
 

 
Journal of Applied Fluid Mechanics, Vol. 9, No. 6, pp. 2743-2751, 2016.  

Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. 

DOI: 10.29252/jafm.09.06.25080 

 

 

Experimental Investigation of the Free Surface Effect on 

the Conical Taylor-Couette Flow System 

F. Yahi1, 2, Y. Hamnoune1, A. Bouabdallah1, S. Lecheheb1 and F. Mokhtari1 

1 Thermodynamics and Energetic Systems Laboratory, Faculty of Physics. University of Sciences and 

Technology Houari Boumediene, B.P.32 El Alia 16111 Bab Ezzouar. Algiers, Algeria. 
2 Genie Physical of hydrocarbons Laboratory Faculty of hydrocarbons and chimestry, University M’Hamed 

Bougara–35000 Boumerdes-Algeria  

†Corresponding Author Email: Yahi.fatma@gmail.com 

(Received May 17, 2015; accepted April 15, 2016) 

ABSTRACT 

The aim of this work is to highlight the critical thresholds corresponding to the onset of different instabilities 

considered in the flow between two vertical coaxial cones with and without free surface. The inner cone is 

rotating and the outer one is maintained at rest. Both cones have the same apex angle Φ =12° giving a constant 

annular gap δ =d/R1max. The height of the fluid column is H=155mm and It can be progressively decreased for 

each studied case of the flow system. Two kinds of configurations are studied, small and large gap. The working 

fluid is assumed as Newtonian and having constant properties like density and viscosity within the range of the 

required experimental conditions. By means of visualization technique of the flow we have been able to show 

the different transition modes occurring in the conical flow system according to the aspect ratio and then the 

induced action of the free surface which introduces a delay in the onset of different instability modes. The 

obtained results in term of features and stability of the flow are compared to those of Wimmer and Noui-Mehidi. 
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NOMENCLATURE 

d annular radial gap  

DHM Downward Helical Motion 

H maximum length of the fluid column 

h length of the fluid column 

n cell number 

R1max largest radius of the inner cone 

R1min lowest radius of the inner cone 

R2max largest radius of the outer cone 

R2min lowest radius of the outer cone 

TVF Taylor Vortices Flow 

UHM Upward Helical Motion 

WVF Wavy Vortices Flow  

V* dimensionless axial velocity 

  

λ* Dimensionless wavelength number 

Γ aspect ratio 

Ф apex angle 

δ radial gap 

ν kinematic viscosity  

ρ density  
 

Dimensionless numbers 

1maxFr R ghcos    Froude number  

1maxRe R d    Reynolds number 

Ta T Re    Taylor number 

Tc Critical Taylor number 

 

 

1. INTRODUCTION 

The flow between rotating coaxial cylinders has been 

the subject of numerous theoretical and experimental 

works. Taylor (1923) was the first author who 

predicted the onset of the first instability: axial 

stationary wave consists of two contra-rotating 

vortices. Thereafter, this kind of rotational motion 

has been generalized to various geometries such as 

flow between coaxial spheres and between coaxial 

cones. As well as in industrial processes, this flow 

system has a great importance, not only in the design 

of rotating machinery such as multiple concentric 

drives, turbine rotor, but also for the application in 

the chemical equipment such as compact rotating 

heat exchangers and mixers. 

The flow between rotating cones has been studied 
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experimentally and numerically by several authors. 

Wimmer (1975 and 1988) has studied Taylor-

Couette flow in different geometries: cylindrical, 

spherical, conical and between coaxial ellipsoids. he 

has investigated the combination between cone and 

cylinder. Noui Mehidi et al. (1993) have examined 

the laminar-turbulent transition in the case of small 

gap configuration and they have showed that the 

flow develops from the laminar regime towards 

helical motion through the formation of Taylor 

vortices by varying the rotation speed of the inner 

cone. In 1995, Wimmer investigated the appearance 

of Taylor vortices in different gap configurations, 

with the inner rotating and the outer at rest, and he 

found that the basic flow is three dimensional. Noui 

Mehidi and Wimmer (1999) studied the flow states 

occurring in the presence of free surface in the case 

of large gap configuration.  

