j j





 

   
   

   

            
     
 

             (21) 

where   is the density; P  is the Reynolds-

averaged pressure; U and u  refer to the fluid 

mean and fluctuation velocity components, 

respectively;   is the fluid dynamic viscosity; 

u u
i j
   indicates fluid Reynolds stresses; and 

k   is the turbulence model applied to calculate 

the Reynolds stresses. k   is one of the most 

commonly used models in aerodynamic and 

hydrodynamic flows. Corresponding equations to 

k    areas follows:  

   . . t
k

k

k kU k P
t


  





  
       

    



     (22) 

   

1 1

. .

( )

t

k

t

U
t

C P C
k



 


   






  
      

    

 

               (23) 

Where, 

2
.( ) . [3 . )]

3

T

k t tP U U U U k             (24) 

2

t

k
C 


                                                          (25) 

In the above equations, k  is the turbulent kinetic 

energy,   denotes the viscous dissipation rate of 

turbulent kinetic energy, t  represents eddy 

viscosity with 
1C 

, 2C  , C  , k , and  being 

model constants which take different values for 

different models. The realizable k   model 

(high-Re) (Shih et al. 1999) was used for modeling 

the turbulence flow. The realizable k  model 

contains a new formulation for the turbulent  
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Fig. 3. The model designed for the body to do meshing and conducting straight line and PMM tests. 

 

 

viscosity and a new transport equation for the 

dissipation rate,  , that is derived from an exact 

equation for the transport of the mean-square 

vorticity fluctuation. It introduces a variable, rather 

than a constant, C  . Better performance in flows 

involving rotation, boundary layers under strong 

adverse pressure gradient, flow separation, and re-

circulating flows are enumerated as a few 

advantages of the realizable k – ε. In addition to its 

ability to dynamically update the viscosity, and the 

use of modified transport equation for ε, the 

realizable k – ε can effectively model all the effects 

of the boundary layer including the close-to-wall 

phenomenon.  

3.2 Geometrical Modeling and Boundary 

Conditions 

To estimate hydrodynamic derivatives of HydroLab 

500, numerical modeling of captive model tests was 

separately done for the wing and the body. The 

whole domain was completely planned before 

meshing, so as to save time. Fig. 3 shows the model 

designed for the body to do meshing followed by 

straight line and PMM tests. The wings of the 

original model are located downstream of the model 

with the volume ratio of the wings to the body been 

small. Thus, interference effects of the wings on the 

body could be adequately ignored (Barros et al. 

2008). The computational domain was broken into 

three parts of inner, intermediate and outer regions 

for performing angular and linear motions. The 

body of HydroLab 500 was encompassed within the 

inner region which is sphere-shaped. The inner 

region could rotate relative to the outer and 

intermediate regions in order to make the required 

angular changes. A linear motion was applied to the 

cube-shaped inner and intermediate regions. Fig. 3 

illustrates the dimensions of the computational 

domain. The boundary conditions were applied to 

the outer region and HydroLab 500 body. The 

velocity inlet boundary condition and the outlet 

pressure were applied to the front and rear 

boundaries, respectively. No-slip condition was 

allowed over the body of HydroLab 500. Zero 

vertical velocity gradients were taken for the upper, 

lower, and side surfaces. 

Figure 4 presents the model designed for the wings 

to do meshing and conducting straight line and 

PMM tests. Likewise, the computational domain 

was divided into three parts of inner, intermediate, 

and outer regions to apply angular and linear 

motions. Regarding the interaction effects of body 

over wing flow, the wing was assumed to be fixed 

to the wall in the inner region. The angular and 

linear motions were applied by sphere and cube to 

the wing and fixed wall, respectively. The boundary 

conditions were applied to the outer region and the 

surface of the wing and the wall fixed to it. The 

velocity inlet boundary conditions and the outlet 

pressure were applied to the front and rear 

boundaries, respectively. Non-slip condition was 

employed for the wing surface and the wall fixed to 

it. Zero vertical velocity gradients were used for the 

upper, lower, and first side surfaces. For the second 

side surface, the symmetry condition was 

considered. By applying suitable maneuvers to the 

inner and intermediate regions, pure heave and 

pitch motions at the desired amplitudes and 

frequencies are possible.  

