
 

 

Journal of Applied Fluid Mechanics, Vol. 9, No. 6, pp. 2981-2992, 2016.  

Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. 

DOI: 10.29252/jafm.09.06.26209 

 

Numerical Simulation of Steady Supercavitating Flows 

A. Jafarian and A. Pishevar† 

Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, 

Iran 

†Corresponding Author Email: apishe@cc.iut.ac.ir 

(Received February 13, 2016; accepted May 11, 2016) 

ABSTRACT 

In this research, the Supercavitation phenomenon in compressible liquid flows is simulated. The one-fluid 

method based on a new exact two-phase Riemann solver is used for modeling. The cavitation is considered as 

an isothermal process and a consistent equation of state with the physical behavior of the water is used. High 

speed flow of water over a cylinder and a projectile are simulated and the results are compared with the 

previous numerical and experimental results. The cavitation bubble profile in both cases agrees well with the 

previous experimental results reported in the literature. As the result shows, coupling the two-phase Riemann 

solver with the considered EOS prepares a robust method for simulating the compressible fluid flow with 

cavitation which can undertake the whole physical behavior of water in a supercavitation process. 

Furthermore, the influence of the cavitator head and the flow speed on the supercavitation bubble is explored. 

The results show that cavitators with sharper head results in a smaller supercavitating bubble. Increasing the 

flow speed beyond a specific limit does not have any significant effect on the cavitation bubble and slightly 

increases the bubble size. 
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1. INTRODUCTION 

When a sudden pressure reduction occurs in liquid 

flow, the vapor cavities are generated. This is a 

usual phenomenon in compressible flows of liquids. 

Furthermore, many scientific and industrial 

processes deal with water as the main liquid 

medium. Water is a specific fluid with special 

thermodynamic properties for which the phase 

changes would be observed in many practical 

situations. Generally, water cavitation is an 

undesired situation and causes damages and 

malfunctions to a device. Pump propellers, 

hydrofoils of underwater vehicles, fuel injectors and 

etc. are some of these examples. On the other hand, 

the cavitation can have some important useful 

effects in some engineering cases in order to reduce 

the skin friction drag on an underwater body. When 

a solid body with sharp edges travels with a high 

speed in water, the cavitation vapor pocket 

envelopes the whole body and causes a considerable 

reduction in the skin friction drag. In this case, the 

great difference between the liquid and vapor 

viscosity is responsible for the drag reduction. 

Actually, the body is contact with the vapor instead 

of water and the physical behavior is called 

supercavitation (Zhang et al. 2010, Obikane et al. 

2011, Shang 2013). 

The intensity of a cavitation is determined by the 

cavitation number  , defined as: 
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where P  is the ambient pressure, cavP  is the 

constant cavitation pressure and U  is the free 

stream velocity and   is the liquid density. When 

the cavitation number becomes very low ( 0 1  . ) 

the flow enters the supercavitation regime 

(Savchenko 2001, Stinebring et al. 2001, Wu and 

Chahine 2007). As the definition implies, the stable 

supercavitation is achieved via a higher velocity or 

a smaller pressure difference. The smaller pressure 

difference is obtained by decreasing the ambient 

pressure or increasing the cavitation pressure 

through ventilating the cavity. Generally, the 

supercavitation divided into two main categories: 

The natural and artificial supercavitation. In the 

artificial supercavitation, the creation of the cavity 

bubble is assisted using the air ventilation. 

In recent years, several investigations have been 

conducted toward the understanding of the physical 

behavior of the supercavitation phenomenon. Early 

studies in 80s, used the slender body theory to 

model the movement of the supercavitating 

projectiles (Wu and Chahine 2007, Tetsuo and 
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Khan 1981). In the 90 decade the investigations 

grown faster and more experimental and numerical 

methods used in supercavitation studies. In 1996 

Savchenko experimentally investigated the motion 

of projectiles in a water tank. He explored the 

formation of supercavitation bubble behind a 

projectile in a velocity of 1360 m/s (Savchenko 

1996). In 2001 Savchenko (Savchenko 2001) and 

Semonenko (Semenenko 2001) studied the natural 

and artificial supercavitation in horizontal, vertical 

and oriented motion while the projectile enters the 

water from the free surface. Serebryakov 

(Serebryakov and Schnerr 2003) used the 

asymptotic method and slender body theory in order 

to study the supercavitation around an axisymmetric 

body and modeled the hydrodynamic behavior of 

the flow in subsonic and supersonic regimes. In 

2009 Zhang et al. explored the effect of the 

projectile geometry on the shape of the cavitation 

region. They used three different profiles for the 

head and different slope of the projectile body 

shape. Their experiments showed that the size of the 

supercavitation depends on the head profile and the 

body shape of the projectile (Zhang et al. 2009). 

