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ABSTRACT 

The steady flow of a second grade fluid through constricted tube for mild stenosis is modeled and analyzed 

theoretically. The governing equations are simplified by implying an order-of-magnitude analysis. Based on 

Karman Pohlhausen procedure polynomial solution for velocity profile is presented. Expressions for pressure 

gradient, shear stress, separation and reattachment points are also calculated. The effects of nondimensional 

parameters emerging in the model on the velocity profile, shear stress, pressure gradient are discussed and 

depicted graphically. The effect of non-Newtonian parameter on velocity profile, wall shear stress and pressure 

gradient is also analyzed. It is found that the Reynolds number strongly effect the wall shear stress, separation 

and reattachment points. 

Keywords: Non-Newtonian fluids; Constricted tube; Analytical solutions; Shear stress; Back flow; Separation 

and reattachment points. 

NOMENCLATURE 

 

1 2A ,A   Rivlin-Erickson tensors  

,h h   generalized pressure  

, , ,r r z z   axis 

eR   Reynolds number  

, , ,u u w w   velocity components 

U  centreline velocity 

Q  flux 

1 2α ,α   material constants 

µ  viscosity 

ρ  density 

,w w    shear stress 

   nebla 
2   Laplacian parameter  

 

 

1. INTRODUCTION 

A stenosis, localized narrowing in an arterial system 

of mammals, disturb normal blood flow through the 

artery and causes arterial disease. Hydrodynamic 

factors play a significant role in the development and 

progression of this disease. Flow characteristics of 

blood such as pressure, wall shearing stress, vortices 

and turbulence may have potential medical 

significance. In the vicinity of a stenosis, a 

knowledge of the flow characteristics may help to 

supplement the understanding of some of the major 

complications which can arise from such 

constrictions is quoted by Roach (1963) and Rodbard 

(1966). These include, an intravascular clot (the 

development of a thrombus), an ingrowth of tissue 

into the artery and the weakening and bulging of the 

artery downstream from the stenosis (post-stenotic 

dilatation). Once a vascular lesion has developed, 

there may be a coupling effect between its further 

development and changed flow characteristic 

Forrester (1968). Some constrictions are 

approximately axisymmetric or collar-like which 

may be caused by intravascular plaques or the 

impingement of ligament or spurs on the vessel wall 

(Roach (1963); Rodbard (1966)). Many researchers 
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have pointed out that atherosclerotic plaques are 

caused primarily by faulty lipid metabolism. As 

atherosclerotic lesions are commonly found in 

curved arterial segments, at the entrance of 

branching vessels, or generally at locations of abrupt 

changes in geometry, which should take into account 

the flow characteristics of the blood. Due to 

separation of the main flow from the walls of 

arteries, static zones occur in the arterial system (Fox 

and Hugh (1966)). They proposed that there is an 

interaction of platelets and fibrin in these separation 

zones to form a mesh in which lipid particles become 

trapped with the subsequent formation of a plaque of 

atheroma. One of the major complications of 

prosthetic heart valve is the formation of thrombus. 

Numerous researchers have anticipated that 

stagnation zones near the valve contribute to the 

formation of thrombi. It, therefore, seems reasonable 

to venture that if separation regions of relatively 

stagnant flow occur near constriction, they may well 

contribute to the problems of thrombosis. The study 

of the mechanics of flow in constricted tubes remains 

a challenging problem though the potential 

importance of hydrodynamic has been documented 

for many years. Young (1968) has studied in detail 

the flow in a stenosis taking the flow in a mildly 

constricted tube based on a highly simplified linear 

model. Forrester and Young (1970) extended this 

work to embrace the effects of flow separation on a 

mild constriction. The problem of flow in constricted 

tubes was analyzed numerically by Lee and Fung 

(1970). Many physicians, researchers and scientists 

have made their efforts to understand the mechanics 

of fluid flow in constricted arteries considering the 

blood as Newtonian fluid. The blood, however, 

behaves like a Newtonian fluid only under certain 

conditions, of course, at low shear stress it becomes 

as a non-Newtonian fluid (Lee and Fung (1970)). 