3.3   Meshing and Grid Independence 

In this study, a structured grid of hexahedral cells 

was applied to all areas. Results from the numerical 

study were highly depended on the meshing 

parameters. Fig. 5 illustrates meshing around the 

body. Nodes around the whole AUV are distributed 

along the hull, so that the flow close to the body is 

better resolved. Fig. 6 shows meshing around the 

wings. At the end of the body, due to the formation 

of recirculating flows and a wake, the cells are more 

compressible. Due to the complication of flow  



N. M. Nouri et al. / JAFM, Vol. 9, No. 6, pp. 2717-2729, 2016.  

 

2722 

 
 

Inlet Outlet 

Free slip wall 

Inner region 

Intermediate region 

Outer region 

Free slip wall 

Wing 

Symmetry 

 
Fig. 4. Model designed for the wing to do meshing and conducting straight line and PMM tests. 

 

 
Fig. 5. Meshing around the model body. 

 

 
Fig. 6. Meshing around the wings. 

 

 

around the wings, higher accuracy was incorporated 

into the meshing within thin region. Skewness 

refers to the shape difference of cells with an 

equilateral cell in the equivalent volume. The most 

difficult region for reducing skewness was the 

region encompassing the wings. Near the body wall 

and the wings, the skewness was satisfyingly below 

0.43. However, going away from the wall, the mean 

skewness was seen to be reduced. 

Before analyzing CFD, solving sensitivity to the 

grid should be considered. Accordingly, four grids 

were generated to study the independence from the 

meshing at all Reynolds numbers. For example,  
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Fig. 7. Sensitivity of hydrodynamic parameters to grid size changes across the body and the wing. 

 

 
Fig. 8. Variations in heave force and moment coefficients with varying time steps. 

 

 

Figure 7 shows the meshing details used to study 

the dependency of the solution to the grid at 
6Re 2 10  . A grid is chosen as the initial grid. 

Grids for the inner region were refined using the 

ratio of 2  in each direction toward the previous 

grid (R ITTC 1999). The refinement ratio for outer 

region was less than 2 . The meshing number 

varied between 0.357 - 4.796 and 0.248 - 3.231 

million grids for the body and the wing, 

respectively. y 
 was the non-dimensional distance 

from the wall to the closest node to the wall, which 

represented the accuracy of the numerical 

predication.  For a realizable k   model with a 

standard wall function, y 
 is required to be within 

30 to 300. Here, y 
 varied from 30 for the finest 

grid to 80 for the coarsest one. The convergence test 

was conducted with its focus on force and moment 

coefficients imposed on the body and the wings at 0 

and 10-degree angles. The SIMPLE algorithm was 

used for pressure-velocity coupling. A second order 

upwind scheme was applied to discretize 

momentum, turbulence kinetic energy and a 

turbulence dissipation rate in all the computations. 

The convergence criteria were set to 
610

 for all the 

residues. No significant difference was observed for 

the force and moment coefficients of body in grids 

3 and 4. Also, no significant difference was 

observed for the drag and lift coefficient of the wing 

in grids 3 and 4. Considering the calculation cost, 

grid 3 (with 2.205 and 1.426 million cells for the 

designs of the body and the wings, respectively) 

was selected for the calculations of the body and the 

wing. 

It is necessary to estimate a time step for unsteady 

simulation, so as to reach reliable results and 

minimize time duration. To investigate the effect, 

simulations were implemented at three time steps, 

namely 100, 250, and 500, with courant numbers of 

4, 1.6, and 0.8, respectively, for one oscillation. For 

example, results of pure heave motion for the body 

have been presented in Fig. 8. Some instabilities 

were observed in time steps at 1/8 oscillation 

primary cycles. Courant number below 1 is seen to 

be good for unsteady problems. In this study, as the 

oscillations are small, the number of time steps 
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could be reduced. Here, the number of time steps 

per oscillation varied from 250 to 500 for various 

frequencies. 

4. VALIDATION 

To validate the CFD results, several experimental 

tests were done on HydroLab 500 in 6Re 2 10  in 

the water tunnel. Fig. 5 shows the set-ups for doing 

the experimental runs. The system helped carrying 

out static tests including straight line and dynamic 

tests including pure pitch, pure heave and the 

combination of pure pitch and heave motions in 

water tunnel. It was applied to estimate the 

derivatives of velocity and accelerations. Straight 

line Tests were done at attach angles ranging from -

6 to 6 degrees at an increment of 2° at 6Re 2 10  . 

