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ABSTRACT 

This paper presents chaotic behavior due to an applied perpendicular magnetic field on a rotating cavity 

heated from side using the theory of dynamical system. The solution to the non-linear problem is obtained by 

using a truncated Galerkin method to find a set of ordinary differential equation for the time evolution of the 

Galerkin amplitudes. The system of differential equations is solved by using the fourth-order Runge Kutta 

method. Below a certain critical value of the scaled Rayleigh number the unique motionless conduction 

solution is obtained. At slightly super-critical values of scaled Rayleigh numbers transition to chaotic 

solutions occurs via a Hopf bifurcation. The chaotic behaviour can be obtained faster for decreasing 

Hartmann number as well as increasing scaled Rayleigh number. Also variation in Nusselt number increases 

with increasing scaled Rayleigh number and decreasing Hartmann number. 

Keywords: Chaotic behaviour; Magnetic field; Lorenz equations. 

NOMENCLATURE 

Ar  aspect ratio of the cavity(dimensionless) 

0H  applied magnetic flux  

Ha  Hartmann number(dimensionless) 

1H  height of cavity 

g  gravitational acceleration  

1L  width of cavity 

p  pressure 

Pr  Prandtl number(dimensionless) 

ˆxe  unit vector in x direction 

ˆye  unit vector in y direction 

R  scaled Rayleigh number(dimensionless) 

Ra  Rayleigh number(dimensionless) 

Ra  centrifugal Rayleigh number due to offset distance 

(dimensionless) 

Ra  centrifugal Rayleigh number due to horizontal 

location of cavity (dimensionless) 

t  time  

T  temperature  

T  temperature difference between the walls 

u  component of velocity in direction of x axis 

v  component of velocity in direction of y 

axis 

w  component of velocity in direction of z 

axis  


 1, , 2 , 3 eigenvalues 

 

T  thermal diffusivity  

  Thermal expansion coefficient 

  adverse temperature gradient 

1  constant used in Eq. 26 (dimensionless) 

2  constant used in Eq. 26 (dimensionless) 

  constant used in Eq. 26 (dimensionless) 

  kinematic viscosity 

  density 

0  density 

  electric conductivity (S/m, Siemens per 

meter or) 

  scaled time 

  angular velocity 

  stream function 

 

  
 

1. INTRODUCTION 

The phenomenon of natural convection in the 

enclosures has received considerable attention in 

recent years because this phenomenon often affects 

the thermal performance in many engineering and 

scientific applications such as boilers, nuclear 

reactor systems, energy storage and conservation, 

fire control and chemical, food and metallurgical 

industries. Buoyancy driven flows are complex 
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because of essential coupling between the transport 

properties of flow and thermal fields. The problem 

of Rayleigh-Benard convection interacting with a 

magnetic field, which is called magnetoconvection, 

has been investigated by Chandrasekhar (1952) and 

showed that the magnetic flux was concentrated 

into sheets at the sides of the square cell, from 

which the motion was excluded.  Lorenz (1963) 

found the route to chaos in a fluid layer and studied 

two dimensional fluid cell heated from below and 

cooled from above (also known as the Raleigh-

Benard problem) in order to model unpredicted 

behaviour in the weather. He proposed the three-

dimensional set of partial differential equations 

known as the model of the convection and 

suggested that it is difficult to reach good accuracy 

in very long range forecasting because this model 

gives rise to the chaotic behaviour. Greenspam 

(1980) presented the terms for the representation of 

the centrifugal and Coriolis forces due to the 

rotation in pure fluids. 

Magnetoconvection has been investigated by Weiss 

1981) as a result of numerical simulations of the 

partial differential equations for a two-dimensional 

Boussinesq magnetoconvection and showed that the 

magnetic flux was concentrated into sheets at the 

sides of the square cell. Knobloch et al. (1981, 83, 

86) carried out numerical simulations of 

compressible three-dimensional magnetoconvection 

and showed complicated spatiotemporal behavior. 