Wu and Chahine (Wu and Chahine 2007) explored 

the shape of the supercavitation behind a body with 

different heads. They also tested the influence of air 

ventilation on the supercavitation size and found 

that the interface between the water and bubble is a 

great function of cavitator and ventilated air. Li et 

al. (Li et al. 2008) used the PIV technology to 

investigate the supercavitation bubble behind a 

hydrofoil in different cavitation number. In 2010 

Lecysyn et al. (Lecysyn et al. 2010) studied the 

impact of a projectile to the high pressure tank and 

they investigated the influence of the 

supercavitation projectile movement on the tank 

pressure.  

Recently, several numerical methods have been 

developed to simulate the occurrence of phase 

transition in the cavitating problems. There are two 

general approaches for modeling cavitating flow: 

the interface fitting method and the continuum 

modeling method. The first method assumes that 

there is a distinct interface between two phases 

which can be determined by an iterative method. 

This method is more useful for the problems in 

which the cavity is a closed volume or a pure gas. 

On the other hand, the continuum method treats the 

flow as a two phases with an average mixture 

density (Goncalves and Patella 2009). Furthermore, 

the continuum method is divided into two main 

categories: the one-fluid method and two-fluid 

method. Two-fluid method assumes that two phases 

exist in a computational cell simultaneously. Hence, 

the fluid flow is described using two sets of 

differential equations and exchanges between two 

phases are considered through source terms in the 

equations. On the contrary, one-fluid method uses 

one set of differential for the mixture and assume 

the two phases as a one fluid.This method is a 

powerful method for modeling the cavitation in 

compressible flows and simply simulates the 

creation, development and collapse of the cavitating 

bubble. The main challenge on this method is to 

find an appropriate equation of state which properly 

simulate all phase changes (Xie et al. 2006).  

Different numerical methods have been used in the 

literature to simulate the supercavitating flows. Hu 

et al. (Hu et al. 2011) used the DCD method in 

order to simulate the supercavitating flow around a 

cylinder. They studied the effect of different 

equation of states in 2D and axisymmetric 

supercavitation. Zhu et al. (Zhu et al. 2012) used 

RKDG and WENO scheme to simulate the 

supercavitation around the cylinder. The one-fluid 

method with isentropic cavitation model was used 

and the velocity of the cylinder was set to 100 m/s. 

Hu et al. (Hu et al. 2013) simulated the 

supercavitation flow around the cylinder with 

different head cavitator. They investigated the effect 

of the velocity perturbation on the cavitation 

bubble. Zhang et al. (Zheng et al. 2013) used one-

fluid method to explore the supercavitation 

phenomenon around a cylinder. They studied the 

interaction between the cavitation bubble and the 

shock wave. 

This study aims to use a one-fluid method based on 

an exact two-phase Riemann solver to simulate the 

supercavitating flow around a moving body in 

water. This method uses an EOS which is consistent 

with the physical behavior of water in compressible 

cavitating flows. Here, in order to investigate the 

physical behavior of supercavitation and the design 

parameters in compressible cavitation, the unsteady 

supercavitating flow around a cylinder and a 

projectile are simulated and the effect of the 

cavitator head and the flow velocity on the 

supercavitation bubble is investigated.  

The structure of this paper is as follows: the 

governing equations and the equation of state are 

presented in section 2, 3 and then the flow model 

used in this research is presented in section 4. 

The result for supercavitation modeling is 

presented in section 5 and the conclusion is 

presented in section 6. 

2. GOVERNING EQUATIONS 

Due to the dominance of convective terms over 

diffusion terms in high-velocity flows and because 

the time scale of viscosity is very larger than the 

wave propagation time scale, the diffusion terms in 

the Navier-Stokes equations are neglected and fluid 

flow is described using the Euler set of equations. 

The equations in conservation form are:  

       (2) 
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 Which n for 2D and axisymmetric problems are 0 

and 1, respectively. A suitable equation of state is 

needed to close the system of governing equations 
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which is discussed in the next section. 

3. EQUATION OF STATE 

As aforementioned in the previous section, the main 

challenge in one-fluid method for modeling 

cavitating flow is to implement an appropriate 

equation of state that could explain the phase 

transition in this phenomenon. Until now, many 

EOSs are presented for water in compressible flow 

in the context of one-fluid models.  