Pure heave tests were conducted at different 

frequencies (0.5-2.25 Hz) and amplitudes (1-3 cm). 

All tests were conducted at 6Re 2 10  . Forces and 

moments were measured by a 6-component strain 

gauge balance (Nouri et al. 2014) located in the 

HydroLab 500 model. The six-component balance 

has been calibrated with maximum error of 0.1%. 

 

 
Fig. 9. Experimental set-up installed in water 

tunnel to implement of static and dynamic tests. 

5. NUMERICAL SIMULATION RESULTS 

Captive model tests for the wing and the body of 

HydroLab 500 were individually simulated to 

estimate hydrodynamic coefficients. To validate the 

CFD results, there are only an apparatus capable of 

performing straight line and PMM tests in the water 

tunnel of IUST at Reynolds number values less than 

3×106 for estimating the AUV hydrodynamic 

coefficients, based on the planar experiments. 

Therefore, CFD modeling was performed to 

simulate captive model tests including straight line 

and planar motion mechanism (PMM) at Re = 

2×106. Total forces and moments were set equal to 

the sum of those on the wing and the body.  

5.1   Straight Line Tests 

Such simulations were conducted to obtain 

hydrodynamic coefficients related to AUV linear 

velocity. HydroLab 500’s angle of attack was 

changed, in two-degree steps, from -10 to 10 using 

the sphere planned in the numerical model. For 

instance, the distribution of velocity contours at 6° 

angle of attack is depicted in Fig. 10 for the body 

and the wing. Due to the angle of attack, the 

streamline is deviated toward the upper half of the 

wing and the body. The deviation is as a result of 

the cross flow. With increased angle of attack, there 

was probably a separation in the upper half of the 

body and wing. Lift (L) and drag (D) forces were 

calculated by integrating the pressure distribution 

and shear stress. To calculate total forces and 

moments of the four wings of the AUV, the values 

achieved at zero angle of attack (corresponding 

forces and moments to vertical wings) were added 

to simulation results at each pitch angle 

(corresponding forces and moments to horizontal 

wings). The normal force Z was then calculated by 

the Eq. 8. 

Figure 11 shows the total coefficients of vertical 

force 
2 2

2

HZ
Z

L U
   and moment '

3 2

2

HM
M

L U
  

from the sum of wings and body around the mass 

center of AUV based on non-dimensionless vertical 

velocity sin
w

w
U

   . To compare the wings 

and   total values, it was found that loads due to the 

wings are significant. Therefore, wings effect must 

be considered to estimate the hydrodynamic 

derivatives.   By matching Eqs. 6 and 7 to the data 

appeared above Diagram 11, derivatives 
wZ 
 , 

w w
Z

 
, 'wM  , and '

w w
M

 
 were estimated by least 

squares and regression methods. The linear 

components 
wZ   and 

wM   were defined as the 

effects of potential flow, and 
w w

Z
   and 

w w
M

   

were defined as the viscous effects. 

Table 1 lists estimated linear and nonlinear 

derivatives and the difference, in percentage, from 

the experimental method relating to vertical force 

and the pitch moment.  If '
w w

Z
 

 and '
w w

M
 

 are 

considered to be a result of damping effect related 

to flow separation, than the magnitude of this 

should be larger for the model where the separation 

occurs. '
w w

Z
 

 and '
w w

M
 

 obtained by 

experimental tests were greater than values 

estimated via numerical simulations. This could be 

due to the effects of experimental equipment on the 

model flow in experimental tests. The differences 

estimated between the numerical model results and 

the experimental data ranged from 6-13 percent. 

The numerical method has succeeded to estimate 

linear derivatives more accurately than nonlinear 

derivatives. This might be because of the 

dependency of linear derivatives on the AUV 

geometry along with the lower sensitivity of the 

applied model than the turbulence model. Consider 

now the moment coefficients The Munk moment 

(Newman, 1977) is always destabilizing as it tends 

to turn the vehicle perpendicular to the flow. On the 

other hand, for viscous flow over the body, a 

boundary layer is formed which eventually 

separates over a region near the trailing edge. While 

this causes an additional drag, the nature of the 

resulting moment is generally stabilizing and thus  
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Fig. 10. Distribution of velocity contours for the wing and the body at 6° angle of attack.  