Nonlinear modulational dynamics of travelling rolls 

in three-dimensional magnetoconvection was 

investigated near the onset of a Hopf bifurcation 

and criteria for the modulational instability of 

travelling rolls were obtained by means of the 

reductive perturbation method. It is not often 

possible to establish analytically the nature of 

chaotic solutions. In this situation, it is observed by 

solving numerically the partial differential 

equations. Rucklidge 1992) showed how the PDEs 

for a two dimensional Boussinesq convection in a 

vertical magnetic field could be reduced for a 

particular range of parameters, first to a third order 

set of ordinary differential equations and then to a 

one dimensional map. The analysis of the map 

shows an abrupt transition from periodic to chaotic 

behaviour. Rucklidge (1992) derived a third-order 

set of ordinary differential equations that governing 

the behavior of PDEs and found the first chaotic 

oscillations of the third-order system. Analytical 

solutions for the linear stability of free convection 

in a porous layer subject to rotation for the case 

when the temperature gradient resulting from the 

conditions imposed on the boundaries is collinear 

with the centrifugal body force were presented by 

Vadasz (1994) considering a porous layer which is 

placed in an arbitrary positive distance from the 

axis of rotation. The linear stability analysis 

provided the stability criteria, i.e., the critical 

centrifugal Rayleigh numbers, the critical wave 

numbers and the corresponding eigen functions for 

different values of the parameters controlling the 

offset distance from the axis of rotation, and 

allowed to describe qualitatively the convective 

flow. However, as usual, the linear stability analysis 

cannot provide information regarding the values of 

the convection amplitudes nor regarding the 

average rate of heat transfer. Matsuba (1997) found 

an excitation of large-scale modulation of amplitude 

of two-dimensional Boussinesq magnetoconvection 

which was closely related to the excitation of the 

convective-cell modes in drift wave turbulence. 

Vadasz (1998) reported the results of non-linear 

solutions to this problem including possible 

transitions between different regimes of convection 

at supercritical values of the centrifugal Rayleigh 

number. Rucklidge (1994, 98, 2000) carried out the 

numerical simulations of compressible three 

dimensional magnetoconvection and showed 

complicated spatiotemporal behavior. Nonlinear 

modulational dynamics of travelling rolls in three-

dimensional magnetoconvection was investigated 

near the onset of a Hopf bifurcation and criteria for 

the modulational instability of travelling rolls were 

obtained by means of the reductive perturbation 

method. Also Cox (2001) found an excitation of 

large-scale modulation of amplitude of two-

dimensional Boussi-3 nesqagnetoconvection which 

was closely related to the excitation of the 

convective-cell modes in drift wave turbulence. In 

modeling such a system, several factors should be 

taken into account, in particular the inhomogeneity 

of the (strong) external magnetic field and the three-

dimensionality of the enclosure. Moreover, the flow 

stabilization effect (connected with the external 

magnetic field) for the oscillatory flow of a liquid-

metal in a laterally heated rectangular cavity was 

studied by Gelfgat and Bar-Yoseph (2001). 

Chen and Price (2006) found a relation between 

the Rayleigh-Benard convectoin and Loentz 

system. Bekki and Moriguchi (2007) investigated 

chaos in the Boussinesq magnetoconvection with 

stress-free boundary conditions. Their results 

showed that the long-term behavior of the 

magneto-convection exhibits spatially coherent 

and temporally chaotic rolls, in marked contrast 

to the long-term behavior of highly turbulent 

fluids. Nithyadevi et al. (2007) studied natural 

convection in a rectangular cavity with partially 

active side walls. Kandaswamy et al. (2008) 

numerically investigated flow and temperature 

fields in a square cavity with partially active 

vertical walls for Prandtl number of water (7.0). 

The active part of the left side wall is at a higher 

temperature than the active part of the right side 

wall. The top, bottom and the inactive parts of the 

side walls are thermally inactive. They found that 

heat transfer rate is maximum for the middle 

thermally active locations while it is poor for the 

top-bottom thermally active locations. Recently, 

Prasad and Singh (2013) investigated the effect 

of perpendicular magnetic field on chaos in a 

cavity heated from below. The objective of this 

paper is to demonstrate the possible convection 

regimes at supercritical values of the Rayleigh 

number and also the effect of the perpendicular 

magnetic field on transition to chaos in a rotating 

cavity heated from side. The solution to the non-

linear problem is obtained using the truncated 

Galerkin method that gives a set of ordinary 

differential equation for the time evolution of the 

Galerkin amplitudes. 
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2. PROBLEM FORMULATION 

Here, the unsteady free convective flow of a viscous 

incompressible and electrically conducting fluid in 

cavity of length L and width H is considered. The 

-axisx is taken along the bottom and -axisy  

transverse to it having origin at the lower end of the 

left wall. A constant magnetic field H0 is applied 

perpendicular to the cavity along -axisz . 