In this work, we consider the conical Taylor-Couette 

flow with small and large gap configurations. Our 

primary interests are to carry out a systematic 

experimental study, focusing on analysis of laminar-

turbulent regime to highlight the transition process 

from order to disorder including the appearance of 

different instability modes until we observe the 

triggering of the chaos. In the Light of the work of 

Noui Mehidi and Wimmer (1999) as well as the work 

of Mahamdia (1990-2003 and 2008) devoted to the 

effect of free surface on Taylor-Couette flow. We are 

motivated to perform this study which will allow us 

to highlight the influence of the free surface on 

viscous fluid flow between two coaxial cones whose 

inner cone is rotating and the outer one is at rest. Two 

kinds of configurations have been investigated, large 

and small gap in order to highlight the effect of the 

free surface that has been studied only in the wide 

gap configuration ( = 0.25). The main purpose of 

our study is to derive a comparison between the 

present case (small gap) and the nominal case existed 

in the specialized literature (large gap). The effect of 

free surface on the onset of different instability 

modes, cells number, axial wavelenght and axial 

velocity is systematically examined. The obtained 

results are compared with those of Wimmer and 

Noui Mehidi in the case of large gap configuration. 

2. EXPERIMENT DEVICES 

The experimental device consists of two coaxial 

cones made of insulating and transparent material 

(Plexiglas) in order to allow a good visualization of 

flow regime. Both cones have the same apex angle 

Ф=12° giving a constant annular gap δ = d/R1max 

where d= (R2max-R1max). The inner cone is rotating 

and the outer one is maintained at rest. 

Two kinds of configuration have been investigated: 

a small annular gap configuration d1 = (4.85± 0.2) 

mm and large annular gap d2 = (9.68± 0.2) mm. Our 

system is characterized by an outer cone with largest 

radius R2max = (45± 0.2) mm and lowest radius R2min 

= (12± 0.2) mm. The length of the fluid column is 

fixed at H = (155± 0.2) mm. The largest radius of the 

inner cone R1max varies between (40.15± 0.2) mm 

and (35. 31± 0.2) mm, while the lowest radius R1min 

ranges from (7.15 ± 0.2) mm and (2.32± 0.2) mm. 

The inner cone is driven by a DC motor connected to 

the rotating axis by a flexible in order to avoid the 

adverse effects of vibration, (Fig. 1). 

 

  
Fig. 1. Conical Taylor-Couette flow system. 

 

The used display product is a solution of 20% of 

Vaseline oil CHALLALA, favoring a better 

suspension of the particles in the fluid visualization, 

which is added to 80% of a petroleum product 

SIMILI to reduce the viscosity of the oil in a 

concentration of 2g/l of aluminum flakes. Such that 

the mixture constitutes a Newtonian fluid 

characterized by kinematic viscosity ν=4.8 10-6 m²/s 

and a density ρ = 777.23kg/m3 with an accuracy of 

1%. 

In order to characterize the onset of hydrodynamic 

instabilities, it is necessary to introduce 

dimensionless numbers involving viscous forces that 

play a stabilizing role and centrifugal forces which 

have a destabilizing effect. The manifestation of a 

given waveform or instability was identified using 

the control parameters of flow namely, Reynolds 

number Re, Taylor number Ta and Froude number 

Fr defined in table 1: 

 

Table 1 Control parameters 

Geometric Dynamic 

δ =
d

R1max

 

δ1=0.12 

(small gap) 

Reynolds 

number 

Re =
R1maxΩd

ν
 

δ=0.27 

(large gap) 

Taylor number 

Ta = 𝑅𝑒δ
1/2 

Γ=h/d 
9.6< Γ1<32 

3.1< Γ2<16 

Froude number 

Fr

=
R1maxΩ

(ghcosϕ)1/2
 

 

During the experiments, we have used a digital 

camera Sony Cyber-Shot. The DSC-T20, with eight 

mega pixels which has a sensor coupled to a 3X 

optical zoom and a 2.5 inch LCD screen with an 

optical image stabilizer. The T20 also offers high 
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definition video output and a storage capacity of 128 

MB up to 8GB. The camera gives picture MPEG VX 

Fine 640 x 480 with 30 images/sec, MPEG VX 

Standard 640 x 480 with 16 images/sec and MPEG 

320 x 240 with 8 images/sec. 