 

 
Fig. 11. Coefficient of vertical force and pitch moment based on non-dimensional velocity. 

 
opposite to the nature of the Munk moment. These 

two competing moments eventually decide the 

overall direction of the moment. As can be seen 

here, the linear coefficient and 'wM   the nonlinear 

coefficient '
w w

M
 

 show opposite sign, and 

therefore support the conjecture that the former (the 

linear part) is the Munk moment arising from 

inviscid flow effect, and the nonlinear part 

represents the effect due to viscosity. 

 

Table 1 Hydrodynamic derivatives estimated by 

straight line tests 

Coefficients 
Hydolab 

500(CFD) 

Hydolab 

500(EXP) 
Error (%) 

'wZ   -0.0102781 -0.010962 6.2 

'wM   0.005225 0.005651 7.5 

' '

'

| |w w
Z  -0.009082 -0.009983 9 

' '

'

| |w w
M  -0.0029 -0.00331 12.3 

5.2   PMM Tests 

In a pure heave maneuver, the model moves in a 

sine route and all along the way, AUV’s 

longitudinal axis is parallel to the direction of water 

flow. Therefore, forces and moments are 

independent of the angular motion. To create a pure 

heave maneuver for the wing and the body, Eq. 9 

was used with inner and intermediate regions 

shown in Figs. 3 and 4, respectively. Pure heave 

tests were conducted at different frequencies (0.5-

2.25 Hz) and amplitudes (1-3 cm). As an example, 

an instantaneous representation of velocity 

distribution for the wing and the body is depicted in 

Fig. 12 at different times. Taking account of the 

quasistationary nature of mathematical 

maneuvering models, numerical data should not be 

affected by memory effects due to the application of 

nonstationary techniques. Regarding Fig. 12, due to 

the oscillations, the wake generated behind the 

model represents an oscillatory pattern. It is the in-

phase of object motion and along the axis. It can be  
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Fig. 12. Velocity distribution based on time for the body and the wing during pure heaving 

test (f=2 Hz). 

 

 

Fig. 13. Force and moment coefficients acting on the body and the wings during pure heaving test 

(f=2Hz).

 

 

concluded that the realistic motion was imposed on 

the wing and body. Therefore, the hydrodynamic 

coefficients aren’t affected by memory effects in the 

selected conditions, which can be ascribed to wake 

interference. Fig. 13 shows the chronology of 

changes in force and moment coefficients which are 

active over the body and the wing in three complete 

cycles in the pure heave maneuver. Using Fourier 

expansion for the resulting data, sine and cosine 

coefficients in Eqs. 19 and 20 were estimated 

separately for the wing and the body. Used in 

Fourier expansion was the corresponding data to the 

two ending cycles. Forces and moments of linear 

velocity and acceleration were separated by a fitted 

equation. Forces and moments relating to the linear 

velocity of the vertical wings were considered by 

adding the values calculated by static simulations in 

zero angle. As the acceleration forces were 

depended on the wing geometry, by doubling the 

sin coefficients estimated by Fourier series for the 

wings, forces and moments of vertical wing 

accelerations were considered in the real model. 

The resulting coefficients were equal to the sum of 

coefficients of the wings and the body. 

 The slope of the first-order equation estimated for 

the data of the coefficient of forces 
2

0

2

HZ

L Uz
 and 

the coefficients of moment 
3

0

2

HM

L Uz
 resulting from 

the velocity (in-phase with speed) for the sum of  
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Fig. 14. Velocity distribution with respect to time for pure pitch motion simulation of the body and the 

wings. 

 

wings and body based on frequency ω show the 

non-dimensional hydrodynamic derivatives 
'wZ   

and 
''wM . The slope of the first-order equation for 

the coefficient of forces 
3

0
2

HZ

L
z


 and the 

coefficients of moment 
4

0
2

HM

L
z


 for the sum of 

wing and body based on ω2 having 90 degree phase 

difference with velocity indicates the non-

dimensional hydrodynamic derivatives 
wZ 
 , and 

'wM  .  The least squared regression was used to 

approximate the first-order equation. Table 2 

presents coefficients estimated by CFD relating to 

pure heave motion along with experimental results.  