 

 
Fig. 1. Physical model and coordinate system. 

 

The flow is assumed to be at small magnetic 

Reynolds number and hence the induced magnetic 

field can be neglected. The horizontal top and 

bottom walls are thermally insulated while the left 

and right walls of the cavity are maintained at 

isothermal but different temperature cT   and,
 hT   

respectively. The viscous and Ohmic dissipation 

terms have been neglected. This cavity is subjected 

to rotation at distance 
0x  from the axis of rotation 

as presented in Fig. 1. Two systems of coordinates 

are presented in Fig. 1, the first (X, Y, Z) is linked 

to the axis of rotation and the second 

(x , ,z ,y   placed a horizontal distance 0x , apart 

from the first one, belongs to the cavity coordinates. 

A positive temperature gradient along the x-axis is 

anticipated as a result of the imposed thermal 

boundary conditions. This temperature gradient is 

collinear with the centrifugal acceleration. The 

significance of the variation of the centrifugal 

acceleration in the x direction depends on the offset 

distance from the axis of rotation. For the layer of 

fluid in cavity which is adjacent to the rotation axis 

0( , 0). . xi e   the variation of the centrifugal accelerat-

ion leads practically to a zero acceleration at X = 0 

and a maximum value of acceleration at X = 1. The 

front aspect ratio of the cavity is defined as Ar = 

H1/L1, where H1 and L1, are the height and the 

length of the cavity, respectively. Free convection 

may occur as a result of the centrifugal body force 

while the gravity force is neglected. The condition 

for this assumption to be valid was developed by 

Vadasz (1996). In addition Govender (1995) and 

Greenspan (1980) showed that (in the 

corresponding problem of combined gravity and 

centrifugal buoyancy) the linear stability results, i.e. 

the critical value and the eigen-functions are 

identical to the  problem where gravity effects are 

weak and therefore neglected. Here, inertial effects 

i.e. the centrifugal acceleration are considered as far 

as change in the density and the Boussinesq 

approxi- 

-imation is applied for the effects of density 

variations. Under these conditions the following set 

of governing equation (the unsteady, incmpressible   

Navier-Stokes equation) is obtained (see Greenspan 

(1980) for centrifugal term in the derivation of Eq. 

(2)) as 

. 0 q                                                                 (1) 

( . )
2

0

2

0 0

1

ˆ ˆ( ) [( ) ]y x

p
t

ge w xe
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 






     


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q
q q q

q Η Η

                (2) 

.    
2+ ( . )  = TT T

t



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

q
q

                                    

     (3)

 

By using the Boussinesq approximation, the 

governing equations - continuity, momentum and 

thermal energy in two dimensional forms, can be 

written as Eqs. (4 - 7) 

' '
0

' '

u v

x y

 
 

 
                                                          

 (4)
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0
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               T
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

  
   
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               (7)

 

Where 'u  and 'v are the velocity components in 

the -axisx and -axisy directions, respectively, 

p the pressure, T   the temperature, v the 

kinematic viscosity, 
T

 the thermal diffusivity and 

  the electrical conductivity. For the flow model 

considered, the boundary conditions for the velocity 

and temperature fields are given by 

1

1

' ' 0  at  ' 0,  L  and  

at  ' 0,  H ,                                        

u v x

y

  

          (8) 

1'   at  ' 0 and '   at  ' Lc hT T x T T x    
           (9) 

1

'
0 at  ' 0 and  ' H ,                   

'

T
y y

y


  


 
          (10)

 

Now introducing the stream function defined as: 

 
' '

', ' ( , ),                           
' '

u v
y x

  
 

 
            (11) 
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;
2 2

,  1 1/ / L ,  LT Tt t         

( ,  ) ( ,  ,  ') / L , ( ,  ) ( ',  ')L0 0 1 1,  / ,x x y x x y u v u v T
    

( ) / ( ).                         c h cT T T T T              (12) 

The Eq. (4) takes the non – dimensional form as
  

( , ) ( , ),                     u v
y x

  
 

 
     (13)

 

while the Eqs. (5) – (7) can be expressed as follows 

0
,         

2 2
2 2

2 2

( ) ( , )
( )
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( )w w

Pr
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T
Pr Ra Ra Ha Pr

y
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



   
   