The blood, however, can be treated as an 

incompressible Newtonian fluid at the flow rates 

encountered in the larger arteries where constriction 

commonly occur. Fox and Hugh (1966) proposed 

that the atherosclerosis plaque (constriction) is 

caused by intravascular clotting. For the first time 

Fry (1966) reported the endothelial changes by 

inserting a plug in the thoratic aorta of mongrel dogs, 

which abrupt the blood flow. Further, he obtained 

theoretical results for unsteady, axisymmetric, 

incompressible Newtonian fluid flow numerically 

and compared with the experimental one. Young 

(1968) reported the time dependent constriction in 

tube for viscous flow. Forrester and Young (1970) 

developed theoretical and experimental results for 

the blood flow through constricted tube. A primary 

goal of their research was to predict analytically the 

separation of flow at Reynolds number in constricted 

tube. For analytical results they use an integral 

method. An experiment was performed to check the 

theory which was valid for water and glycerol-water 

solution (viscous fluid) but not valid for the whole 

blood, as blood behaves as a non-Newtonian fluid at 

low shear rate. Further results were obtained for 

pressure drop, separation and reattachment regions 

and compared with the theoretical one. Morgan and 

Young (1974) investigated the development of a 

relatively simple and approximate solution of the 

fluid flowing through an axisymmetric artery having 

cosine shape constriction, which is valid for both, 

mild and sever constriction. Their general approach 

was an extension and modification of the work done 

by Forrester and Young (1970) and made use of both 

integral-momentum and integral-energy equation for 

viscous, steady and incompressible fluid. Haldar 

(1991) has analyzed the blood flow treating it as a 

Newtonian fluid flowing through an axisymmetric 

artery having constriction. Chow and Soda (1972) 

and Chow et al. (1971) explored various information 

related to the fluid flowing through an axisymmetric 

artery having cosine shape constriction. Nadeem and 

Akbar (2013) has anlayzed the flow of second grade 

fluid through a tapered artery using simulations. 

Mirza et al. (2013) analyzed steady and 

incompressible Newtonian fluid flowing through 

axisymmetric constricted tube taking constant 

volume flow rate. They discussed the stream lines, 

wall shear stress, pressure, separation and 

reattachment points, velocity profile and temperature 

distribution. In the present study we have the work 

(Forrester and Young (1970)) by taking the blood as 

non-Newtonian fluid of constant density flowing 

through an axisymmetric artery with a cosine shape 

constriction of constant volume flow rate. A 

mathematical model for a mild constriction (i. e 

0/ z and 0/ R are very small) is developed and 

analyzed using integral approach. An order-of-

magnitude analysis is employed to simplify the 

governing equation of motion of the problem under 

consideration. The flow is assumed to be steady just 

to make the problem mathematically manageable. 

However, it is anticipated that the steady flow result 

will be responsible for useful information. As arterial 

flow is pulsatile, this assumption, of course, can not 

be justified totally. Moreover, it is believed that 

blood flow, except in the ascending aorta or under 

pathological circumstances, is laminar. Also, it is 

well established that for a better understanding of the 

relationship between the development of constriction 

and blood flow in arteries, a knowledge of the flow 

characteristics in constriction is a necessary 

prerequisite. In this work, therefore, velocity, 

pressure, shear stress, separation and reattachment 

points of fluid flowing through constricted tube are 

analyzed. 

2. GOVERNING EQUATIONS 

The basic equations that govern the flow of an 

incompressible fluid consist of the conservation of 

mass and momentum and in the absence of body 

forces are given as 

𝛻̃. 𝑽̃ = 0                                                                   (1) 

𝜌 (
𝜕𝑽̃

𝜕𝑡
+

𝛻̃𝑽̃𝟐

2
− 𝛻̃ × (𝛻̃ × 𝑽̃)) = −𝛻̃𝑝 + 𝜇𝛻̃. 𝑨̃𝟏 +

𝛼1𝛻̃. (
𝜕𝑨̃𝟏

𝜕𝑡
) + 𝛼1 ((𝑽̃. 𝛻̃)𝛻̃. 𝑨̃𝟏 + (𝛻̃𝑽̃)

𝑇
𝛻̃. 𝑨̃𝟏 +

𝑨̃𝟏. 𝛻̃(𝛻̃𝑽̃)
𝑇
) + (𝛼1 + 𝛼2)𝛻̃. 𝑨̃𝟏

𝟐                                    (2) 

where V is the velocity vector, ρ the constant 

density, µ is the dynamic viscosity, 1α and 2α  are 

the material constants and 1A and 2A are the first 
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and second Rivlin-Ericksen tensors defined as 

