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ABSTRACT

The stability ofbuoyancydriven parallel sheaflow of a dielectric fluid confined betweendifferentially
heatedvertical platesis investigatedunder the influence of a uniform horizontal AC electric fieldhe
resulting generalized eigenvalue problensadved numericallyusing Chebyshev collocation methadth
wave speed as the eigenvallibe critical Grashof numbe6, the critical wave numbet: and the critical
wave speedcare computed for wide rangesAE electric Rayleigh numbd®ea and the Prandtl numbér.
Based on these parameters, the stability characteristics of the system are discussedItrisittaild that

the AC electric Ryleigh number is to instill instability on conveeé flow against both stationary and
travellingwave modedisturbancesNonetheless,he value of Prandtl number at which the transition from
stationary to travellingvave mode takes place is found to hdependent of AC electric Rayleigh number.
The streamlinesnd isothermpresentedlemonstrate the development of complex dynamics at the critical

state.
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NOMENCLATUR E

a vertical wave number T, temperature of the right boundary
c wave speed \Y rootmeansquare value of the
c phase velocity electricpotential
[ growth rate A electric potential of the left
D=d/dx differential operator boundary
E rootmeansquare value of the Vv, electric potential of the right
electricfield boundary
E, rootmeansquare value of the W, basic velocity
electricfield at x =0 (xv.2) Cartesian cerdinates
f, force of electrical origin
g acceleration due to gravity a thermal expansion coefficient
G Grashof number g thermal expansion coefficient of
h half- width of the dielectric fluid dielectric constant
layer e dielectric constant
p pressure =3 referencedielectric onstant aflo
P modified pressure K thermal diffusivity
Pr Prandtl number s electrical conductivity of the fluid
q velocity vector m fluid viscosity
R. AC electric Rayleigh number n kinematic viscosity
t time y stream function
T temperature Y amplitude of vertical component
T, temperature of the left boundary of perturbed stream function
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f amplitude of perturbed electric ry free charge density
potential r reference density af,
r fluid density q amplitude of perturbed
temperature
1. INTRODUCTION transition from stationary to travellingave

instability occurs at a certain value Bf between
Hydrodynamic stability is one of the fundamental 12.4 and 12.5 which was later supported by Chen
topics in fluid mechanics and the fluid flows in @nd Perlstein (1989). Fujimura (1990) showed that
channels have been tugsied extensively the transition value oPris given by 12.45425644.

(Chandrasekhar, 1981; Drazin and Reid, 2004).Smorodin (2001) investigated the instability of
Fluid flows in many geophysical and astrophysical convective liquid dielectric flow in the alternating
phenomena are maintained by buoyancy forces, bufi€ld of a vertical capacitor with boundaries heated
the role of these forces is generally strongly (0 different temperatures. HD instability of an
modified by ceexisting shear, rotation of ¢n  inviscid fluid in the presence of an electric field and
system as a whole, processes at a free surface argPace variation of electrical conductivity is studied
so on. Natural convection of a viscous fluid in a Py Shubhaet al (2008). Rudraiahet al (2011)
vertical fluid layer, whose walls are held at different investigatedEHD stability of couple stress fluid
temperatures, provides one such simplest cases dfoW in @ horizontal channel occupied by a porous
an interaction between buoyancy and shearingMedium using energy methothe effect of vertical
forces. Instability of the base flow in such a fluid AC/DC electric field on electrothermal convection
layer occurs when th&rashof numbebecomes Nas been discussed extensivelurbull, 1969;
greater than a certain critical value and the stability Stileset al, 1993;Shivakumareet al, 2007, 2012,
characteristics of the Newtonian fluid flow in the 2013 Renaet al, 2015;Chandet al, 2015 Chand
conduction regime are well established (Korpeta 2019

al., 1973; Bergholz, 1978 The most interesting  eat transfer by means of thermal convection may

observation is that the type of instability is ot meet the requirements in most of the practical
determinedoy the magnitude of the Prandtl number it ations particularly in MEMS. In such