 

Table 2 Hydrodynamic derivatives estimated by 

pure heave maneuver 

Coefficients 
Hydrolab 

500(CFD) 

Hydrolab 

500(EXP) 

Error 

(%) 

''wZ  -0.010571 -.0117417 10.0 

wZ 
  -0.01002 -0.0103415 3.1 

''wM  0.005441 0.005959 8.7 

'wM   0.006102 0.00641 4.8 

 
The differences estimated using the numerical 

model with the experimental tests is ranges from 3-

10 percent. As observed in the table, the estimation 

error for the acceleration derivatives is smaller than 

other derivatives. Such coefficient is trivially 

affected by the viscosity effects and the modeling 

errors relating to the turbulence flow and more 

depends on the pressure distribution around the 

model. 

In the pure pitch maneuver, the recorded forces and 

moments are independent of the linear motion. In 

this maneuver, the linear velocity z , in the Eq. 9, 

was applied to the inner and intermediate regions, 

and the angular velocity , in the Eq. 14, was 

applied to the inner region. Pure pitch runs were 

conducted with different frequencies (1.5-3.5 Hz), 

in the amplitudes of 1 to 3 cm for vertical 

displacement, and 4 to 8 degree for angular 

changes. Memory effects can be explained by 

interference between the model’s swept path and its 

own (lateral) wake, leading to unrealistic flow. As 

an example, Fig. 14 shows velocity contours with 

wake generated behind the wings and body for 

different times. It can be concluded that the realistic 

motion was imposed on the wing and body. 

Therefore, the hydrodynamic coefficients aren’t 

affected by memory effects in the selected 

conditions, which can be ascribed to wake 

interference. Fig. 15 depicts the chronology of 

changes in forces and moments which are active 

over the body and wing in three complete cycles in 

the pure pitch maneuver. Similar pure heave 

maneuver, forces and moment coefficients of 

angular velocity and acceleration were separated 

using Fourier expansion and Eqs. 19 and 20. Forces 

and moments relating to the angular velocity of 

vertical wings were considered by adding the values 

calculated by static simulations in same angle with 

the angular amplitude of pure pitch motion. Forces 

and moments relating to the angular velocity of 

vertical wings were considered by doubling the sin 

coefficients estimated by Fourier series for wings. 

The resulting coefficients equal to the sum of 

coefficients of wings and body. 

The slope of the first-order equation estimated for 

the data 
2 2

0

2

HZ

L U 
 and the moment coefficient 

3 2

0

2

HM

LU 
 resulting from the velocity (in-phase with 

speed) for the sum of the wing and the body based 

on frequency ω showed the non-dimensional 

hydrodynamic derivatives qZ 
  and 'qM  , 

respectively. The slope of the first-order equation 

for the coefficient of forces 
4

0
2

HZ

L


 and the 

coefficients of moment 
5

0
2

HM

UL


 resulting from the  
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Fig. 15. Force and moment acting on the body and the wings during pure heave motions (f=3.5Hz).

 
velocity (in-phase with speed) for the sum of the 

wings and the body based on ω2 indicated the non-

dimensional hydrodynamic derivatives 
qZ 
  and 

'qM  , respectively. Table 3 presents the derivatives 

obtained by pure pitch motions.  
 

Table 3 Hydrodynamic derivatives estimated by 

pure pitch maneuver 

qZ 
  'qM   qZ 

  'qM   

005443 -0.0022352 -0.000473 -0.000631 
 

6. CONCLUSION AND SUMMARY 

A numerical method was proposed for the 

simulation of captive models used to estimate 

AUVs’ hydrodynamic derivatives. In this modeling 

approach, straight line and PMM tests were 

separately modeled to estimate the hydrodynamic 

derivatives for the wing and the body. Calculated 

values were validated by having them compared to 

experimental data. Results disclosed that the 

proposed model was able to estimate the 

hydrodynamic coefficients of AUVs’ body and 

connected parts at a reasonable level of accuracy. 

The proposed methodology provided a low-volume, 

high quality structured meshing for the AUV body. 

Reduced number of cells in simulation and 

increased quality of meshing saved time while 

raising the accuracy of estimations at the same time. 

The presented model also reduced the calculation 

costs incurred when estimating required force and 

moment parameters during the process of AUVs’ 

detail design. It can be used as a model for 

estimating AUVs’ hydrodynamic derivatives.  
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