𝑨̃𝟏 = 𝛻̃𝑽̃ + (𝛻̃𝑽̃)
𝑇
                                                     (3) 

and 

𝑨̃𝟐 =
𝑑𝑨̃𝟏

𝑑𝑡
+ 𝑨̃𝟏(𝛻̃𝑽̃) + (𝑨̃𝟏(𝛻̃𝑽̃))

𝑇                              (4) 

For the model (1) required to be compatible with 

thermodynamics in the sense that all motions satisfy 

the Clasius-Duhem inequality and assumption that 

the specific Helmholtz free energy is a minimum in 

equilibrium, then the material parameters must meet 

the following conditions (Dunn and Fosdick (1974), 

Dunn and Rajagopal (1995) ).  

1 1 20,  α 0,   and  α α 0                                      (5) 

3. PROBLEM FORMULATION 

We consider an incompressible steady and laminar 

flow of a second grade fluid in a constricted tube of 

an infinite length having cosine shaped symmetric 

constriction of height δ. The radius of the 

unobstructed tube is 0R and ( )R z  is the variable 

radius of the obstructed tube. The z −axis is taken 

along the flow direction and r −axis normal to it. 

Following (Forrester and Young (1970)) the 

boundary of the tube is taken as 

0 0 0
0

0

1 cos ,      
( ) 2

             .                           

z
R z z z

R z z

R otherwise

    
            




(6) 

In Eq. (6) 0z  is the length of the constricted region 

as shown in the Fig. 1. For steady axisymmetric 

 

 
Fig. 1. Geometry of the problem. 

 

flow of blood in tube, the velocity vector V is 

assumed to be of the form 

 V ( , ),0, ( , )u r z w r z                                            (7) 

where u and w  are the velocity components in r −, 

z −directions respectively. According to the 

geometry of the problem the boundary conditions are 

0     at ( )

0         at 0.

u w r R z

w
r

r

  


 



                                                     (8) 

In view of Eq. (8) the Eqs. (1) and (2) become 

0,
u u w

r r z

 
  

 
                                                  (9) 

2
1 2

1 2

ρ α ( )

2 ( )
(α α )( ),

h
w w

r z r

u

r z


  

       
 

 
 



                    (10) 

2
1 1 22

ρ ( )

2 ( )
α ( ) (α α )( ),

h
u

z r r

u
u

r rr


  

    
  

  
   



                    (11) 

where 

w u

r z

 
  

 
                                                         (12) 

2 2 2
1 2

ρ
( ) α

2

u
h u w u u

r

  
      

  
                       (13) 

2 2 2 2
1

2

A 4( ) 4( ) 4( )

2( ) ,

u u w

r r z

u w

z r

 
  

 

 
 

 

                             (14) 

and 2 is the Laplacian parameter, h is the 

generalized pressure. Introducing the dimensionless 

variables 

0

0 0 0 0

0 0
2 2
0 0

, , , ,

ρ
, , ,

ρ ρ
e

uzr z w
r z w u

R z U U

U Rh p
h p R

U U





   

  

                           (15) 

where U is the centerline velocity. An order-of-

magnitude analysis is used to determine the 

negligible effect which appear in Eqs. (9) - (13). Now 

Eq. (9) becomes 

𝜕𝑤

𝜕𝑧
+

𝛿

𝑅0

1

𝑟
                                                              (16) 

From Eq. (15) using order of magnitude analysis, 

which is also applicable for non-Newtonian fluids 

(Young (1968)), it is noted that 
w

z




 is an order of, 

0R


i.e. 

w

z




∼

0

( )o
R


. Forrester and Young (1970) 

assumed that for mild constriction if 

0 01/ / 1,  / 1eR R Z  and 0 0/ 1R z   then 

axial normal stress gradient 
2

2

w

z




 is negligible as 

compared to the gradient of shear component. So 

Eqs. (9) and (13) will become 

0.
h

r





                                                                   (17) 

2

2

1 1
,

e

h w w

z R r rr

   
  

   

                                         (18) 
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2
2 *

2

2
*

1
α

1
α .