 


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           (14) 

,                                                         
2( , )

.
( , )

T T
T

t x y

 
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 
   (15) 

The non-dimensional parameters, namely; 
0wRa , 

centrifugal Rayleigh number due to offset distance; 

,wRa centrifugal Rayleigh number due to 

horizontal location of cavity; Prandtl number (Pr) 

and Hartmann number (Ha) used in above 

equations are defined as follows: 

0

2 2
0 1= ( ) / ,  

= / ,                                

w h c T

T

Ra w x T T L

Pr



 
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              (16) 

2 ' ' 3
1

2 2 2
0 1

= ( ) / ,  

= /                   

w h c TRa w T T L

Ha B L

 

 



           
       (17) 

The set of boundary conditions (8) - (10) can be 

shown to transform in non-dimensional form as: 

 = 0 at = 0,  and at  = 0,  1;                         (18)

=  at  = 0 and at = 1;                                    (19)

= 0 at = 0 and at = .                                (20)

y Ar x

T x x x

T
y y Ar

y






 

3. TRUNCATED GALERKIN 

EXPANSION 

To obtain the solution of the non-linear system of 

the partial differential Eq. (14) and (15), we 

represent the stream function and temperature in the 

form [Lorentz (1963)]: 

1
= A  sin( ) sin( ),                                

y
x

Ar


           (21) 

1 2
T =  + B  sin( ) cos( ) + B sin(2 ),

y
x x x

Ar


             (22) 

which is corresponding to the Galerkin expansion of 

the solution in both the x- and y-directions. Using 

Eqs. (21) and (22) in Eqs. (14) and (15) and then 

multiplying the equations by the corresponding 

orthogonal characteristic functions of Eqs. (21) and  

(22) and finally integrating them over the domain 

[0, 1] × [0, Ar], we obtain a set of three ordinary 

differential equations for the time evolution of the 

amplitudes as: 

2
21 1

1 1 12
1

( )
= [ ( ) ( ) ( )] 

dA Pr Ra
A Ha A B

d

  
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  
  

     (23) 

1
1 1 2 1

( ) 1 1
= ( ) ( ) ( ) ( )

dB
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d


   

  
       (24) 

2
1 2 1 1

( ) 1
= 4 ( ) ( ) ( )

2
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dB
B A B

d


   

 
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                (25) 

0
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1 2 2 221
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1

Raw
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t Ar Ra
R
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
 
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 


  (26) 

If we rescale the amplitudes in the form of 

1 1

1 1

2

( ) ( )
( ) = ,  ( ) =

2 2 ( 1) 2 2 ( 1)

( )
and  ( ) = ,                                      

1

A RB
X Y

R R

RB
Z

R

  
 

  

 



 




  

(27) 

In Eq. (23) – (25), the time is rescaled set of 

simultaneous differential equations: 

1 2= [ ],      
dX

Y X
d




 

                                    (28) 

= ( 1) ,                        
dY

RX Y R XZ
d
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   (29) 

1= 4 ( ).                                     
dZ

XY Z
d






  (30) 

where 

1

2
2

1 22

1

 , . 
Pr

Ha
 

 
 

                          (31) 

6.4   Stability Analyses 

4.1   Dissipation 

The system given by Eq. (28) − (30) is a dissipative 

because 

1 2 1.V [ 1 4 ] 0
X Y Z

X Y Z
  

  
       

  
            (32) 

where 

 V(τ) =V(0) exp -{α δ +1+4γ }τ1 2 1                 (33) 

The above expression clearly shows that the volume 

of the dynamical system decreases exponentially 

with the time. 



R. Prasad and A. K. Singh / JAFM, Vol. 9, No. 6, pp. 2887-2897, 2016.  

 

2891 

4.2   Equilibrium Points 

The dynamical system given by Eqs.(28)-(30) has 

the general form = ( )fX X  and the equilibrium 

(fixed or stationary) points
sX  are given by 

( ) =f sX 0 the equilibrium points of the rescaled 

system are 

1 1 1( ,  ,  ) = (0,  0,  0),                                    (34)X Y Z

Corresponding to the motionless solution and 

2
2 3

2

2 2
2 3

2
2 3

,  = ,                                           (35)
( 1)

[ ]
,  = ,                                           (36)

1

= = ,                                                    (37
1

R
X X

R

R
Y Y

R
R

Z Z
R

 


 

  



 


)

corresponding to the convection solution. 