The cut off model is one of the prominent models 

which is almost exclusively used for the simulation 

of the underwater explosions. No phase changes 

occurs in this model and it is a pure one-fluid model 

(Van Aanhold et al. 1998). When the pressure falls 

below the special value the pressure set to a known 

value – usually saturation vapor pressure. Despite 

its convenience for simulating, the cut off model 

suffers from many drawbacks. The conservation 

law may be violated, and the nature of hyperbolic 

systems of equations may change non-physically 

due to corresponding pressure and density cut-off or 

zero sound velocity in a cavitation zone (Liu et al. 

2004). Schmidt et al. in 1990 used the assumption 

of homogenous and barotropic water mixture to 

present an equation of state base on integrating the 

predefined mixture sound speed equation. Schmidt 

model was first used for high-pressure and high-

velocity cavitating flow in small nozzles (Schmidt 

et al. 1999). In fact, the Schmidt model can be 

employed for cases with small density ratio or cases 

in which the pressure jump across cavitation 

boundaries do not exceed a certain limit. This 

model is appropriate for the cases in which the 

medium pressure is high and the ratio 
510l g/    is satisfied. Otherwise, this model 

results in a non-physically negative value. Thus, 

this method cannot cover the wide range of the 

compressible cavitating flow in which the ambient 

pressure is not very high. Another model which is 

presented by Liu et al. in 2004 is the isentropic 

model (Liu et al. 2004). This model is suitable for 

simulating the cavitating problems in compressible 

water flow and the proposed equation of state is 

based on an iterative method. The isentropic model 

is able to properly predict the size of the pressure 

peak and the wave propagation velocity. Hence, this 

model has been used in many cavitating simulations 

(Hu et al. 2011, Hu et al. 2013, Zheng et al. 2013, 

Zhu et al. 2012).  

In order to compensate the weaknesses of the 

Schmidt equation of state, Xie et al. implement 

some modification on this model and presented a 

new model called modified-Schmidt model. In this 

model, the Schmidt equation of state is confined to 

a very short range of vapor fraction (0<α<0.02) and 

the non-physical Schmidt’s saturation pressure, 

satP , is substituted with the physical satP . 

Furthermore, in order to avoid the negative pressure 

in cavitation zone, the negative pressure is 

substituted with 910P
 . Using these 

modifications, the modified-Schmidt model can be 

used in wider range of the problems. This model 

was also coupled with the Euler equations to 

simulate the one- and two-dimensional cavitating 

flow in an underwater explosion. It should be 

mentioned that these modifications, exert some 

inconsistency in the numerical simulation and 

makes this model behave similar to the cut-off 

model. In addition, Dumbster et al. (Dumbser et al. 

2013) used an interpolating scheme to obtain an 

equation of state for n-heptane and water from 

thermodynamics tables and simulated compressible 

mixtures of liquid and vapor, including the onset of 

cavitation. 

In the present work, a new one-fluid model with a 

realistic equation of state for water is used for the 

cavitation problem in which the possibility of phase 

change is included in the solution of the Riemann 

problem. For this purpose, we assume that water is 

homogenous and barotropic and the phase change 

only takes place through an isothermal process, 

which is consistent with the physical conditions 

governing over cavitation in cold water and 

compressible flow. 

 

 
Fig. 1. Phase change in an isothermal process. 

 
As Fig. 1 shows, when cavitation occurs, fluid can 

undergo a phase change from the subcooled liquid 

state to the vapor state on an isotherm line. For this 

reason, a barotropic equation of state is considered 

for water in this process as:   
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         (4) 

where the first relation in Eq. 4 is the Tait’s 

equation of state for which
87 15 3 309 10   . , .B  

and the temperature of water is set to be T=25oC. 

For the other parameters we have 3169satP Pa ; 

31000 /l kg m  ; 
30.01 /g kg m   and 

660 /vapc m s . 

4. CAVITATION MODEL 

Most numerical methods encountered discontinuous 
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solution in compressible flow problems need to 

solve a Riemann problem across the cell boundaries 

(Pishevar 2006). In fact, the Riemann problem, 

examines the flow obtained from the Euler equation 

with a discontinuous initial condition as:  

                        (5) 0

0

0
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t

r

H x
U

H x
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  
where Hr and Hl are the constant states on the right 

and left of an interface. Unfortunately, there is no 

closed analytical solution even for the simplest case 

of an ideal gas for this problem. Therefore, the 

methods to solve a Riemann problem are 

categorized into Approximate Riemann Solvers and 

Iterative Riemann Solvers. Methods such as Roe, 

HLL, HLLC and others can be acknowledged as 

Approximate Riemann Solvers. Reference (Toro 

2009) provides more accurate information 

concerning these methods. Iterative method is 

another method that can be applied for solving the 

Riemann problem more accurately; however, only a 

few solutions have been proposed for special cases 

so far.  