Pr. The critical disturbance modes are found.to becircumstances, EHD enhanced heat transfer
stationary wherPr < 12.7, but they are t_ravelllng emerges as an importaralternative method to
waves whenPr >12.7. Vest and Arpaci (1969) enhance heat transfefhe intent of the present
studied the onset of stationary instability in the paper is to investigate the stability of natural

boundarylayer regime and reported fair agreement nyection in a vertical dielectric fluid layer under
between their theoretical and experimental valuesihe influence of horizontal AC electric field. The

for the critical Grashof number. Later on, using the \griical plates are maintaideat constant but
power series metlp Ruth (1979) obtained giterent temperatures and the normal electric field
essentially exact values of the stability condition for s ne|d constant on the platemnd as a result there
0.00001 <pr < 10. exists variation in the dielectric constant which

A considerable number of theoretical and numerical 8ventually — causes electrothermehydrodynamic
studies on the stability of fluid flows have also been instability by the dielectrophoretiforce acting in
devoted to the interaction of electromagneticdel the bulk of the fluid. The resulting eigenvalue
with fluids. The stability of the flow of an problem is solved numerically using the Cheb_yshev
electrically conducting fluid between parallel planes collocation method and the existing results in the
under a transverse magnetic field has been studiedtérature are obtained as limiting cases from the
by Lock (1955), Potter and Kutchey (1973) and Present study.

Takashima (1994, 1996) and showed that a

transverse magtie field has a powerful stabilizing 2. PROBLEM FORMULATION AND
influence on this type of flow. If the fluid is THE BASIC STATE

dielectric with low electrical conductivity then the

electric forces play a major role rather than The physical configuration is as shown in Fig.1. We
magnetic forces in driving the motion. consider an incompressible dielectric fluid of

Electrohydrodynamic(EHD) stabiity of channel  thickness 2h confined between two parallel
flow has attracted much attention, particularly vertical plates atx= N, subject to a uniform AC
because of its use in the field mfcro fluidics For electic field applied across the layer; the left
instance, in many micrelectremechanical surface is maintained at fixed temperat(e and
systems (MEMS) devices, rapid mixing is highly
desired and can be achieved by applying anriect ) o )
field, as discussed in the experiments of Moetar at X= h is maintained at fixed temperature
al. (2003), Glasgowet al (2004) and Linet al T,(>T;) and at an alternating (60 Hz) potential
(2004). A brief discussion on the applications of \hose rootmeansquare value i3/, . A Cartesian
EHD inst_a_bility has been prese_nted by Lin_ (2-009)' coordinate systenx(y, 3 is chosen with the origin
The stability of a plane convective flow of dieléct in the middle of the vertical fluid layer, whethe

fluid in a vertical layer has been investigated by < is tak dicul he pl dth
Takashima and Hamabata (1984). They found that gX-axis is taken perpendicular to the plates and the

fixed electric potentiaM;(= 0), whereas the plate
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z-axis is vertically upwards, opposite in direction to

reciprocal of the electrical relaxation time, the free

the gravity. The relevant basic equations under thecharge does not have time to accumulate. Moreover,

OberbeckBoussinesq approximation
(Chandrasekar, 1981; Shivakurmaet al, 2007):

are
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Fig. 1. Physical configuration.

where g=(u,v,w) the velocity vector, T the
temperature,p the pressure,r the fluid density,
K the thermabiffusivity, m the fluid viscosity, §
the acceleration due to gravitya the thermal
expansion coefficient,r, the density at reference

temperature T =T, and fe the force of electrical

origin which can be expressed as (Landau ande= &l - (g )], where g (>0)

Lifshitz, 1960)

2

- - 1= - 1 4 = -
f.=rE =(E - m BEE. 6
e=r& —(E B b =B (5)
Here E is the rootmeansquare value of the
electric field, r is the free charge density arel

is the dielectric constant. The electrical for(fg

will have noeffect on the bulk of the dielectric fluid

if the dielectric constare and the electrical
conductivity s are homogeneous. Sine and s

are functions of temperature, a temperature gradien
applied to a dielectric fluid produces a gradient in
e ands . The application of DC electric field then
results in the accumulation of free charge in the
liquid. The free charge increases exponentially in
time with a time constar®/ < which is known as
the electrical relaxation time. If an AC electric field
is applied at a frequency much higher than the

the electrical relaxation timefomost dielectric
liquids appear to be sufficiently long to prevent the
buildup of free charge at standard power line
frequencies. At the same time, dielectric loss at
these frequencies is so low that it makes no
significant contribution to the temperaturgeld.

