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ABSTRACT 

A numerical study has been performed to analyze the effect of radial magnetic field on free convective flow of 

an electrically conducting and viscous incompressible fluid over the ramped moving vertical cylinder with 

ramped type temperature and concentration considered at the surface of vertical cylinder. The governing partial 

differential equations which describe the flow formation have been solved numerically by using implicit finite 

difference method of Crank-Nicolson type. The simulation results of the considered model have been shown 

graphically. One of the interesting result of our analysis is that the local as well as average skin-friction, Nusselt 

number and Sherwood number have increasing tendency in time interval (0,1), thereafter these quantities 

decrease. We have also compared the case of ramped type boundary conditions with that of constant boundary 

conditions with help of table. The advantage of taking ramped type boundary conditions is that initial heat 
transfer rate and mass transfer rate are minimum in this case. 

Keywords: Ramped velocity; Ramped temperature; Ramped concentration; Radial magnetic field; Magnetic 
parameter; Vertical cylinder. 

NOMENCLATURE

0B  radial magnetic field  

C  species concentration  

C dimensionless species concentration  

D mass diffusion coefficient  

g acceleration due to gravity  

Gr Thermal Grashof number 

Gc Mass Grashof number 

M Magnetic parameter 

Nu Local Nusselt number 

avNu  Average Nusselt number 

Pr Prandtl number 

0r  characteristic radius  

r radial coordinate  

R dimensionless radial coordinate  

Sc Schmidt number 

Sh Sherwood number 

avSh  average Sherwood number  

T   temperature  

T dimensionless temperature  

t  time  

t dimensionless time 

0t  characteristic time  

u velocity component in x-direction  

0u  characteristic velocity  

v velocity component in r-direction  

U dimensionless velocity component in x-

direction 

V dimensionless velocity component in r-

direction 

x axial coordinate  

X dimensionless axial coordinate 

α  thermal diffusivity  

βT  volumetric coefficient of thermal 

expansion  

βC  volumetric coefficient of solutal expansion  

  conductivity  

ν kinematic viscosity  

ρ density  

τ local skin-friction  

τav  average skin-friction  

subscripts 

w at the wall 

∞ at free stream

http://www.jafmonline.net/
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1. INTRODUCTION 

Free convection flow involving heat and mass 

transfer simultaneously, have shown wide 

appearance in practical as well as in industrial 

situations like evaporation, condensation, 

formation and dispersion of fog, ocean 

circulations, thermal insulation, enhanced oil 

recovery etc. In industries, many transport 

processes are observed in which simultaneous heat 

and mass transfer occurs as a result of combined 

buoyancy effects of temperature difference and 

concentration difference. Since, cylinders have 

been used in nuclear waste disposal, underground 

energy extortion, cooling of nuclear reactors and 

catalytic bed reactors, therefore the convective 

heat and mass transfer about cylindrical bodies has 

gained the attention of many researchers. Sparrow 

and Gregg (1956) were the first, who studied the 

heat transfer from vertical cylinders. Yang (1960) 

performed an analysis of the unsteady laminar 

boundary-layer equations for free convection on 

vertical plates and cylinders and he derived 

necessary conditions for feasibility of similarity 

solutions. The combined heat and mass transfer in 

natural convection along vertical cylinder for both 

conditions of uniform wall temperature or 

concentration and uniform heat or mass flux was 

investigated by Chen and Yuh (1980). Lien et al. 

(1985) have contemplated the isothermal and 

constant heat flux cases for the free convective 

flow past an impulsively moving infinite vertical 
circular cylinder. 

Gorla (1989) presented a numerical solution of 

combined forced and free convection in the 

boundary layer flow of a micropolar fluid on a 

continuous moving vertical cylinder. He noticed 

that the wall shear stress and surface heat transfer 

rate increase with increasing buoyancy force and 

increasing transverse curvature of the surface. 

Velusamy and Grag (1992) gave a numerical 

solution for the transient natural convection over a 

heat generating vertical cylinder. Ganesan and 

Rani (1998) considered the transient natural 

convection along vertical cylinder with heat and 

mass transfer and they concluded that with 

increase in Schmidt number steady state reaches 

later while buoyancy ratio parameter N put 

opposite effect. Takhar et al. (2000) analyzed the 

combined heat and mass transfer along a vertical 

moving cylinder with a free stream and deduced 

that the Prandtl number affects the surface heat 

transfer while Schmidt number affects the mass 

transfer. Further, Ganesan and Loganathan (2001, 

2002) studied different problems of natural 

convective flow past the moving vertical cylinder. 