Three visualization techniques have been used:  

2.1 Reflection of Natural Light  

This method is based on the light beam reflecting 

from seeding particles. The light is supplied by an 

external source located in front of the experimental 

device, in order to highlight the nature and the 

properties of the flow structure. The mechanism of 

this technique is about properties of reflected light 

depending on the orientation of the velocity vector. 

If it is axial, the particles will reflect light completely 

and the current case gives us the maximum velocity 

of the cell. On the contrary, if the velocity has a 

significant radial component, the particles will be 

oriented parallel to the light rays and they will let the 

light pass without reflection. In that case the velocity 

is minimal (Fig. 2). 

 

 
Fig. 2. Natural light reflection δ1 = 0.12, Γ = 32 

Ta = 64.9. 

 

2.2 Transmission of Natural Light: 

This method of visualization is based on the optical 

transmission of the light source which is placed 

behind the experimental device. The light rays pass 

through the flow and provide in-depth structure of 

the flow which can allow us to observe clearly the 

inclination of the cells with respect to horizontal 

plane (Fig. 3). 

 

 
Fig. 3. Natural light transmission δ1 = 0.12, 

Γ = 32 Ta = 72. 

 

2.3 Laser Transmission  

In order to examine the local structure of the 

movement, we have used coherent light (laser He, 

1mW and with wavelength λ=623.8nm). It shows us 

the detailed configuration of Taylor vortices. The 

projection of the light plane of the laser is effected in 

a vertical plane by means of a cylindrical lens of a 

diameter D. the  required need of the experiment is 

to see all the local structure of the flow or to isolate 

a cell. For that it is imperative to respect the 

following adequate distances (D = 12mm, l1=26mm, 

l2 = 37mm) for converging the beam and obtaining a 

rigorous stigma of the image corresponding to the 

considered object (Fig. 4:- a and -b). 
 

 
a) 

 

 
b) 

Fig. 4. a) - Laser transmission visualization 

layout b) - Laser transmission visualization δ1 = 

0.12, Γ = 25.8 Ta = 88.5. 

3. RESULTS AND DISCUSSIONS 

For both configurations, small δ1 = 0.12 and large 

annular gap δ2 = 0.27 and for a given aspect ratio Γ 

in the interval 9.6 < Γ1 < 32 and 3.1 < Γ2 < 16, we 

investigate the basic flow and the laminar-turbulent 

transition regime. 

3.1 Basic Flow 

The basic flow is laminar three-dimensional for Ta < 

Tc1 in the whole range of aspect ratio Γ. It is a result 

of the imbalance between the viscous and centrifugal 

forces that exist in the absence of any disturbance. 

The three-dimensional nature of the flow is mainly 

due to the linear variation of the centrifugal forces 

caused by the linear variation of the radius versus the 

conical axial position "z". The flow is a 

homogeneous movement throughout the fluid 

column, characterized by a perfect symmetry in the 

axial and azimuthal directions.  
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3.2 Transition Regimes 