2

w w
h w w

r rr

w
p

r

  
   

  

 
  

 

                                     (19) 

where * 1
2
0

α
α

ρR
 . The non-dimensional form of co- 

 sine shape constriction profile is 

 
*

1 1 cos( ) ,      1 1
( ) 2

             1.                           

z z
R z

otherwise





     

 



    (20) 

where *
0/ .R   Eq. (18) can be integrated from r 

= 0 to r = R to get 

0

,

R

e R

h R w
r dr

z R r

  
  

  
                                            (21) 

Exact solution of Eq. (21) can not be obtained. In 

order to find the approximate solution we assume 

fourth order polynomial which is called Karman-

Pohlhausen approach Schlichting (1968). There-fore 

2

3 4

1 1

     1 1

w r r
A B C

U R R

r r
D E

R R

   
       

   

   
      

   

                                (22) 

where U is the centerline velocity and A, B, C, D and 

E are undetermined coefficients which can be 

evaluated from the following five conditions 

0   at  ,w r R                                                                 (23) 

   at  0,w U r                                                           (24) 

0   at  0,
w

r
r


 


                                                   (25) 

2

2

1 1
0   at  ,

e

h w w
r R

z R r rr

   
    

   

                   (26) 

2

2 2
= 2    at  0,

w U
r

r R


 


                                         (27) 

The no slip boundary conditions of zero velocity at 

the wall and centerline velocity U are given by Eqs. 

(23) and (24), condition (24) is a simple definition, 

condition (26) is obtained from Eq. (18). It is 

assumed that at r = 0 the velocity profile is parabolic 

at the center of the tube 
2

2
1

r
U

R

  
  
    

, so that the 

second derivative of w with respect to r, we get the 

condition (26). Thus Eq. (22) becomes 

10
     1

7

r
w U

R

    
   

  
 

2

3

4

3 5
1

7

3 12
1

7

4
              1

7

r

R

r

R

r

R







  
   
  

   
   
  

  
   

   

                               (28) 

where  

2
eR R dh

U dz
                                                             (29) 

We note that λ is the function of z only, since R,U 

and h depend only on z. In Eq. (29) U and h are 

unknowns. If Q is the flux through the tube, then 

0

2 .

R

rwdr                                                                  (30) 

Using Eq. (28) in (30), we obtain 

2

( 2 97 ),
210

R U
Q U U


                                         (31) 

and centerline velocity U can also be written as 

4

2

210 1
. ,

97 105

eR R dh
U Q

dzR





 
  

  

                             (32) 

Using Eq. (19) in (21), 

2*
2

0 0

2

1 α

2 2

1
                  ,

2

R R

e R

d d w
rw dr r dr

dz dz r

R dp w

dz R r

 
  

 

 
   

 

 
                           (33) 

and in order to obtain a closed solution one more 

approximation is taken into account that the velocity 

profile is parabolic 

2

2
1 ,

r
w U

R

 
  

  

                                                       (34) 

as discussed by Forrester and Young (1970). If we 

neglect the nonlinear terms, the flow will be a 

Poiseuille flow through the constriction (Young 

(1968)). Substitution of Eqs. (34) and (29 into 

Eq.(19) and ( 33) yields generalized pressure and 

pressure gradient 

2 2
* *

2 7 2 5

5 4

1 496 1
48α α

75

388 1 8
                                   + ,

225
e

dh Q dR Q dR

dz dz dzR R

dR

dzR R R

 
  



       (35) 

2 *

2 7 5 4

496 α 388 1 8
.

75 225
e

dp Q dR Q dR

dz dz dzR R R R
      (36) 

In order to obtain velocity w we substitute Eqs. (32) 

and (33) in Eq. (29) and (28), to get 
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2

2

2
2 3 4

3 2

* 2
2

2 5

* 2
3 4

2 5

2 3 4

2
[2η-η ]

4
[ 11η 43η 45η 15η ]

225

α
[ 58032η 139376η

50925

α
+45687η 44144η ] [528η

97

-2064η 2160η 720η ],

e

e

e

Q
w

R

R Q dR

dzR

RQ dR

dzR

RQ dR

dzR











    

  

 

 

    (37) 

where η 1 /r R  , is the velocity as a function of r 

and z through constricted tube. We can get velocity 

of unobstructed tube by taking R as constant or unity. 