Abdallah and Zeghmati (2011) presented the 

analysis of opposing buoyancies on natural 

convection heat and mass transfer in the boundary 

layer along a vertical cylinder. They deduced that 

when Sc < Pr, the concentration layer is much 

thicker than that of thermal layer and for Pr > Sc 

the result is exactly opposite. 

 

 
Fig. 1. Velocity profiles at a fixed cross-section X 

= 0.5 for different values of M, Gr, Gc and Sc. 
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Fig. 2. Temperature Profiles at a fixed cross-

section X = 0.5 for different values of M, Gr, Gc 

and Sc. 

 

 
Fig. 3. Concentration Profiles at a fixed cross-

section X = 0.5 for different values of M, Gr, Gc 

and Sc. 
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Fig. 4. Local Skin-friction Profiles for different 

values of time parameter. 

 

The problem of free convection under the influence 

of a magnetic field has proved to be significant due 

to its application in geophysics, astrophysics and 

petroleum industry. In technological processes MHD 

convection flow problems are important in the field 

of aeronautics, stellar and planetary magnetosphere, 

chemical engineering and electronics. Sastry and 

Bhadram (1987) have analysed the combined free 

and forced convective flow and heat transfer in 

vertical annulus by taking into account radial 

magnetic field. The effect of MHD free convection 

and mass transfer on the flow past an oscillating 

infinite coaxial vertical circular cylinder was 

examined by Raptis and Agarwal (1991). Ganesan 

and Rani (2000) studied flow behavior on the MHD 

flow past a vertical cylinder with heat and mass 

transfer and discussed the unsteady effects of 

material parameters on the velocity, temperature and 

concentration. Postelnicu (2004) applied 

DarcyBoussinesq model to analyze the simultaneous 

heat and mass transfer by natural convection from a 

vertical flat plate embedded in electrically 

conducting fluid saturated porous medium with Soret 

and Dufour effect and he showed effect of governing 

parameters on the heat and mass transfer. Reddy and 

Reddy (2009) investigated the study of radiation and 

mass transfer effects on unsteady MHD free 

convection flow of an incompressible viscous fluid 

past a moving vertical cylinder. They deducted the 

behavior of the velocity, temperature, concentration, 

skin-friction, Nusselt number and Sherwood number 

with variations in the governing thermophysical and 

hydro-dynamical parameters. Devi and Ganga 

(2010) discussed the dissipation effects on MHD 

nonlinear flow and heat transfer past a stretching 

porous surface under a transverse magnetic field. 

They concluded that with increase in Eckert number 

thickness of Thermomagnetic layer increases. Also, 

Magnetic parameter and suction parameter put 

retarding effect on the skin friction coefficient at the 

wall. 

The transient free convective MHD flow past an in-

finite cylinder was studied by Deka and Paul (2013) 

and they found that the transient velocity increases 

with Grashof number but decreases with magnetic 

field parameter. Kumar and Singh (2013) scrutinized 

the effect of induced magnetic field on natural 

convection in vertical concentric annuli heated or 

cooled asymmetrically and gave conclusion that 

there is rapid decrease in fluid velocity and induced 

magnetic field with increase in the value of 

Hartmann number by considering one of the 

cylinders as conducting compared with the case 

when both the cylinders are non-conducting. Rani 

and Reddy (2013) studied the influence of soret and 

dufour effects on transient double diffusive free 

convection of couple-stress fluid past a vertical 

cylinder. They deliberated that increasing values of 

So or decreasing values of Du increase the average 

values of skin-friction and heat transfer rate. Reddy 

(2014) investigated the radiation effects on MHD 

flow along a vertical cylinder embedded in a porous 

medium with variable surface temperature and 

concentration. He deduced that with gain in strength 

of magnetic field parameter M, the transient velocity 

decreases while Gr and Gc have opposite effect. 

Choudhury and Dass (2014) obtained expressions for 

transient velocity, temperature, species 

concentration and non-dimensional skin friction at 

the plate by investigating MHD free convective flow 

of viscoelastic fluid through porous media in 

presence of radiation and chemical reaction. 

Javaherdeh et al. (2015) studied the natural 

convection heat and mass transfer in MHD fluid flow 

past a moving vertical plate with variable surface 

temperature and concentration in a porous medium 

and presented the dimensionless velocity, 

temperature and concentration profiles as well as 

gave numerical solution for the local Nusselt number 

and Sherwood number. His study emphasized on the 

significance of the relevant parameters. Rajesh et al. 