3.2.1 Completely Filled System  

For a completely filled system, the fluid is limited by 

the end plates where the non-slip condition is 

applied. It causes a deceleration of the fluid. For a 

constant radial gap and by increasing the angular 

velocity of the inner cone, the centrifugal forces will 

progressively dominate the viscous forces. The 

disturbances of the basic flow then generate regular 

closed vortex cells. The first cell of Taylor appears 

in the vicinity of the upper edge where the centrifugal 

forces are greater. This toroidal cell is stationary and 

its size is of the order of the annular gap and forms a 

pair of cells with the rest of the flow. The Taylor 

number value corresponding to the appearance of the 

Taylor vortex (TV) is Ta = Tc1. By increasing the 

inner cone velocity gradually we observe the 

appearance of a second cell that propagates along the 

downward helical motion which is characterized by 

the Taylor number Ta = TcDHM. The principal reason 

of this downward movement of the vortex is the 

rotation of the cell around itself and the mass 

transport is compensated in such a helical vortex 

tube. Near Ta = Tc1 we note the formation of two 

different flow zones: one evolving is in a 

supercritical flow regime (unstable laminar flow) 

and the other one is governed by a subcritical flow 

regime (laminar stable) (Fig. 5). The azimuthal wave 

or "the Wavy Mode" appears in the upper part of the 

annulus with a very low amplitude corresponding to 

the critical Taylor number Ta = Tc2. Then the other 

part of the cells preserves the same properties as 

those described above. The existence of this second 

instability produces a doubly periodic flow which 

propagates in the axial and azimuthal directions. For 

Ta = TcUHM corresponding to the appearance of the 

upward helical motion of cells, we note the 

superposition of three flow instabilities, namely, 

downward helical motion (DHM), upward helical 

motion (UHM) and wavy mode (WM) (Figs. 5-b). 
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Fig. 5. a) -Visualization of sub and supercritical 

regime , b)- superposition of three flow instabilities. 

By the observation of table2, we can see that the 

obtained results are in a good agreement with those 

of Wimmer in the case of a small annular gap. The 

Taylor number value corresponding to the onset of 

the Taylor vortices in the case δ1 = 0.12 is close to 

that obtained by Wimmer (1995) for a radial gap δ = 

0.11. It is also very close to that obtained in the 

cylindrical geometry near to 2.4% for a small gap 

configuration. Whereas, the discrepancy was 5.6% 

for the downward helical motion. This value 

coincides with that obtained in spherical geometry Ts 

= 57.62 evaluated at 3.2% in the case δ = 0.14. In 

addition, the discrepancy corresponding to the 

appearance of the azimuthal wave is 7.7% compared 

with the work of Wimmer. 

 

Table 2 Comparison of critical Taylor number 

values for different gap configurations 

(completely filled flow system) 

Critical  

Taylor 

Number 

Tc1 TcDHM Tc2 TcUHM 

Flow 

Regimes 
TVF DHM WVF UHM 

Wimmer 

δ = 0.11 
41.6 50 74.9  

Present 

work 

δ1 = 0.12 

42.3 

1.7% 

47.2 

5.6% 

68.8 

7.65% 
72 

Wimmer 

δ = 0.25 
46.7 57 68 - 

Present 

work 

δ2 = 0.27 

65.8 

41.5% 

85.1 

25% 
145.6 189.3 

 
In the case of a large gap configuration δ2 = 0.27, it is 

found that the relative discrepancy in the Taylor 

number value corresponding to the onset of the (TV) 

becomes very large 41.5. While the one corresponding 

to the establishment of the downward helical motion is 

about 25% because when the annular spaces becomes 

larger, the instabilities installation becomes slower and 

introduces an onset delay. 

Some flow states for the small gap configuration 

corresponding to δ1 = 0.12 are shown in (Fig. 6). 

3.2.2   Partially Filled System  

In the presence of free surface a strong deceleration 

cannot take place. Thus the angular velocity in the 

vicinity of free surface is higher than the one near the 

stationary end plate. The higher velocity leads to 

increase centrifugal forces resulting in the 

appearance of instabilities. 