In the one-fluid method used in this research for 

calculating the cavitation zones in water, a new 

wave pattern is assumed for the resolution of a 

Riemann problem which is consistent with the 

physical nature of the cavitation in compressible 

flow and the cavitation is considered as an 

equilibrium phenomenon in each time step. 

According to the isothermal barotropic EOS, the 

wave pattern should consist of the phase transition 

during the cavitation. Figure 2 depicts the general 

wave pattern while the initial left and right 

conditions leads to a cavitation zone.  
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Fig. 2. Wave pattern in the Riemann problem. 

 

In this figure two strong expansions are occurred 

and the cavitation is created in the middle states. 

According to Eq. 4, each rarefaction wave is 

divided into two parts. The first part of the 

rarefaction is assigned to the liquid phase and the 

other is in the vapor phase. As illustrated by Fig. 2 

the phase transition is occurred through an 

evaporation wave (red line) and the liquid state 

changes into a two phase state. For cases that the 

intermediate pressure is reduced to a value less than 

the vapor pressure, a new rarefaction wave appears 

in the wave pattern through which the two phase 

state changes into the vapor state.  

4.1   Strategy to Solve the Riemann Problem 

In order to construct a multiphase wave pattern for 

the resolution of the Riemann problem when the left 

and the right initial conditions lead to a cavitation 

zone in water, we assume that the expansion waves 

in liquid and vapor phases are isothermal waves and 

the pressure remains constant in the saturation 

dome. When an expansion wave propagates in the 

liquid phase, the water pressure decreases below the 

saturation pressure Psat. Then the liquid phase 

transforms to vapor phase in an isobaric process by 

an evaporation wave and cavitation occurs. As Fig. 

2 depicts, the speed of the evaporation wave is 

considered to be equal to the speed of the last wave 

in the liquid expansion fan. Across the evaporation 

wave, density will jump from l  to the g  while 

the flow speed remains constant. It should also be 

noted that pressure wave is not allowed to 

propagate within a fluid in the saturated state. If the 

initial condition in a Riemann problem leads to a 

stronger expansion, we move to the vapor branch on 

the p-v diagram and the expansion continues with 

isothermal waves in the water vapor phase. In this 

paper the water vapor phase is assumed as an ideal 

gas, which is consistent with the physical properties 

of water in these criteria.  

In our model three different phases can be 

considered for water in the Riemann problem. 

Based on the left, right and intermediate (*) initial 

states, the resolution to the Riemann problem for 

our model consists of 27 different wave patterns. 

Some of the essential patterns are presented in Fig. 

3 which shows how left and right condition can be 

connected to the intermediate states. 

In Fig. 3, R and S symbols on the wave patterns 

stand for the rarefaction and shock wave, 

respectively, and * symbol is related to the 

intermediate zone. In the following, a five step 

algorithm is proposed to determine the intermediate 

state of a multiphase Riemann problem. These steps 

are: 

Step1: Using the Left and Right initial condition to 

categorize the general wave pattern. 

Step2: Using the Shock/Rarefaction relations to 

define the criteria for saturation condition in the * 

region. 

Step3: Define the algebraic relation 
*( , , , , ) 0L R L RF P P P u u   for the P*. 

Step4: Define the derivation of function F. 

Step5: Solving the algebraic equation for P* using 

the Newton method. 

Using this five step algorithm, one can obtain the 

pressure in the intermediate state and other 

quantities such as density and velocity will be 

defined consequently.  

4.2.   Numerical Method 

In this paper, a cell centered finite volume method 

is used for discretizing the compressible flow 

equations for water. In order to easily deal with the  
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Fig. 3. Different wave patterns for the multiphase Riemann problem. 

 

 

geometry, a triangular mesh is used. Furthermore, 

the second order Godunov method coupled with an 

exact Riemann solver is used for calculating the 

flux vector on each edge of a computational cell 

(Pishevar 2006). The time step is calculated 

according to the CFL condition and the 

characteristic length of the mesh size and the 

minimum allowable time evaluated for the whole 

domain is applied as the integration time step.  