The Coulomb force termeé in Eq. (5) is the force

per unit volume on a medium containing free
electric charge of density,. It is the strongest

EHD force term and usually dominates when DC
electric fidds are present in dielectric fluids. The
second term in Eq. (5), called dielectrophoretic
force term, is due to the force exerted on a dielectric
fluid by a noruniform electric field. It is usually
weaker than the free charge force term and only
dominates when an AC electric field is imposed on
a dielectric fluid. Therefore, the Coulomb force
term has been neglected in Eq. (5) and only the
dielectrophoretic force term is retained in Eq. (5). It
is seen that the dielectrophoretic force term depends

on (ECE) rather thark . Since the variation of

is very rapid, the roemeansquare value ofE is
used as the effective value in determining fluid
motion. In other wrds, one can treat the AC
electric field as the DC electric field whose strength
is equal to the roemneansquare value of the AC
electric field (Takashima and Aldridge, 1976). The
last term in Eq. (5) is called the electrostriction
term. This term can beonveniently clubbed with
the pressure in Eq. (5) and, because pressure
amounts to an extra variable in incompressible
flow, seems not to have any influence on the
hydrodynamics.

Since there is no free charge, the relevant Maxwell
equations are
D3E BorE =V, b (¢E) G (6a,b)
whereV the rootmeansquare value of the electric
potential. The dielectric constant is assumed to be a
linear function of temperature in the form
the thermal

expansion coefficient of dielectric constant and is
assumed to be small. For example, for 10 cs

Silicone oil g=2.86 310°K 1 and

e=2.6 3101'Fm . The basic state is given by

_ag )
vo =301 %) x
E2
R, =const -rggz Z(i)gob) )

To- To=bX/2b=DT/h,ry= 6o a—zb( ,
¢

ef@ig—z&,Eb %
g

“1-g &al2

2E,, 81- g &l2
Vp =—=| 7
b= g b v )
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the rootmeansquare value of the electric field at

where Ey=(g ¥%,/2)log[(1 + b/B)/1 - hig)] aw, 2 2\ v.1 a2
oo o) vAow B g

9
x=0, n(= # gythe kinematic viscosity and lgDz 2)2 N )

. =—A -a r \

P=p 05 ( @ JE E the modified ia & v

pressure. A, 6§ .1 1 (0 o
-c @ +—— Y =——|D° a5 ¢ 10
(;*PT @ 2Pr iaPr( ) ‘ (10)
3. PERTURBED STATE AND THE

LINEAR STABILITY EQUATIONS Dq+(D2 _a2) fe (12)

To study the stability ofthe basic state, an 2.4
infinitesimal disturbance on the base flow is Where D=d/dx R, %° €& #/  the AC

superimposed in the form electric Rayleigh number,Pr=r/ 4 the Prandtl
d=¢, ¥, P=R(x 3 +R,V=\, V', number, G=ag m“/ 71 the Grashof number,
T=T, #i, r= ¢ +iye= g +i. (8) c=¢ +gis the wave speed and is the vetical
wave number. It should be noted here that the basic
Pr=10 | @ velocity in dimensionless form is

, W, =(GPr12)(1 -#) x.
200
I Equations (9)- (11) are to be solved subject to
100 appropriate  boundary conditions. Since the
isothermal vertical plates are rigid ande thormal

electric field is held constant on the plates, the

n n n 1 n
-1 : o \ 0.5 10 associated boundary conditions are
G =1000,800,500,100
00 Y =D Y g D=f Oatx 1 (12)
-200 -
| 1000
-300
X 990
G =500 300l (b)
I 980
200} ¢
100; 970
" 1 " T 1 n
- 05 o ' o5 10 960 w w w
; Pr=20,10,5,1 1.2 1.3 Jé.4 1.5 1.6
200} 308
-300} 307+
X
. . . 306+
Fig. 2. Velocity profile W, of the base flow for
various values of (a) Grashof numberG (b) 3051
Prandtl number Pr .
304+
Substituting Eqg.(8) into Egs.({}), linearizing,
eliminating the pressure from the momentum 303 ‘ ‘ ‘
equation, introducing a stream functign(x, z, 1) 076 080 , 084 088