For the partially filled flow system Γ < 32, the 

existence of a vortex ring induced by the free 

surface is observed before the onset of the Taylor 

vortex. This so-called free surface cell undergoes 

torsion during the appearance of the first steady 

cell which is settled in the vicinity of the free 

surface (Fig. 7). 
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a)Ta < 42.3, Γ = 32  

basic laminar flow 

b) Ta = 72, Γ = 32   

DHM   

 

  
c) Ta = 80.6, Γ = 32   

DHM+WM+UHM 
d) Ta= 89.6, Γ = 32 

DHM+WM+UHM   

 

  
e) Ta =130.5, Γ= 32 

DHM+WM+UHM   

f) Ta =192, Γ = 32  

DHM+WM+UHM  

Fig. 6. Flow visualization states: a), c) and f) 

Natural light reflection. b), d) and e) Natural 

light transmission δ1 = 0.12. 

 

 

 
Fig. 7. Warping phenomenon visualization. 

 

The analysis of this vortex has allowed us to 

determine the evolution of its size "e" in function 

of filling ratio, as well as its angle θ with respect 

to the horizontal axis. The size of this vortex is 

higher for low aspect ratio 9.6 ≤ Γ ≤ 17.5 (e = 

9mm). Then it tends to decrease to a value of 0 for 

Γ = 32 according to a polynomial law. However, 

the angle θ decreases as an exponential function 

(Fig. 8). 

 
Fig. 8. Evolution of the thickness and the 

inclination angle of the ring in the vicinity of the 

free surface. 

 

 

 

 

 
Fig. 9. Evolution of the critical Taylor number 

(a, b) and the critical Froude number (c, d) 

depending on the filling rate Γ for both 

configurations. 
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Ta = 72.3, Γ = 19.6 δ1 = 

0.12 

Ta  = 72.3,  Γ = 19.6 

δ1 = 0.12 

  
Ta = 77.8, Γ = 15.5  

δ1 = 0.12 

Ta = 85.6, Γ = 23.8 

δ1 = 0.12 

  
Ta =107.7, Γ = 9.3 

δ1 = 0.12 

Ta = 1649.8, Γ = 9.3 

δ1 = 0.12 

  
Ta = 559, Γ = 12.95 

δ2 = 0.27 

Ta = 601, Γ = 12.95 

δ2 = 0.27 

 
Ta = 900, Γ = 13.95 

δ2 = 0.27 

Fig. 10. Visualization of flow in presence of a free 

surface for various Taylor number in both 

configurations. 

 

For small gap configuration δ1 = 0.12 and different 

filling ratio values 9.6 ≤ Γ < 32, the first cell is 

inclined in the opposite direction of the free surface 

vortex. The first instability (TVF) is delayed for 11% 

to 66% compared to the completely filled flow 

system. Whereas for relatively large configuration δ2 

= 0.27 this delay is more important and It is between 

55% and 200%. The Taylor number corresponding 

to the first instability changes according to a linear 

law with negative slope of (-1.1). In addition, the 

Froude number evolves according to a polynomial 

law with aspect ratio Γ in the range 9.6 ≤ Γ < 32 in 

the case of the small gap configuration δ1 = 0.12.  

The Azimuthal wave is delayed 16% to 60%, up to a 

critical height Γc = 15.5. At this threshold Γ =Γc, the 

wavy mode disappears (Fig. 9 -a). This delay is 

produced by the free surface and it is mainly due to 

the meridional component velocity of the flow. 

 

3.3 Evolution of Cells Number and 

Wavelength for Different Flow Regimes  

The analysis of the results in the case of small gap 

configuration shows clearly the evolution of the cells 

number according to the flow regime. For Γ = 32, the 

vortices number starts with one cell in the vicinity of 

first instability (TVF) corresponding to Ta=42.3 and 

then it continues in increasing to reach the maximum 

value. Therefore, It stabilizes at that value until 

Ta=192. After that, subsequently, it stabilizes in 

another range of Taylor number. By increasing 

Taylor number more and more we observe the 

decreasing of cells number "n" (Fig. 11: -a, -b). 

 

 

Fig. 11. Variation of the cell number n versus 

Taylor number Ta: (a) - Completely filled system 

Γ = 32, (b) –Partially filled system Γ < 32 & δ1 = 

0.12. 