(2016|) performed the finite difference analysis to 

study the effect of chemical reaction and temperature 

oscillation on unsteady MHD free convective flow 

past a semi-infinite vertical cylinder. They derived 

graphs for velocity, local as well as average skin-

friction, Nusselt number and Sherwood number 

indicating effects of different physical parameters. 

Since, free convective flow along vertical cylinder 

with heat and mass transfer has wide range of 

applications in the field of geothermal power 

generation, emergency cooling of a nuclear fuel 

element by forced circulation in case of power 

failure, ocean circulations due to heat current and 

difference in salinity drilling operations etc. In glass 

and polymer industries, hot filaments, which are 

considered as a vertical cylinder, are cooled as they 

pass through the surrounding environment. 
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Fig. 5. Local Nusselt number Profiles for 

different values of time parameter. 

 

In nature, motion starts with constant velocity i.e. u 

= 1, that means when time is increased from zero, the 

flow gains full velocity which is not possible. 

Therefore, some researchers start motion by taking u 

= t which shows that velocity increases with increase 

in time. But in practical situations, after a long time 

velocity does not increase with time because it will 

result in an unstable system. Therefore, we have to 

deliberate a way in between these two situations 

which has been invented by taking ramped 

structures. A significant contribution in the study of 

ramped velocity was given by Kumar and Singh 

(2010). The same concept is applied for temperature. 

When a fluid starts heating, temperature gradually 

increases but after boiling point temperature 

becomes constant. This phenomenon is commonly 

seen in cooling systems like air-conditioner, 

refrigerators. Kumar and Singh (2011) investigated 

transient MHD natural convection past a vertical 

cone having ramped temperature on the curved 

surface. They presented numerical results for the 

velocity, temperature, skin-friction and Nusselt 

number with help of graphs. Recently Das et al. 

(2014) and Seth et al. (2016) have done significant 

studies by considering ramped like temperature 

profiles. Similar concept is adopted for species 

concentration.  

In present study, we have discussed the analysis of 

the effect of radial magnetic field on the free 

convective flow of an electrically conducting and 

viscous incompressible fluid past a vertical moving 

cylinder with heat and mass transfer, where the 

started boundary condition for the temperature, 

concentration and motion of cylinder are taken as 

ramped like function. The governing non-linear 

partial differential equations have been solved 

numerically by using the implicit finite difference 

method of Crank-Nicolson type and the results 
obtained by this study are presented graphically. 

2. PROBLEM FORMULATION 

Consider the transient laminar free convective flow 

of an electrically conducting and viscous 

incompressible fluid over a moving vertical cylinder 

of radius 0r  in presence of foreign species. The x-axis 

is taken along the axes of vertical cylinder and r-axis 

is chosen normal to it. A radial magnetic field of the 

form 0 0 / ,B r r  which is assumed to be applied 

transversely to the vertical cylinder and fixed relative 

to the fluid. The magnetic Reynolds number of the 

flow is taken to be small enough so that the induced 

magnetic field can be neglected. Further, the cylinder 

is assumed to be electrically non-conducting. At the 

beginning, for t′ ≤ 0, the temperature and foreign 

species concentration at the cylinder are assumed to 

be T and C respectively. It is supposed that when 

time t′ > 0, the cylinder temperature and species 

concentration at the cylinder are instantaneously 

raised or lowered to 0( ) /wT T T t t      and 

0( ) /wC C C t t      by injection/sublimation 

respectively and the cylinder is assumed to be moved 

in the upward direction with velocity 0 0/u t t up to 

time 0.t t   Further, for 0,t t  these are 

maintained at constant temperature, species 

concentration and the velocity of the cylinder. For 

small concentration level, the Soret-Dufour effects 

can be neglected in the energy equation. Under these 

assumptions, the physical variables are functions of 

(x,r,t′) only. Then under usual Boussinesq 

approximation, the governing equations are derived 

as follows: 

( ) ( )
0,

ru rv

x r

 
 

 
                                                            (1) 

2 2
0 0
2

β ( )

β ( ) ( )

T

C

u u u
u v g T T

t x x

B r uv u
g C C r

r r r r







  
    

  

 
    

 

           (2) 

αT T T T
u v r

t x r r r r

        
         

                            (3) 

C C C D C
u v r

t x r r r r

        
         

                           (4) 

The initial and boundary conditions for the 

considered problem are as follows: 

0: 0,  0,  ,  t u v T T C C           for all x and r 

0,  0,                                     
                at 0

,  ,

u v
x

T T C C 

 