through u= w/ zzww  =y4 p and employing Fig. 3.I\éllgqura;l;;zb::gzgﬁ;\éﬁaa%t:tgggg modes

the normal mode analysis praotge in the form ---).
TV ={ Y g &=D,  the  stability
equations in dimensionless form can then be shown 4. METHOD OF SOLUTION
to be
Equations (9)- (11) together with the boundary
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conditions (12) constitute an eigenvalue problem
which has to be solved numerically. The resulting With ¢,
eigenvalue problem is solved using Chebyshev

collocation method. Thek" order Chebyshev

polynomial and the Chebyshev collocation points
given by

are respectively

X (x)=cosk 4  £cos® x and

x, =cogpj /N),j = IN. Here, the right and
left wall boundaries correspond t¢ =0andN,
respectively. The field variabl¢y ,g and f can be

follows
V() =an() Y ) .6

N A (13)
=8 o) 7

I
o

The governingEgs. (9) - (12) are discretized in
terms of Chebyshev variabbe to get

éWb &
B, Y & Y ‘DZ Y
éﬁ; go ik O W i
. Py 0
+& ﬁAjkfk +§7 9
2 G (14)
14N 4 > N
_*é@. Cjk Yk a Y 24 aak k
|aé§:k:o ) +
-GPra AG. i AN 1
AW, 5 1
-C — Y
r © @ pr
- 1dap g -a 1 KON 1 (15)
iaPrgk=0 B 9
-GPré_ Adg. ] (YN 2
k=0
N an. 0.
aAjqu"'a-Z‘aBjk ( -& jfv('jl I(]-)N 1 (16)
k=0 Ck® -
N
=Y 6 AAY, =0, j &N ,
k=0
N
=q 9, aﬁkszo, j 0&N a7)
k=0
gc (-1 ;
1 ik
}Ck(xi_ x)
X% 1¢j % M 1
where Ay := 2(1' XJZ) :
T on2
I2N +1 =k ©
i 6
| 2
i 2N°+1 | % N
i 6
By = An Bu & Cy =B, 6y

&2 i=0N
1

=1 1¢j N 1

The above equations form the system of linea

algebraic equations

AX = cBX (18)

where ¢ is the eigenvalue anX is the discrete
representation of the eigenfunctiods and B are
square (complex) matrices of ord@(N +1).The
eigenvalues and

with the aid of a QzZalgorithm which is aailable in
the MATLAB software package in the form of buil
in function eig( ). The critical wave speey, the

corresponding critical Grashof numb&; and the

the eigenfunctions of the
approximated in terms of Chebyshev variable asgeneralized eigenvalue problem (26) are determined

t

wave numbera, are déermined for various values

of Prandtl numbePr and AC electric Rayleigh

numberR,, following the procedure explained in

Shankaet al (2014a, b).
5. RESULTS AND DISCUSSION

The effect of uniform horizontal AC elet field

on the stability of natural convection in a vertical
dielectric fluid layer is investigated. The resulting

eigenvalue problem is solved numerically using
Chebyshev collocation method with wave speed

as the eigenvalue. Critical Grashof numbey

and critical wave speedc are computed with
respect tathe wave numbeéad f o r
of AC electric Rayleigh numbd®,,. In most of
the experiments, the deptiver which the electric
permittivity varies with temperature is generally i
the order of millimeters and the kinemati

viscosity and thermal diffusivity of the water
borne liquid used for bifluidics are about
n=9.7310"m? /sec and k=1.4 310"n¥ /se,
respectively. Thus the Prandtl number
approximately 7is usedto examine the instability
characteristics of the system.

Although the basic flow is independent Bf,, it is

significantly influenced byG and Pr. Figures
2(a) and (b) respectively show the influence®f

and Pr on W, . These figures indicate that decrease

in G and Pr is to suppress the fluid flowkrom
the figures, it is also seen that,
solution does not have symmetry with respect to

various

n
C

is

in general, the

This effect is due to the fixed direction of the

gravitational field.