4.3.   Boundary condition 

In order to enforce the appropriate condition at each 

boundary a virtual cell is used. Then the numerical 

flux at a boundary edge is obtained in the same way 

as it is obtained for an internal edge. Fig. 4 depicts 

the virtual cell and the according velocity 

components. 

 

 
Fig. 4. Virtual cells on the boundaries. 

 

In this research the characteristic method is used to 

set the flow states for virtual cells. At the inlet 

boundary, the free stream velocity is assigned to the 

inlet virtual cells and other quantities are 

extrapolated from inside of the domain. For the 

outlet boundary, the velocities are the same as the 

main cells and the density and pressure are assigned 

from the free stream condition. On the other hand, 

the state of the far-field virtual cells are set to the 

free stream conditions. Finally, the reflective 

boundary condition is implemented at the solid and 

symmetric boundaries.  

5. RESULTS 

In this section, in order to illustrate the capability of 

the presented model, the shock tube problem with 

an initial condition which resulted in strong 

cavitation is simulated and the results are compared 

with the modified Schmidt model. After that, a 

standard test case, the problem of supercavitating 

flow over a cylinder is simulated and the result is 

compared with the analytical and other numerical 

methods. Then, the supercavitating flow around a 

projectile is simulated and the cavitation bubble is 

compared with the experimental results. Finally, the 

effects of the cavitator head shape and the flow 

speed on the cavitation bubble are studied for 

several cases. 

5.1.  Shock Tube Problem with a Cavitating 

Zone 

In order to verify the capability of the presented 

model, the one-dimensional shock tube problem 

with cavitation is simulated and the results are 

compared with modified-Schmidt model. Here, the 

shock tube is initially filled with subcooled water. 

The left and the right side of the domain have the 

initial condition as below: 

1010 1010
;

200 200
L RU U

   
    

   
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Fig. 5. Diagrams of density, volume fraction, 

velocity and pressure at t=0.8 ms for 1D 

shock tube problem. 

This initial condition is resulted in a sudden 

expansion with onset of cavitation in the middle of 

the shock tube. The length of the domain is 4 m, and 

2000 computational nodes are used in this 

simulation. Density, void fraction, velocity and 

pressure variation are shown in Fig. 5 at t=0.8 ms. 

The void fraction is calculated as: 

g

l g

Void fraction
 

 





. 

The wave pattern presented in Fig. 2 completely 

illustrates the variation of vector quantities in this 

simulation. As this figure shows, two rarefactions 

emanate from the middle of the shock tube and 

move toward each side of the domain. The 

propagation of two waves, decreases the density 

and the pressure from the liquid phase to the vapor 

phase. The variation of the pressure and velocity 

clearly illustrates the phase transition across the 

rarefaction wave. As Fig. 5 shows, because the 

modified-Schmidt model consider the phase 

transition as a single liquid phase, this model is not 

able to distinguish each phase during the phase 

transition. Finally, the size of the cavitation region 

predicted by the present model is smaller than the 

modified-Schmidt model. 

5.2. Supercavitation flow over a Blunt 

Cylinder 

In the first problem the axisymmetric 

supercavitating flow over a blunt cylinder is 

simulated. The length and diameter of the cylinder 

are 200 mm and 10 mm, respectively. 

Figure 6 depicts the computational domain covered 

with the triangular cells and the corresponding 

boundary conditions. The length and the width of 

the domain are 1.2 m and 0.8 m, respectively. 

In this simulation a grid of 59471 computational 

nodes is used for the modeling. The value of time 

step is in the order of O(10-8) and the computer 

simulation on an Intel 2.3 GHz CPU take about 43 

hours. As Fig. 6 illustrates, very fine elements are 

used near the cylinder and the cell size is gradually 

increased by approaching to the far-field and inlet 

boundaries.  

 
Fig. 6. Computational domain and boundary 

conditions. 

 

The initial flow parameters are set as 

100 /U m s  , 
510


P  Pa, 1000 041


 .  

3/kg m and the cavitation number is 0 02  . . The 
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Mach number is calculated according to the sound 

velocity in the liquid medium and 

/ 0.065M U a  . The formation of cavitation 

bubble is shown in Fig. 7 by the density contours. 

As Fig. 7 depicts the cavitation bubble forms from 

the sharp tip of the cylinder and develops during the 

time to finally envelope the total geometry of the 

cylinder.  

 

 
Fig. 7. Formation and development of 

supercavitation bubble over the cylinder. 