    
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 (5) 

where 

0 0

0

/         
( )

1                     

t t t t
f t

t t

  
  

 
 

The non-dimensional variables used are as follows: 

0 0

2
0 0

0
0 0 0 0

,  ,  ,  C

          ,  ,  

w w

r t T T C C
R t T

r t T T C C

vt ru x
U V X t

u r u t v

 

 

     
   

    

   

         )6) 

By using non-dimensional quantities the governing 

equations are reduced to following form: 

( ) ( )
0,

RU RV

X R

 
 

 
                                                        (7) 

2

1

                        

U U U U
U V R

t X R R R R

M
GrT GcC u

R

     
    
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  

                        

(8) 

1 1T T T T
U V R

t X R pr R R R

     
    
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                    (9) 

1 1C C C C
U V R

t X R Sc R R R

     
    
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                 (10) 

The initial and boundary conditions in non-

dimensional form are obtained as follows: 

0: 0,  V 0, 0,  0t U T C     for all X and R 

0,  0,                               
               at 0

0,  0,

( ),  ( ),
 0 :                         at 1

( ),

0,  0,                            
               as 

0

U V
x

T C

U f t T f t
t R

C f t

U T
R

C
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(11) 

where 

        1
( )

1        1       

t t
f t

t


 


 

In the non-dimensional process, we have obtained 

the following non-dimensional parameters 

2 2
0 0

0 0

2 2
0 0

β ( ) β ( )
,  ,  ,

,  .
α ρ

T w C wg r T T g r C C v
Gr Gc Sc

vu vu D

B rv
Pr M

v



     
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 

 

3. NUMERICAL SOLUTION 

PROCEDURE 

The transport Eqs. (7)-(10) are highly non-linear in 

nature and their solutions subject to the boundary 

condition (11) have been obtained numerically. The 

solutions of the transformed equations have been 

solved by implicit finite difference method of Crank-

Nicolson type. The finite difference equations 
corresponding to Eqs. (7)-(10) are as follows: 
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(15) 

Finally, the Eqs. (12)-(15) are converted into the 

linear algebraic system and expressed tridiagonally 

then solved by Thomas algorithm. In the 

computational procedure, the physical domain is 

converted into computational domain as a rectangle 

frame of lines indicating 0,  1,min maxX X 

0minR  and 20maxR  where maxR  corresponds 

to R → ∞ which lies very far from the boundary 

layers. The mesh sizes in the X and R direction are 

taken as ∆X = 0.025 and ∆R = 0.05 respectively with 

time step ∆t = 0.01. 

 
Fig. 6. Local Sherwood number Profiles for 

different values of time parameter. 

 
During any one time step, the computed values of the 

previous time step have been used for the coefficients 

U, T and C appearing in Eqs. (12)- (15). At the end 

of each time step, first we have computed the 

temperature field and then computed the 

concentration field and finally the evaluated values 

are employed to obtain the velocity components in X 

and R directions respectively .The unsteady values of 

the components of velocity, temperature field and 

concentration field for a desired time have been 

obtained by taking required number of iterations. 

The steady state numerical solutions have been 

obtained for the velocity, concentration and 

temperature fields when the following convergence 

criterion is satisfied 

1
, , 5

1
, ,

10 ,

n n
i j i j

n
i j i j






 



                                                  (16) 

where ,
n
i j stands for either the temperature, velocity 

or concentration field. The superscripts denote the 

values of the dependent variables after the nth and 

(n+1)th iterations of time t(= n∆t) respectively, 

whereas the subscripts i and j indicate grid location 

in XR plane. Where X = i∆X and R = j∆R with ∆X, 

∆R and ∆t the mesh size in X, R and t directions 

respectively for the Eqs. (12)-(16). Other important 

result of practical importance is the skin-friction, 

Nusselt number and Sherwood number. By using the 

computed values of the velocity field, the local skin-

friction and the average skin-friction in non-

dimensional form are obtained as follows: 

1

τ= ,
R

U

R 





                                                                  (17) 

1

0
τ = .av

U
dx

R





                                                              (18) 

In engineering applications, one of the important 

characteristic of the flow is the rate of heat and mass 

transfer over the cone surface. This is estimated by 

the values of the Nusselt number Nu and Sherwood 

number Sh. 