4.3   Stability of Equilibrium Points 

The Jacobian matrix of the system of  Eqs.(28)-(30) 

is obtained as follows: 

1 2 1

1 1 1

0

( 1) 1 ( 1) X .      

4 4 4

J R R Z R

Y X

  

  

 
 

    
 
  

    (38)  

The eigenvalues of the Jacobian matrix obtained by 

solving the zeros of the Characteristic polynomial 

provide the stability conditions. A fixed point is 

stable if all the real eigenvalues are negative. But in 

the case of complex eigenvalues, a fixed point is 

stable if the real parts of them are negative. 

However, a fixed point is not stable when at least 

one eigenvalue becomes positive (or in the case of 

complex eigenvalues, it has positive real part).  

The stability of the fixed point 1 1 10, 0, 0X Y Z  
 

corresponding to the motionless solution is 

controlled by the zeros of the following 

characteristic polynomial equation for the 

eigenvalues ( 1,2,3) :i i 
 

 1 1 1 2(4 ) (1 )( ) 0.R          
     

(39) 

The eigenvalue of the Eq. (39) are obtained as  

1 14 ,                                                          (40) 

    

2 3 1 2

2
1 2 1 2

1
, [ ( 1)

2

( 1) 4 ( )  ]                               (41)R

   

   

  

   
 

We can see that the eigenvalues  1 and 3 are 

always negative as 1γ >0  and the eigenvalue 2  
provides only the stability condition for the 

motionless solution in the form R < δ2 . Therefore, 

the critical value of R, where the motionless 

solution loses stability and the convection solution 

(expressed by the other two fixed points) take over, 

is determined as:

 

2

2 2,         4 .c cr crR R or Ra    

        

(42) 

The stability of the fixed points corresponding to 

the convection solution (X Y Z )2 2 2, , and 

(X Y Z )3 3 3, , is controlled by the following 

equation: 

 

 

4 1

4 ( ) 8 ( ) 0.      

3 2
2 2 1 2 1

2
1 2 2 1 1 2R R

    
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 



  

                 (43) 

 Equation. (43) yields three eigenvalues, all the 

roots are real and negative at slightly supercritical   

value of
 

R and the convection fixed points are stable. Thus, 

the fixed points are simple nodes. These roots move 

on the real axis towards the origin as the value of R 

increases. These roots move on the real axis toward
 

 the origin as the value of R  increases. These roots 

become equal when 
2

1 2 1 2 1

1 2 1

(44)
[ 4 3]

= .
4 1

R                      
 



  

 

 

 

 

 

 
Fig. 2. Variation in eigenvalues on Agrand 

diagram with Ha and R. 

 

Fig. 2. shows that at H a  = 2.17, 11.95, 17.39, 21. 

43 and 29.86., both roots 2 3,   are purely real, 

negative and equal. When we take the slightly 

supercritical value of R, the roots become complex 

conjugate with negative real part and further on 

increasing the value of R, they are approaching 

towards the origin on the real axis. They have still 

negative real parts and therefore, the convection 

fixed points are stable i.e. spiral nodes. 

Corresponding to the Hartmann Number Ha  = 

2.17, 11.95, 17.39, 21.43 and 29.86., the roots 

become purely imaginary i.e. their real parts 

becomes zero at R  =  1.64 х103, 7.06 х 103, 1.81 х 

104, 3.39 х 104 and 1.03х105 (listed in Table 1). 

Again on increasing the value of R ,  both the 

imaginary and the real parts of these two complex 

conjugate eigenvalues increase and on the 

complex plane, they cross the imaginary axis i.e 

their real part becomes positive and motion is  
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Table 1 Values of R where 2 3  (when the loss of stability occurred for the different values of Ha) 

 In Motionless State In Convective Motion 

Ha R                      Ra R                    Ra 

2.17 103.40              1.13× 104 1.64×103        1.80×105 

11.95 241.49              2.64×104 7.06×103        7.75×105 

17.39 401.10              4.39×104 1.81×104        1.98×106 

21.43 557.94              6.11×104 3.39×104        3.71×106 

29.86 990.31              1.09×105 1.03×105        1.13×107 

 

 

 

 

 

 
Fig. 3. Evolution of trajectories at Ha=2.17 for different values of R. 