The convergence of the numerical

polynomial.

convergence of numerical solution for

method
employed is tested by varying the order of base
Tablesl (a) and (b) illustrate the
both

stationary and travellinggave mode cases for
some selectedalues of parameters. To account

for all the harmonics in a complicated solution, a
large number of terms have to be included in the
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Table 1(a) Order of polynomial independency (stationary case)

Pr=1,R, 400G 800a Pr=1,R, 500G 800a :
§ G c G C
5 -3.49104804 0 -2.81419066 0
10 -2.65629461 0 -2.35092099 0
15 -2.64890709 0 -2.35622640 0
20 -2.65888456 0 -2.35639837 0
25 -2.65893269 0 -2.35613876 0
30 -2.65893099 0 -2.35614144 0
35 -2.65893102 0 -2.35614382 0
40 -2.65893109 0 -2.35614417 0
45 -2.65893105 0 -2.35614419 0

Table 1 (b) Order of polynomial independency (oscillatory case)

Pr=20,R, 100G =200a 6 Pr=20,R, 500G =200a &
N G G G G

5 -0.20306531 6.33035530 -0.20011071 6.33543156

10 -0.17430796 6.30451192 -0.17979262 6.34922163

15 -0.18753132 6.33482913 -0.18477346 6.33010841

20 -0.18768827 6.33510498 -0.18459924 6.32715172

25 -0.18778542 6.33599873 -0.18466634 6.32961864

30 -0.18779243 6.33510042 -0.18464876 6.32964395

35 -0.18779445 6.33511071 -0.1846482 6.32969732

40 -0.18779572 6.33511043 -0.18465897 6.32969198

45 -0.18779539 6.33511047 -0.18465829 6.32969186

50 -0.18779535 6.33511045 -0.18465823 6.32969181

55 -0.18779532 6.33511045 -0.18465825 6.32969180

Table 2 Comparison of critical stability parameters
Chebyshev collocation method Galerkin method

Ra | Pr Ge a G Ge a G

1 | 992.52946472 1.404 0 992.05636850 1.404 0

5 | 982.99195862 1.384 0 982.51616156 1.384 0

0 10 | 983.55348200 1.383 0 983.45694190 1.383 0
15 | 487.16752625 0.608| ° 14.72510713 486.70350504 0.609| ° 14.69142688
20 | 301.71983337 0.820| ° 9.29210134| 301.16313195 0.823| ° 9.28312284

1 | 983.77495031 1.41 0 983.29598552 1.410 0

5 | 981.16188049 1.384 0 980.68381047 1.385 0

100 | 10 | 983.01658662 1.383 0 982.53865933 1.384 0
15 | 486.97624251] 0.608| ° 14.7190561| 485.48028117| 0.609 | ° 14.68445735
20 | 301.3988493qG 0.820| ° 9.28177151| 300.82542396 0.820| ° 9.274€8412

1 | 946.66938782 1.432 0 946.16446367 1.433 0

5 | 973.74763489 1.390 0 973.26786558 1.391 0

500 | 10 | 979.33311461 1.383 0 978.85510123 1.385 0
15 | 486.13243103 0.609| ° 14.69075708 484.72027278 0.609| ° 14.66033584
20 | 300.08049011 0.825| ° 9.23496285| 299.54003489 0.823| ° 9.22083842

expansion. We have chosen different orders ofaccuracy is achieved by retang 30 terms in Eq.
Chebyshev polynomials and four digits point (13). As the number of terms increases in Eq. (13),
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Table 3 The effect ofR,, on the values of Pr, G;, a.and c,

Rea Pr G ac Ce
1 992.52946472 1.404
982.99195862 1.384
10 983.55348200 1.383
12.6 | 984.09135449 1.383
0 12.7 | 984.09135447 1.383 0

12.8 | 831.82237442 0.400| ° 24.830077
13 769.99223337 0.420| ° 23.041856
15 487.16752634 0.607 | ° 14.725107
20 301.71983348 0.820| °© 9.292101
1 96566581734| 1.420
5 977.47001656 1.387
10 981.17637632 1.384
12.6 | 981.9362647¢ 1.383
300 12.7 981.9576263| 1.383 0

12.8 831.1519623| 0.397 | ° 24.824203
13 769.1402435| 0.424| ° 23.001328
15 486.932465 | 0.607 | ° 14.708759
20 300.7320404 | 0.821| ° 9.259499
1 946.66938782 1.432
5 973.74763489 1.390
10 979.33311461 1.383
12.6 980.4698944 | 1.386
500 12.7 980.5019379| 1.385 0