1

,

R

T
Nu X

R


 
   

 
                                                       (19) 

1

,

R

C
Sh X

R


 
   

 
                                                        (20) 

1

0
= .av

T
Nu dx

R





                                                            (21) 

1

0
= .av

C
Sh dx

R





                                                            (22) 

4. RESULT AND DISCUSSION 

With a view to see into the physical insight of the 

problem, numerical computations are carried out for 

physical parameters involving magnetic parameter 

M, thermal Grashof number Gr, mass Grashof 

number Gc, Schmidt number Sc and time parameter 

t and the numerical solutions are displayed with help 

of graphs. Fig. 1 represents variation in velocity 

profiles for different values of the Magnetic 

Parameter (Fig. 1a), thermal Grashof number Gr 

(Fig. 1b), mass Grashof number Gc (Fig. 1c) and 

Schmidt number Sc (Fig. 1d) respectively at a fixed 

cross-section X =0.5. Fig. 1a depicts that with 

increase in value of M, the velocity profiles decrease. 

This is due to the fact that when value of M is 

increased, a resistive type of force is produced 

known as Lorentz force. This force opposes the 

motion of the fluid as a consequence velocity 
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decreases. Fig. 1b delineates that with increase in 

value of Gr velocity increases. This happens due to 

the reason that increasing value of Gr will result in 

increase in Buoyancy force, which accelerates the 

fluid motion. Therefore, velocity profiles increase. It 

is observed from Fig. 1c that increase in value of Gc 

will increase the velocity profiles. When the value of 

Sc is increased, velocity profiles get reduced which 

is shown in Fig. 1d. 

 

 
Fig. 7. Average profiles for different values of M, 

Gr, Gc and Sc w.r.t. time. 

The temperature profiles for different M, Gr, Gc and 

Sc and at a fixed cross-section X = 0.5 are plotted in 

Fig. 2. It is noticed from Fig. 2a that temperature 

profiles increase with increase in magnetic parameter 

M. Further, time taken to reach the steady-state 

decrease. There is suppression in temperature 

profiles with increasing values of Gr and Gc which 

is clearly visible in Fig. 2b and 2c. Also, steady-state 

time decreases with increase in Gr and Gc. Fig. 2d 

describes that with increase in value of Sc, 

temperature profiles increase. Fig. 3 illustrates 

concentration profiles for different values of M, Gr, 

Gc and Sc. Fig. 3a exhibits that with increasing value 

of M, concentration profiles increases. Further, 

steady state is achieved earlier with increase in M. It 

is observed from Fig. 3b that concentration profiles 

get reduced as the value of Gr rises up. The species 

concentration is observed to be high near the surface 

of the cylinder, decreases continuously with increase 

in the value of Gr and becomes minimum at the end 

of the boundary layer. From Fig. 3c, we can notice 

that influence of Gc is qualitatively similar to those 

of Gr. As the value of Schimdt number increases, the 

mass transfer increases and hence the concentration 

profiles decreases which is shown in Fig. 3d. Also, 

the steady-state is achieved earlier with increase in 

all parameters. 

In Fig 4 (a)-(b) we have shown the variation in local 

skin-friction profiles. Fig. 4a reveals that with 

increase in value of M and Sc, local skin-friction 

increases. Fig. 4b shows the influence of Gr and Gc 

on local skin-friction profiles. From the Fig. 4b it can 

be noticed that local skin-friction decreases with 

increase in Gr and Gc. Fig 5(a)-(b) presents variation 

in local Nusselt number. It is observed from the Fig 

5a that the local Nusselt number de-creases with an 

increase in both M and Sc. From Fig. 5b, we deduce 

that effect of Gr and Gc is to enhance the local 

Nusselt number and hence the heat transfer rate 

increases. Fig 6a represents the influence of M and 

Sc on Sherwood number.  

 