The volume flow flux in unobstructed tube is 

2
0 0Q R U , which gives nondimensional volume 

flux 2
0 0/Q Q R U   whish is same for obstructed 

tube. Hence velocity w and pressure gradient 
dp

dz

will becomes 

2

2

2
2 3 4

3 2

*
2

5

*
3 4

5

2 3 4

2
[2η-η ]

4
[ 11η 43η 45η 15η ]

225

α
[ 58032η 139376η

50925

α
+45687η 44144η ] [528η

97

-2064η 2160η 720η ],

e

e

e

w
R

R Q dR

dzR

R dR

dzR

R dR

dzR





    

  

 

 

    (38) 

*

5 5 4

496 α 388 1 8
.

75 225
e

dp dR dR

dz dz dzR R R R
                    (39) 

The velocity profile for Forrester and Young (1970) 

can readily be recovered as a special case by setting

*α 0,  in Eq. (38). 

4. PRESSURE DROP ACROSS THE 

CONSTRICTION AND ACROSS 

THE WHOLE LENGTH OF THE 

TUBE 

We can get the pressure distribution at any cross 

section z along the stenosis Eq. (39) is integrated 

using boundary condition that is 0p p at z z  

0 0

0

*

5 5

4

496 1 388 1
( ) α

75 225

8 1
,

R R

R R

z

e z

p dR dR
R R

dz
R R

  



 



               (40) 

Or 

*

4 4
0

124 97 1 1
( ) ( α )( )

75 225
p

R R
     

2 4
0

16 1
,

[ cos ]e

du
R a b u







                                     (41) 

where 

* *

1 ,    .
2 2

a b
 

                                                     (42) 

Now 

2 2 1/2

0

1
( )

cos
du a b

a b u



  
                                (43) 

Differentiating Eq. (43) thrice partially with respect 

to a, we get 

4
0

2 2 2 2 7/2 *

1

[ cos ]

3
( )( ) ( ),

2

du
a b u

a a b a b f



  




  


                  (44) 

where 

*
*

* * 2 * 7/2

( ) (1 )
2

5
(1 ( ) )(1 ) ,

8

f




   

 

  

                                  (45) 

so that 

*

4 4
0

*0
4
0

124 97 1 1
( ) ( α )( )

75 225

16
( ).

e

p
R R

z
f

R R


   



                             (46) 

When there is no constriction i-e 0  and 

0

1,f
h

 
 

 
the pressure drop across the normal tube 

is given by 

0
4
0

16
( ) .p

e

z
p

R R
                                                       (47) 

In the absence of constriction, flow become 

Poiseuille and the subscript P denotes Poiseuille 

flow. If 2L is the length of the tube, then the 

expression for the pressure across the whole length 

of the constricted tube is 

*

4 4
0

04
0

124 97 1 1
[ ] ( α )( )

75 225

8
(2 2 )

e

p
R R

L z
R R

   

 

                               (48) 

In the absence of constriction, 0 0z   the expression 

for the pressure of the normal tube will become 

4
0

16
[ ] .p

e

L
p

R R
                                                         (49) 

We note that Eqs. ( 46) and ( 48) includes the results 
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of Forrester and Young (1970) as a special case for
*α 0.  

5. SHEAR STRESS ON CONSTRICTED 

SURFACE 

The shear stress on the constricted surface is 

1

2 2

α

.

2 2

α

w

R

u w

z r

u w
u w

r z z r

u u w w

r z r z

u u w

z rr





   
  

   
      
     

      
    
  

    
    
         

                 (50) 

Using Eq. (15) in Eq. (50), wall shearing stress 

becomes 

*

2
0

1
α .

ρ

w

e R R

w w w

R r r zU

       
    

     
                           (51) 

From Eq. (34) and (51), we obtain 

3 6

* * 2 2

*

3 6

* * 2 2

4
[

528 19344 44
( α α )]

97 16975 225
1 4

[ α (

528 19344 44
( α α ))] 0,

97 16975 225

e
w

e

e

R dR

dzR R

R R

RdR dR

R dz dzR R

R R

  

 

 

  

                       (52) 

For *α 0 , the results of Forrester and Young 

(1970) for shear stress are recovered. Shear Stress in 

unobstructed tube will be 

3

4
( ) .w p

eR R
                                                     (53) 

At the middle of the constriction maximum value of 

shear stress occurs and the minimum value occurs at 

the ends of the constriction, their ratio can be 

expressed as 

max
* 3

min

( ) 4
.