 

There are some analytical and numerical solutions 

for this problem. Fig. 8 shows the comparison 

between the cavitation bubble profiles. As this 

figure depicts, the cavitation profile simulated in the 

present method agrees well with the Hu et al. (Hu et 

al. 2013) results and Munzer-Richardt theory 

(Grady 1979). Here, Hu et al. used the compressible 

one-fluid method and the isentropic equation of 

state for simulating the supercavitation flow and the 

Munzer-Richardt theory used the analytic potential 

flow to estimate the cavitation region in 

supercavitating bubble profile. In this theory, the 

radius of the cavitation bubble in an axisymmetric 

flow will be obtained by 

              (6) 

1/2.4
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4
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4
(1 )

c

x
R x R

x
L

L

 
 
 
 
 
 

 

where Rc is the cavitation radius at the location of x 

from the tip of the body and the cavitation is 

generated from the nose of the body. The maximum 

length and radius are respectively given by: 
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d
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where r,   and Cd  are the cavitator radius, 

cavitation number and cavitator drag coefficient 

respectively and the cavitator drag coefficient is 

obtained by 
0( ) (1 )d dC C    and Cd0=0.815. 
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Fig. 8. Comparison between the numerical and 

analytical supercavitation profile. 

 
5.3. Supercavitation flow Over an 

Underwater Projectile 

As the second validating test case, supercavitating 

flow over an underwater projectile is simulated. The 

projectile is a cone with a blunt disc head shape. 

The schematic geometry of the projectile is shown 

in Fig. 9. The radius of the cavitator head is 

0.71mm, the length of the projectile is 157.4 mm 

and the radius of the end part is 6.6 mm and the 

apex angle of the body is 2.1o. Some experimental 

data was presented by Hrubes (Hrubes 2001) for 

this geometry. The experimental information are 

prepared using the high speed imaging for exploring 

the supercavitating flow. Since the depth of water in 

the experiment was 4 m, the ambient pressure is 

considered to be 
51 4 10


 .P Pa  in this study. 

Moreover, the initial velocity is set to 

970 /U m s   and the Mach number is M=0.64 

and the density and cavitation number are 
31000 06


 . /kg m  and

42.9 10   . The length 

and the width of the computational domain is 2.2 m 

and 0.8 m, respectively and the projectile is placed 

at x=0 m (Fig. 10). The boundary conditions are 

exactly similar to the previous problem and the 

computational grid consists of 119289 triangular 

cells. The average time step size for this simulation 

is in the order of O(10-9) and the total CPU time is 

about 68 hours. 

Figure 11 shows the density contours for this 

problem. As this figure shows, a conical ring of 

vapor envelopes the whole projectile body. 

Furthermore, Fig. 12 shows experimental 

shadowgraph of the projectile and the cavitation 
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bubble around the body. The simulated bubble 

profile agrees well with the experimental data.  

 

 
Fig. 9. Schematic shape of the projectile with the 

apex angle of 2.1o. 

 

 

 
Fig. 10. Schematic geometry and the triangular 

mesh of the computational domain. 

 

 
Fig. 11. Density contour for supercavitating flow 

over the projectile. 

 

 
Fig. 12. Shadowgraph of the supercavitating 

projectile. 

 

The creation of the supercavitation bubble behind 

the projectile is presented in Fig. 13. As Fig. 13-a 

shows, the simulated cavitation bubble is stretched 

behind the projectile and the radius of the 

supercavitating bubble grows slightly to the end of 

the computational domain. This phenomenon also 

can be seen in the experimental result presented in 

Fig. 13-b. 

 

 
Fig. 13. (a) Simulated supercavitation profile 

behind the projectile (b) The experimental shape 

of supercavitation profile behind the projectile. 

 
The comparison between the present work and the 

analytical and experimental data is presented in Fig. 

14. As shown by this figure, the simulated 

cavitation profile agrees well with the experimental 

data and the Munzer-Richardt theory predicts a 

larger bubble profile. 
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Fig. 14. Comparison between the present work 

bubble profile and the analytical and 

experimental results for supercavitation bubble 

over the projectile. 

 

In this study the flow is assumed to be inviscid and 

the Euler equations are used for the simulation. 

Hence, the viscous forces cannot be computed 

directly. However, to quantitatively show the 

overall effects of supercavitation on the drag force, 

we use an approximate integral method –Thwaites 

method - to evaluate the viscous drag force. For this 

purpose, the velocity at the boundary layer edge U 

is obtained from the numerical simulation at each 

station and the other Thwaites parameters are 

determined using this velocity.  