Table 1 Comparison of average Nusselt Number 

and average Sherwood Number for ramped case 

and constant case 

t Ramped Case Constant Case 

 Nu_{av} Sh_{av} Nu_{av} Sh_{av} 

0.2  0.215087  0.197447  0.787799  0.741577 

0.3  0.293729  0.271660  0.685571  0.646670 

0.4  0.357678  0.332132  0.634940  0.634940 

0.5  0.417269  0.388544  0.604052  0.570208 

0.6  0.474086  0.442346  0.585267  0.552171 

0.7  0.529288  0.494592  0.574758  0.541715 

0.8  0.583875  0.546187  0.569909  0.536444 

0.9  0.638818  0.598002  0.568208  0.534090 

1.0  0.688952  0.651326  0.567716  0.532920 

1.1  0.613412  0.578815  0.567557  0.532154 

1.2  0.586882  0.553606  0.567488  0.531563 

1.3  0.574237  0.541152  0.567453  0.531087 

1.4  0.568779  0.535300  0.567434  0.530695 

1.5  0.566919  0.532794  0.567427  0.530370 

2.0  0.566983  0.530160  0.567445  0.529360 

2.5  0.567256  0.529246  0.567480  0.528871 

3.0  0.567387  0.528802  0.567510  0.528602 

3.5  0.567460  0.528558  0.567534  0.528440 

4.0  0.567503  0.528410  0.567551  0.528334 

4.5  0.567532  0.528314  0.567564  0.528263 

5.0  0.567551  0.528247  0.567575  0.528211 

5.5  0.567566  0.528199  0.567583  0.528172 

6.0  0.567577  0.528163  0.567589  0.528143 

6.5  0.567585  0.528136  0.567595  0.528121 

7.0  0.567592  0.528115  0.567599  0.528103 

 

Fig 6a depicts that with increase in value of Sc 

Sherwood number increases while effect of M is 

exactly opposite. It is noticed from Fig 6b that 



V. Vanita and A. Kumar / JAFM, Vol. 9, No. 6, pp. 2855-2864, 2016.  

 

2863 

Sherwood number increases with increase in both Gr 

and Gc. Here, the effect is clearly visible for higher 

values of time. Fig. 7 (a)-(c), depict graphs of 

average values of skin-friction, Nusselt number and 

Sherwood number respectively. Fig. 7a reveals that 

average value of skin-friction increases with increase 

in M and Sc but decreases with increase in Gr and 

Gc. Fig. 7b delineates that average heat transfer rate 

get reduced with increase in Sc and M but enhanced 

with increase in Gr and Gc. Fig.7c depicts that 

average values of Sherwood number decrease with 

increase in magnetic parameter M but all other 

parameters put adverse effect. One interesting result 

of our consideration is that all average values of skin-

friction, Nusselt number and Sherwood number have 

increasing trend in time interval (0,1) and thereafter 

they decreases and finally merge with steady state. 

The reason behind the increasing trend of these 

values in interval (0,1) is the ramped nature of 

boundary conditions. 

In order to check the influence of ramped type 

profiles, we have compared the average values of 

Nusselt number and Sherwood number 

corresponding to ramped type boundary conditions 

for velocity, temperature and concentration with the 

case of constant boundary condition for velocity, 

temperature and concentration, which is shown in 

Table 1. From Table 1, it is clear that in case of 

ramped type boundary conditions, the values of 

average Nusselt number and average Sherwood 

number are low as compared to case of constant 

boundary conditions. But the steady state values are 

almost same, achieved at the same time in both the 

cases. This shows the advantage of taking ramped 

type boundary conditions, as the heat-transfer rate 

can be lowered which helps in keeping the system 

stable. This type of phenomenon can be used in 

cooling the systems and equipment. 

5. CONCLUSIONS 

The transient free convective flow past a moving 

vertical cylinder under the influence of radial 

magnetic field has been studied. The dimensionless 

governing equations have been solved by using an 

implicit finite-difference method of Crank-Nicolson 

type and the results have been presented with help of 

graphs. By our study, we concluded the following 

results: 

(i) The effect of M and Sc on velocity profiles is 

to reduce it as a consequence momentum 

boundary layer thickness decreases while 

effect of Gr and Gc is to enhance it 

accordingly momentum boundary layer 

thickness increases. 

(ii) The thermal boundary layer expanded with 

increase in M and Sc while shrink with 

increase in Gr and Gc. 

(iii) Concentration profiles rise up with rise in M 

while fall down with increase in all other 

parameters. 

(iv) Local skin-friction increase with increase in 

M and Sc while decrease with increase in Gr 

and Gc. 

(v) The effect of M and Sc is to reduce the heat 

transfer rate while effect of Gr and Gc is to 

enhance it. 

(vi) With increase in value of M Sherwood 

number decreases while all other parameters 

have opposite effect. 

(vii) Average value of skin-friction decline with 

increase in magnetic parameter and Schimdt 

number but thermal Grashof number and 

mass Grashof have opposite effect. 

(viii) Average value of Nusselt number reduces 

with increase in M and Sc and while 

enhances with increase in Gr and Gc. 

(ix) Average value of Sherwood number 

decreases with increase in magnetic 

parameter M but have exactly opposite 

behavior with increase in Gr, Gc and Sc. 

(x) With increase in time parameter local and 

average skin-friction, Nusselt number and 

Sherwood number increase in time interval 

(0,1). 
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