( ) (1 )

w

w



 



                                           (54) 

The ratio given in Eq. (54) increases rapidly as 

constriction increases in size, as tabulated in Table 1. 

Table 1 Effect of constriction on shear stress ratio 

* 0.1 0.2 0.3 0.4 0.5 

(𝜏𝑤)𝑚𝑎𝑥

(𝜏𝑤)𝑚𝑖𝑛

 1.0234 1.562 2.040 2.777 4.0 

 

The present study holds only for mild stenosis, which 

is evident from the Table 1 that the stress at * 0.5   

(in the middle of the constriction) is four times the 

stress at the ends. 

6. SEPARATION AND 

REATTACHMENT 

Prandtl (1928) has explained the phenomena of 

separation in such a manner that the velocity of the 

fluid in the boundary layer drubbed towards the wall 

and inside the boundary layer the kinetic energy of 

the fluid particles appears to be less than that at the 

outer edge of the boundary layer. This means that the 

fluid particles inside the boundary layer may not be 

able to get the pressure which is applied in the outer 

layer. Even a small rise in pressure may trigger the 

fluid particles near at the wall to stop and turn back 

to form a recirculating flow region, which is the 

characteristic of the separated flows. 

The separation and reattachment points can be 

calculated by taking negligible effects of shear stress 

at the wall, i.e 0w  . 

* * 2 2

3 6

*

3 6

* * 2 2

4 528 19344 44
[ ( α α )]

97 16975 225
1 4

[ α (

528 19344 44
( α α ))] 0,

97 16975 225

e

e

e

R dR
R R

dzR R
RdR dR

R dz dzR R

R R

  

 

  

   (55) 

2

* 2 * 2

152775

( 207900α 7469 43524α )

A B
, ,

e

R
R

dR
R R

dz

C



  

 

 (56) 

where 

3 *

* 2 * 2

* 2 * 2 *

2 * 2

A=152775R α ,

B 679α ( ) ( 55125α 7469

43524α ), 2α ( ) [ 207900α

7469 43524α ].

dR

dz

dR
R

dz

dR
R C

dz

R R

  

  

 

             (57) 

It is noted that when *α 0 , the results of (Forrester 

and Young (1970)) for separation and reattachment 

are recovered. 

7. RESULTS AND DISCUSSION 

We are considering two-dimensional axial flow of a 

second grade fluid as a blood flowing in a constricted 

tube of infinite length. This geometry, of course, is 

intended to simulate an arterial stenosis, and the 

results are applicable to mild stenosis. The flow is 

assumed to be steady, laminar and an 

incompressible. An approximate method is used to 

get the solution for the velocity, pressure drop across 

the constriction length, across the whole length of the 

tube and shear stress on the constricted surface. The 

effect of different flow parameters on the fluid flow 

are simulated with the help of graphs and proper 

discussion related to each graph is also provided. In 

Figure 2 the variation of non-Newtonian parameter 
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*α on the velocity profile is described at z = 0.475 

taking *30, 0.083.eR    It is denoted that 

velocity decreases with an increase in non-

Newtonian parameter which seems physically to be 

correct. It can be seen from Fig. 3 that with an 

increase in Reynolds number velocity of the fluid 

decreases near the throat of the stenosis, however, it 

increases in the diverging region. Effect of Reynolds 

number for Newtonian fluids can be seen from Fig. 

4, which is same as discussed in Young (1968), 

Forrester and Young (1970). The effect of Reynolds 

number on dimensionless pressure gradient between 

z = ±1 taking *
0α 0.05, / 0.1R  is shown in Fig. 

5. It is well mentioned that the pressure gradient 

increases upto the throat of the constriction and then 

decreases in the diverging region. 

 

 

Fig. 2. Effect of non-Newtonian parameter 
*
α on 

velocity profile. 

 

 

 
Fig. 3. Effect of Re on velocity profile for non-

Newtonian fluid. 