R. Prasad and A. K. Singh / JAFM, Vol. 9, No. 6, pp. 2887-2897, 2016.  

 

2893 

 

 

 
Fig. 4. Evolution of trajectories at Ha=17.39 for different values of R. 

 
 

unstable. In Table 1, we have listed the values of 

R  for different values of H a .  

4.3   Heat Transport 

From engineering point of view, one of the 

important characteristic of the flow is to see the 

effect of physical parameters on the rate of heat 

transfer across the cavity, and this is obtained by 

computing the values of the Nusselt number, Nu.  

The local Nusselt number on the horizontal bottom 

of the cavity is obtained by 

2( ) 1 cos( ) 2 .
0

T y
Nu B B

xx Ar


 


   

          

(45) 

The overall heat transfer rate across the cavity, 

expressed by the average Nusselt number at the 

horizontal bottom, is obtained by using the  



R. Prasad and A. K. Singh / JAFM, Vol. 9, No. 6, pp. 2887-2897, 2016.  

 

2894 

 

 

 

 
Fig. 5. Evolution of trajectories at Ha=29.86 for different values of R. 

 

 

following relation: 

00 .      
1 rA

av x
r

NudyNu
A

  
                          (46)

 

Using Eqs. (22) and (45) in Eq. (46), we get

 

0 2

2(1 )
1 2 1 . av x

R
Nu B Z

R



    

                (47) 

5. RESULT AND DISCUSSION 

In order to see the dynamic behavior of the system, 
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we present some numerical simulations of the 

system of Eqs. (28)-(30) for the time domain 

0 80.   All the calculations are performed by 

using the Runge-Kutta method of fourth- order on 

double precision when the time step is 0.005, by 

fixing the values 
1

0.1  , 
1

0.1   
and taking the 

common initial conditions as X(0) = 0.5, Y (0) = 

0.05, Z(0) = 0.4 in the neighbourhood of the 

positive convective fixed point. Here, we shall 

demonstrate different possible solutions and transi-

tion values of R and Ha  for the fixed value of 

1 1and   . 

The evolution of trajectories over time in the state 

space for increasing values of scaled Rayleigh 

number is presented in Fig. 3, in terms of the 

projections of trajectories onto the Y — Z  plane for 

2.17Ha  . From Fig. 3a, it is evident that the 

trajectory is like a concave curve with respect to the 

z-axis and moving to the steady convection point 

starting from initial point (0.5, 0.05, 0.4) for 

80.65R   i.e. the convection solution is a stable 

simple node. The motionless solution losses its 

stability for a Rayleigh number slightly above 

1 103.4Rc   In Fig. 3b, For 151.18R   the solution 

shows that the trajectory is attracted to the 

convective fixed point via a spiral i.e. the fixed 

point is a stable spiral node, which predicated a 

transition of the two originally real roots to a pair of 

complex conjugate roots at a value of 
1c

R = 103.40. 

Fig. 3c, 3d ,  3e and 3g  show that for higher values 

of R  i.e. 354.12R  , 458.31R  , 768.35R   and 

956.39R  , the spiraling approach of the 

trajectories towards the fixed point becomes faster. 

For 1643.40R  and 1643.50R  , the real part of 

the of complex conjugate eigen-values becomes 

positive and hence the convective fixed points 

losses their stability and it can be seen in Fig. 3h 

and 3i  in which the transition to chaotic solution 

occurs. 

In Fig. 4, we have presented the evolution of 

trajectories over time in the state space for 

increasing values of the scaled Rayleigh number at 

17.39Ha   in terms of the projections of 

trajectories onto the Y-  Z  plane. It is evident from 

Figs. 4b  and 4c that the trajectory is a concave 

curve with respect to the z—axis  and moving to 

the steady convection point starting from initial 

point (0.5, 0.05, 0.4) for 80.65R  , 151.18R   and 

354.12R  respectively and thus, the convection 

solution is a stable simple node. In this case, the 

motionless solution losses its stability for the 

Rayleigh number slightly above 
1 401.10Rc  . Figs. 

4d,  4e ,  and 4f for 458.31R  , 768.35R  , 894.21R   

and 956.39R  respectively show that the trajectory 

is attracted to the convective fixed point in the form 

of a spiral. It shows that the fixed point is a stable 

spiral node. Further, from Figs. 4i  and 4j  

at 2193.25R   and 6234.19R   respectively, we can  

see that the trajectories approach to the convective 

fixed point on a spiral and the closeness of 

spiraling near the fixed point increase on increasing 

the value of R  i.e. the stability of the convective 

fixed point increases by increasing the value of R .  