In order to investigate the effect of supercavitation, 

both sharp and blunt projectiles are simulated and 

the viscous and pressure drag forces are computed 

separately. Because there is a significant difference 
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between the vapor and liquid viscosity the viscous 

forces are different for several order of magnitude. 

The Table 1 illustrates the effect of the 

supercavitation design on the pressure, viscous and 

total drag forces. 

 

 
Fig. 15. Flow density contours around the 

projectile with an apex angle of 8.4o (a) the 

cavitation behind the projectile (b) the 

cavitation near the tip of the projectile. 

 

The total drag force in Table 1 shows the effect of 

the supercavitation and the extra pressure drag force 

generated in the blunt design is compensated by the 

effect of the vapor viscosity and the viscous drag 

force. 
 

Table 1 Comparison between the viscous and 

pressure drag force for sharp and blunt 

projectiles 

Projectile head 
Pressure Drag 

(N) 
Viscous 
Drag (N) 

Total Drag 
(N) 

Sharp 367.3 462.5 829.8 

Blunt 650 2.3 652.3 

 

In order to explore the influence of the projectile 

body profile, the simulation is conducted with the 

same flow condition, but with a different shape for 

the projectile. Here, the size of the cavitator head 

and the length of the body are similar to the 

previous shape, but the radius of the end part is 

increased to 24 mm. In other words, the projectile 

apex angle is increased to 8.4o. Fig. 15 shows the 

cavitation regions created in the supercavitating 

flow around this projectile. In this case, the 

cavitation bubble does not envelope the whole body 

and only a cavitation pocket is formed near the tip 

of the cavitator (Fig. 15-b). Here, the slope of the 

projectile body causes a considerable increase in the 

pressure field near the projectile and the cavitation 

region fades quickly after the tip of the cavitator. 

Actually the radius of cavitator head and the slope 

of the body have an opposite influence on the 

cavitating bubble. The larger radius of the cavitator 

head causes the larger supercavitating bubble, while 

the larger apex angle of the body increases the 

pressure field near the body. An enveloping 

supercavitating bubble is possible if the cavitator 

radius is increased, but the larger cavitator head 

causes a drastic increase in the pressure drag 

coefficient which is not suitable in the design of a 

projectile. This phenomenon demonstrates that the 

body profile plays an important role in the design of 

the supercavitating projectiles and all these 

parameters should be considered. 

In order to compare the influence of the apex angle 

of the body on the pressure field, the pressure filed 

in both 2.1o and 8.4o are presented in Fig. 16. The 

upper half of this figure shows the pressure field 

resulted from the projectile with apex angle of 8.4o. 

This figure clearly reflects the effect of body slope 

on the pressure field. In the upper case, the pressure 

field is completely affected by the body and a high 

pressure zone is generated around the projectile. In 

this case, the radial velocity near the tip of the 

projectile and the separation of the flow cause a 

little decrease in the pressure around the tip of the 

projectile head. On the other hand, the expansion of 

the flow in the projectile with the apex angle of 2.1o 

cause the reduction of the pressure along the whole 

body and this pressure reduction is dominant in this 

case and the supercavitating bubble envelope the 

total length of the projectile. In addition, in order to 

seek a deeper insight about the effect of the body 

design, the pressure drag force and pressure drag 

coefficient are presented in Table 2. The pressure 

drag force is increased drastically as a result of 

increasing the slope of the projectile body. 

 

 
Fig. 16. Comparison between the pressure field 

in supercavitating flow (up) apex angle = 4.8o 

(down) apex angle = 2.1o. 

 
5.4.  Effect of Cavitator Shapes 

In this section the influence of the cavitator head on 

the supercavitation profile is explored. Here, a 

cylinder with four different cavitator heads are 

simulated. In all cases the velocity is 100 m/s and 
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510P Pa  . Three sharp conic head with different 

aspect ratios and a round head are modeled. Fig. 17 

depicts the schematic shape of the conic cavitator 

head. The simulations are conducted for 

/ 1, / 2.5, / 5tip tip tipL r L r L r   .  

 

Table 2 Pressure drag force and pressure drag 

coefficient for the projectile with different apex 

angles 

CD FD (N) Projectile geometry 

0.010 650 angle = 2.1o 

0.057 50450 angle = 8.4o 

 

 
Fig. 17. A schematic of cylinder with sharp 

cavitator. 

 

 
Fig. 18. Density contours for supercavitation 

flow around the cylinder with a conical head (a) 

/ 1tipL r   (b) / 2.5tipL r   (c) / 5tipL r 
. 