 

It is also observed that the value of pressure gradient 

at any point increases as Reynolds number increases 

in both converging and diverging region of 

constriction. 

Same behavior of *α and 0/ R  on the pressure 

gradient is observed in Figs. 6 and 7. 

It is evident from Figs. 8 and 9 that the results for 

Newtonain fluid are same as discussed in Young 

(1968), Forrester and Young (1970). The theoratical 

distribution of shearing stress along the wall is 

illustrated in Figs 10 − 14. 
 

 
Fig. 4. Effect of eR  on velocity profile for 

Newtonian fluid. 

 

 
Fig. 5. Effect of eR on pressure gradient for non-

Newtonian fluid. 

 

Fig. 6. Effect of non-Newtonian parameter *
α on 

pressure gradient for non-Newtonian fluid. 

 

 

Fig. 7. Effect of 
*
δ on pressure gradient for non-

Newtonian fluid. 
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Fig. 8. Effect of eR  on pressure gradient for 

Newtonian fluid. 

 

 
Fig. 9. Effect of δ∗ on pressure gradient for 

Newtonian fluid. 

 

 

Fig. 10. Effect of 
*
δ on shear stress for non-

Newtonian fluid. 

 

 
Fig. 11. Effect of eR on shear stress for non-

Newtonian fluid. 

 

Fig. 10 depicts the influence of constriction height on 

wall shear stress. It is noted that with an increase in 

constriction height * wall shear stress increases, 

and its maximum value occurs at the middle of the 

constriction, which seems physically to be correct. It 

is also observed that in the absence of constriction, 

the flow is fully developed or Poiseuille flow. It is 

observed from the Fig. 11 that for any Reynolds 

number, the shearing stress reaches a maximum 

value on the throat and then rapidly decreases in the 

diverging region. It is also noted that shear stress 

decreases with an increase in Reynolds number. It 

means that Reynolds number provides a mechanism 

to control the wall shear stress. From Fig. 12, it is 

well mentioning, as expected, that as non-Newtonian 

parameter α∗ increases wall shear stress also 

increases. 

 

 

Fig. 12. Effect of non-Newtonian parameter *
α

on shear stress. 

 
 

 
Fig. 13. Effect of δ∗ on shear stress for 

Newtonian fluid. 

 

 
Fig. 14. Effect of Re on shear stress for non-

Newtonian fluid. 

 
As a special case (Young (1968), Forrester and 

Young (1970)) for Newtonian fluid can be seen in 
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Figs. 13 and 14. Figs. 15 and 16 give the influence of 

constriction on the separation and reattachment 

points respectively. It is observed, as naturally 

expected, that separation point moves upstream with 

an increase in constriction size while reattachment 

point moves downstream. It is also observed that the 

separation point moves upstream and the 

reattachment point moves downstream as the 

Reynolds number increases. 

 

 
Fig. 15. Separation point for α∗ in converging 

region. 

 

 

Fig. 16. Reattachment point 
*
α  in diverging 

region. 

8. CONCLUSION 

In the present study an incompressible laminar and 

steady flow of a second grade fluid through 

constricted tube is modeled and analyzed 

theoretically. The fluid is assumed to be blood 

flowing through the artery and the results are 

applicable to mild stenosis. The expressions for 

velocity field, pressure gradient, wall shear stress and 

separation phenomena for the geometry of the 

constriction are presented. An integral momentum 

method is applied for the solution of the problem. In 

human body blood flow is laminar so the Reynold 

number taken in the present theoretical study is very 

close to natural phenomena (Young (1968), Forrester 

and Young (1970)). The summary of findings of the 

present work is as follows : 

•Velocity decreases with an increase in non-

Newtonian parameter 

•Viscous forces are dominant over inertia forces near 

the throat of the constriction, however, opposite 

effect is observed in the diverging region 

•Reynolds number and non-Newtonian parameter 

are economical parameters to control the wall 

shear stress 

•Reynolds number also provides a mechanism to 

control the separation and reattachment points 

•The separation and reattachment points strongly 

depend upon constriction height 

•The present study includes the theoratical and 

experimental results for the velocity profile, 

pressure gradient and wall shear stress of 

(Forrester and Young 1974) as a special case for 

α∗ = 0 
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