The evolution of the dimensionless axial wavelength 

λ* depending on the Taylor number Ta, for a 
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completely filled flow system, decreases 

exponentially. It passes through a maximum value 

0.9737. Then it decreases and tends to stabilize 

towards a value of 0.628 corresponding to 2/3 of the 

maximum value and remains constant in the range 

68.8 < Ta < 350. This result was established by 

Bouabdallah in the cylindrical Taylor-Couette flow 

system in the case of a small gap configuration δ = 

0.10. By decreasing the filling ratio progressively, 

we observe that the behavior law changes as shown 

in (Fig. 12: a-b & c). It was found that for Γ = 32, Γ 

= 25.7, Γ = 23.8 and Γ = 9.3 the axial wavelength 

follows the same law behavior. However, in the case 

of the Γ = 17.5 and Γ = 15.5 the wavelength increases 

exponentially. 

 

 

 
Fig. 12. Evolution of axial wavelength λ* versus 

Taylor number Ta: a) - Completely filled system 

Γ = 32 and Γ = 9.3, b) & c) – Partially filled 

system 9.3 < Γ < 32 & δ1 = 0.12. 

3.4.  Evolution of the Axial Velocity Vz* in 

Function of the Taylor Number Ta 

Regarding to the evolution of the axial velocity Vz* = 

Vz/V1 in function of Taylor number in the completely 

filled system, we note that Vz* begins at the maximum 

value Vz*= 0.053. Therefore, it decreases until it 

becomes almost constant. These results are 

substantially similar to those obtained by Wimmer. 

For a filling ratio Γ = 25.7, we find that the 

dimensionless axial velocity corresponds to the same 

behavior as Γ = 32. For Γ = 9.3 this behavior may 

change considerably in the range: 75.4 < Ta <209 it 

evolves according to an exponential law. Beyond Ta 

= 209 the dimensionless axial velocity Vz* varies 

according to a linear law (Fig. 13 - c). 

 

 

 

 
Fig. 13. Evolution of the axial velocity versus 

Taylor number; (a)  Γ = 32 completely filled 

flow system (b, c)  Γ = 25.7 and Γ = 9.3 

partially filled flow system & δ1 = 0.12. 

5. CONCLUSION 

The flow behavior of the fluid between two coaxial 

conical cylinders with the inner cone rotating and the 

outer one stationary was studied experimentally. 
Special attention was paid to the effect of free surface 

on the conical Taylor-Couette flow. 

The present experiments indicate that chaotic regime 

occurs after a small number of transitions. We can 

distinguish four instability modes: Taylor vortices 

mode, downward helical motion, wavy mode and 

upward helical motion in the small and large 

configurations. In the case of completely filled flow 

system there is a direct transition to chaos. While in 

the case of partially filled flow system there are some 

modifications preceding turbulence. 
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For Γ < 32, a vortex ring induced by the free surface 

is observed before the onset of the Taylor vortex. 

This so-called free surface cell undergoes torsion 

during the appearance of the first steady cell which 

is settled in the vicinity of the free surface. 

The axial limitation of the flow introduces a 

considerable delay in the appearance of the first 

instability (Taylor vortices), the onset of spiral wave 

and azimuthal wave as well. In particular, we 

observe the disappearance of the azimuthal wave for 

a critical value of aspect ratio Γ = Γc1 = 15.5 (δ1= 

0.12) and Γ = Γc2 = 6.7 (δ2 = 0.27). 

The major interest in these experiments in both cases 

of flow system configurations is the properties of the 

free surface, such as the interaction on the mode 

formations. Its characteristics: axial wavelength, 

axial velocity and globally a stabilizing effect of the 

whole movement in the conical Taylor-Couette flow 

system. 

The research reported here will be continued with 

experiments by spectral analysis on selective Γ with 

increased the Taylor number Ta aiming to 

determining the evolution of different instability 

modes in laminar-turbulent transition. 
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