Fig. 4k  at 18084.10R   clearly indicates that a limit 

cycle is created i.e. the solution is not heading any 

more towards the convective fixed point but rather 

fluctuates periodically around it. Also it (when the 

real part of the pair of complex conjugate 

eigenvalues become positive) shows that the 

convective fixed points lose their stability i.e. 

chaotic solution occurs. 

When 29.86Ha  , we found that at 
1 990.3Rc  , 

the motionless solution loses stability and the 

convection solution occurs. For 51.03 x 10R  , the 

convection fixed points lose their stability and a 

chaotic solution takes over. The evolution of 

trajectories over time in the state space for 

increasing values of the scaled Rayleigh number is 

presented in Fig. 5 in terms of the projections of 

trajectories onto the Y-  Z  plane. From Fig. 5g ,  it is 

evident that the trajectory is like a concave curve 

w.r.t the z-axis  and moving to the steady 

convection point starting from initial point 

(0.05,0.5,0.9) for R=80.65,151.18,354.12,458.31, 

768.35,894.21 and 956.39 respectively i.e the 

convection solution is a stable simple node. The 

motionless solution losses its stability for a 

Rayleigh number slightly above 
1 990.31Rc  . For 

1643.40R  , Fig. 5h  shows that the trajectory is 

attracted to the convective fixed point via a spiral 

i.e. the fixed point is a stable spiral node, which 

predicated a transition of the two originally real 

roots to a pair of complex conjugate roots at a value 

of 
1 990.31Rc  . 

At 43012.25R   the spiraling approach increases 

towards the fixed point and closeness also increases 

than R = 2000.53, 18084.10, 6234.19, 2193.25 as 

shown in Figs. 5m,  5l ,  5k,  5j  and 5i  respectively.  

At the value of R =  10300.1, we obtain a solitary 

limit cycle indicating the loss of stability of the 

convection fixed points (Fig. 5n .  We can observe 

in Fig. 5n  that the transition to chaotic solution 

occurs at a value greater than critical value of 
51.03 x 10R  . 

 

 
Fig. 6. Variation in Nusselt number Nu  with 

respect to time   for different values of the 

Hartmann number Ha  at 55.13 x 10 .R   
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Fig. 6 shows the plots of the Nusselt number Nu  

with respect to time   for different values of the 

Hartmann number Ha  at 55.13 x 10R  . We 

observed that initially when   is small, the value of  

Nu  oscillates and finally approaches to a steady 

state by assuming a constant value. Also, it is clear 

that Nu  approaches to its steady state at   = 

27.305, 29.975, 74.03 for Ha  = 45.32, 31.23, 13.19 

respectively i.e. the convection become slower on 

increasing Ha .  It means that the convection 

becomes stable with Ha . 

 

 
Fig. 7. Variation in Nusselt number Nu  

with respect to time   at Ha  = 19.31, for 

different values of the scaled Rayleigh number 

R . 

 
Fig. 7 shows the plots of Nusselt number Nu  with 

respect to time   at Ha  = 19.31, for different 

values of the scaled Rayleigh number R .  We 

observed that initially when   is small, the value 

of Nu  oscillates and finally approaches to steady 

state by assuming constant value. Also, it clear that 

Nu  approaches to its steady state value at   = 

21.985000, 30.115000, 35.780000 for R =1318.23, 

4123.57, 31453.15 respectively i.e. the convection 

become faster on increasing R .  It means that the 

convection is unstable with R . 

6. CONCLUSIONS 

In this work, we have investigated the effect of a 

transverse magnetic field on chaos in a rotating 

cavity subject to the centrifugal acceleration and 

heated from side. Our results demonstrate different 

transitions, e.g. from steady convection to a non-

periodic regime via a Hopf bifurcation and a further 

transition from chaos to periodic convection at 

significantly higher values of the scaled Rayleigh 

number. We found that there is inversely 

proportional relation between the Hartmann number 

Ha and scaled Rayleigh number R. This results 

provide evidence that the presence of a magnetic 

field delay the convection motion on chaos in a 

rotating cavity i.e the system is more stable. 
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