Figure 18 and 19 show the cavitation bubble for the 

different cavitator heads. As the density fields 

illustrate, in all cases the supercavitation bubble 

envelope the whole cylinder body and for all aspect 

ratios the cavitation is created from the sharp edge 

connecting the head and the main horizontal body 

(Fig. 18). Fig. 19 illustrates the comparison between 

the supercavitation profiles in different conical 

angles. This figure shows that, the larger is the 

aspect ratio ( /tipL r  ), the thinner is the cavitation 

bubble profile. The radial component of the velocity 

is decreased in larger aspect ratios, hence the 

cavitated zone around the cylinder is shrunk.  
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Fig. 19. Cavitation bubble profiles for a cylinder 

with different conical head. 

 

In another case, the simulation is conducted for the 

cylinder with a round cavitator head. Fig. 20 shows 

the density contour for this case. Contrary to the 

conical head, the location of the cavitation bubble 

does not start from the main body and the size of 

the cavitation bubble is smaller than the blunt 

cylinder. Figure 21 compares the bubble start point 

and the size of the cavitation bubble for the round 

and blunt cylinders.  

 

 
Fig. 20. Density contour in supercavitation flow 

around a cylinder with a round head. 

 

Similar to the projectile, the pressure drag 

coefficient are calculated for the cylinder with 

different cavitator heads. As Table 3 illustrates, the 

blunt cavitator and the conical head with 

1 5Cylinder Tipr / L /
 

has the maximum and 

minimum drag coefficients respectively. 

Furthermore, the drag coefficient of the round 

cavitator is less than the conical head with 

1Cylinder Tipr / L  .  
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Fig. 21. Cavitation profile around the cylinder 

with blunt and round head. 

 
Table 3 Pressure drag coefficient for cylinder 

with different cavitator head 

CD Cavitator head profile 

0.783 Blunt 

0.283 Round 

0.014 Conic 1 5Cylinder Tipr / L /  

0.071 Conic 1 2 5Cylinder Tipr / L / .  

0.325 
Conic 1Cylinder Tipr / L   

 
5.5.   Effect of Flow Speed 

In this section the effect of the flow speed on the 

supercavitation flow around the cylinder is 

explored. All parameters of the flow are kept 

constant and the inlet density and pressure are 
31000.041 /kg m   

and 
510P Pa   

respectively. The simulations are conducted for the 

cylinder with blunt and round head. 
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Fig. 22. Comparison between the supercavitating 

profiles around the blunt cylinder in different 

velocities. 

 
The supercavitating flow around the blunt cylinder 

is simulated in four different velocities 

U =30,50,100,150 m/s. Fig. 22 shows the 

comparison between the supercavitation bubble 

profile created around the cylinder. As this figure 

shows by increasing the inlet velocity, the larger 

cavitating bubble will be achieved. Furthermore, we 

repeated these simulations for the cylinder with the 

round head in three velocities u=50,100,150 m/s. As 

Fig. 23 depicts, the similar results are obtained for 

the round cavitator head. It should be noted that, 

although by increasing the inlet velocity a larger 

supercavitation bubble profile is resulted, the 

difference between the profiles are not significant. 

As the results shows, the velocity of blunt cylinder 

is increased up to five times of the initial velocity, 

but the cavitation profile grows slightly in compare 

to the initial profile. Hence, the influence of the 

inlet velocity on the supercavitation bubble profile 

is not significant and its effect on the separation 

point is almost negligible.  
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Fig. 23. Comparison between the supercavitating 

profiles around the cylinder with round head in 

different velocities. 

6. CONCLUTION 

In this research, supercavitation in compressible 

water flow is explored. The one-fluid method is 

coupled with the two-phase Riemann solver and a 

new wave pattern is proposed for the flow 

simulation. Because of high velocity the effect of 

viscous terms is neglected. First, the supercavitation 

phenomenon around a blunt cylinder traveling with 

100 m/s in water was simulated and the obtained 

cavitation bubble profile had a good agreement with 

the other analytical and numerical results. In 

another case the supercavitating flow over the 

projectile in 970 m/s was modeled and the predicted 

bubble profile around and behind the projectile 

agreed well with experimental results. Finally, the 

effect of the cavitator head and inflow velocity on 

the supercavitation profile was investigated. A 

cylinder with three conic head and a round head 

were simulated. The results showed that the sharper 

conic head results in a smaller supercavitation 

bubble. In addition, increasing the inlet velocity 

resulted in a larger supercavitation bubble but the 

influence of the inlet velocity was not significant. 
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