12.8 830.858935 | 0.397 | ° 24.815596
13 768.9434052| 0.424| ° 22.995294
15 486.13243103 0.609| ° 14.690757
20 300.08049011 0.825| ° 9.234962

oO|O|0o|Oo

[ellelie} o]

o|Oo|o|Oo

the results found to neain consistent and accuracy Interestingly the value of Prandtl number at which
improved up to 7 digits forN =40 andN =50, transition from staticary to travellingwave
respectively for stationary and travellimgve instability occurs remain invariant for all valuek
mode cases. Thus more number of terms in Eq. (13)Rea considered. Nonetheless, the values of critical
is required for convergence if the instap is via stability parameters vary withR,,. The neutral
travellingwave mode. By rigorous computational . . . .
analysis, it was found that accurate solutions up to g5t@Pility curves in thG, a) - plane are displayed in
digits could be reached by taking 60 terms in the Figs. 3(a) and (b) for different values &, for
Chebyshev collocation method and so for all further pr = 2 and 20, respectively. The neutral stability
studiesN is fixed at 60.To know theaccuracy of  curves exhibit single but different minimum with
the method employed to extract the stability respect to the waveumber for various values

parameters, the results are also obtained using)fRe andPr . The portion below each neutral
Galerkin method (see Appendix A) with Legendre a

polynomials as trial functions for a representative curve corresponds 1o s_table region and the region
set of parametric values and compared in Table 2_abovm_a corresp_onds to instability. It may be noted
From the Table it is seen that the results are in good @l increase iR, and Prleads to decrease the

agreemenin Table 3, the values ofG,, a, and  region of stability.

ccare tabulated for different values dR,;and  Figures 4(a) and (b) illustrate the variation @f
Prranging from 1 to 20 as the magnitude Bf and the corresponding, as a function oPr for
determines the mode of instability. The results for different valtes of R,,. For a fixed value dRe,, it

Rea= 0 correspond to an ordinary viscous fluid. It }
is observed that the critical disturbance modes are”™ observed that the dependenceGqf upon Pr is

stationay when Pr<12.7 and they are travelling Very weak till Pr<12.7and exceeding which
waves wherPr >12.7: a well-establishedesult in G, decreases suddenly. In other words, the Prandtl
the literature (Korpelet al, 1973; Bergholz, 1978). number shows no significant effect if the
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Fig. 4. Variation of (a) critical Grashof number G_, (b) critical wave number a. and (c) critical wave

speedc, with the Prandtl number Pr for various values of AC electric Rayleigh numbeRR,, .

disturbancesare stationary, while its effect is
significant if the disturbances are via travelling

wave modes. This may be due to the fact that the

energy for stationary instability at low to moderate
Pr is derived mainly from the base flow velgci
field through the action of disturbance Reynolds
stresses at the mjolane between the upward and
the downward flowing convective streams.
Although the effect of increasing AC electric
Rayleigh number is to instill instability on the
system, its effeds found to be not so significant. If

the disturbances are stationary, the critical wave

number decreases slowly with increasiRg while

critical wave number increases with increasing
Reaonly at lower values dPr . Further inspection

of the figure reveals that, through theniséion, the
wave number drops from 1.4 to 0.4 and then
increases again for higher values Pof. This
indicates two different physical mechanisms of
instability. AsPr increases, there is a tendency for
more of thedisturbance energy to originate from the
potential energy associated with the buoyancy
effect than as transfer from the kinetic energy of the
base flow by the action of Reynolds stresses.

The results regarding the nature of the travelling

an opposite kind of behavior is noticed when the wave instabiliy summarized in Fig 5(c), indeed

disturbances are travellingave modes (Fig. 4b
This is so for a fixed value &%,. Besides, the

confirm this, which shows the variation of positive
c. with Pr for various values dR,,. The vertical
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Fig. 5. Streamlines at for different values of

Fig. 6. Isotherms at for different values of

lines represent the discontinuous changes idue  decreasing function d#r . But the variation ofR,

to the transition from stati@my to travellingi wave  on c; is found to be insignificant.
mode. From the figure it is observed tlwffor the

travelling i wave mode is a monotonically To know the influence ofPrand Ry, on the
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