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ABSTRACT 

The present paper deals with the linear thermal instability analysis of viscoelastic nanofluid saturated porous 

layer. We consider a set of new boundary conditions for the nanoparticle fraction, which is physically more 

realistic. The new boundary condition is based on the assumption that the nanoparticle fraction adjusts itself so 

that the nanoparticle flux is zero on the boundaries. We use Oldroyd-B type viscoelastic fluid that incorporates 

the effects of Brownian motion and thermophoresis. Expressions for stationary and oscillatory modes of 

convection have been obtained in terms of the Rayleigh number, which are found to be functions of various 
parameters. The numerical results have been presented through graphs. 

Keywords: Viscoelastic; Nanofluid; Porous media; Nanoparticle flux. 

NOMENCLATURE 

a Wave number 

BD  Brownian diffusion coefficient  

TD  thermophoretic diffusion coefficient 

d depth of the fluid layer  

g gravitational acceleration  

g gravitational acceleration vector 

K permeability of the porous media 

eL  Lewis number, defined by Eq. (14)  

AN  modified thermophoresis to Brownian-

motion diffusivity ratio, defined by Eq. 

(18)  

BN  modified particle-density increment, 

defined by Eq. (19)  

P reduced pressure 

Pr Prandtl number 

Ra thermal Rayleigh-darcy number, defined 

by Eq. (15)  

Rm basic-density Rayleigh number defined 

by Eq. (16)  

Rn concentration Rayleigh number, defined 

by Eq. (17)  

T temperature 

Tc temperature at the upper wall  

Th temperature at the lower wall  

t time 

(x,y,z) Cartesian coordinates 

 
αm  thermal diffusivity of the porous 

medium 

β volumetric thermal expansion 

coefficient 

1λ  relaxation time 

2λ  retardation time 

κm  effective thermal conductivity of the 

porous  medium  

µ viscosity of the fluid 

ε porosity 

ρ f  fluid density  

ρ p  nanoparticle mass density  

(ρ ) fc  effective heat capacity of the porous 

medium 

  nanoparticle volume fraction  

0  reference value for nanoparticle 

volume fraction 

ω frequency of oscillation 

Other symbols 

2
1  

2 2

2 2x y

 


 
 

2  
2

2
1 2z


 


 

Subscripts 

b basic state 

c critical 

0 reference value 

Superscripts 

′ perturbed quantity  

∗ dimensionless quantity  

Osc oscillatory 

S stationary 
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1. INTRODUCTION 

The pioneering work of Choi (1995) introduces the 

term “nanofluids” during his research in Argonne 

National Laboratory. Nanofluids are colloidal 

mixture of nanoparticles and a base liquid, its 

marvelous heat transfer enhancement property now 

became central part of research and attracts many 

scientists. The continuous growth in technology 

demands high class energy efficient devices and 

power enhancement which requires rapid heat 

exchangers, where the conventional fluids are not 

sufficient to improve the rapid heat transfer, 

therefore we seek a relatively new class of fluid 

which enhances the heat exchange. It is 

experimentally verified that nanofluid enhances the 

heat transfer over the conventional fluid (Eastman et 

al. (2001), Robert et al. (2013)). Nanofluid find its 

application in coolants for advanced nuclear 

systems, chemical engineering, electronic devices, 

medical science, storage devices and in solar 

collectors. Studies related to nanofluid are mainly 

focused to thermal conductivity, however a 

satisfactory explanation for the abnormal 

enhancement in thermal conductivity and viscosity 

in nanofluid is yet to be found. The attempt of 

Buongiorno (2006) is found suitable for stability 

analysis of nanofluid convection which includes the 

effect of Brownian diffusion and thermophoresis for 

non-turbulent flow. Rayleigh-Be´nard convection in 

porous media commonly known as Horton-Rogers-

Lapwood convection includes many applications of 

nanofluid which occur in the porous medium such as 

electronic cooling system, including food and 

chemical processes, nuclear reactors, petroleum 

industry, biomechanics, and geophysical problems. 

Documented work in this area are well collected and 

reviewed by Nield and Bejan (2013). 

As a growing research in nanofluid convection, 

several attempts have been made; Nield and 

Kuznetsov (2009) studied onset of convection in 

nanofluid saturated porous media, Kuznetsov and 

Nield (2010a) investigated thermal instability of 

nanofluid saturated porous layer using Brinkman 

model, Kuznetsov and Nield (2010b) performed 

stability analysis for local thermal non-equilibrium 

convection in porous media saturated with nanofluid, 

Nield and Kuznetsov (2011) studied the thermal 

instability of nanofluid convection in porous media 

considering the effect of vertical throughflow. 

Recently Hayat et al. (2015) studied the mixed 

convection flow of non-Newtonian nanofluid over a 

stretching surface including the effect of thermal 

radiation, heat source/sink and first order chemical 

reaction by taking Casson fluid model. Author’s 

group, Bhadauria and Agarwal (2011a, b, c), 

Agarwal and Bhadauria (2011, 2014, 2014a,b,c) and 

Agarwal et al. (2011, 2012) studied thermal stability 

of nanofluid, considering various physical models 

and boundary conditions. 

Most of the above studies dealt only with 

Newtonian fluid, however, waxy crude at shallow 

depth, enhanced oil recovery, paper and textile 

coating, paint industries are few examples which 

admit the applications of viscoelastic fluids, 

therefore the study of viscoelastic fluid is also very 

important. There are some works related to thermal 

stability in viscoelastic fluid saturated porous 

media; Rudraiah et al. (1989) studied the stability of 

a viscoelastic fluid in a densely packed saturated 

porous layer considering an Oldroyd model. Yoon 

et al.(2003, 2004) made a linear stability analysis to 

study convection in a viscoelastic fluid saturated 

porous layer, and obtain the expression of Darcy 

Rayleigh number for oscillatory case to describe the 

onset of convection. Bertola and Cafaro (2006) 

studied theoretically the stability of viscoelastic 

fluid heated from below. Sheu et al. (2008) analysed 

chaotic convection for viscoelastic fluids, using 

truncated Galerkin expansion. Choudhury and Das 

(2014) studied the viscoelastic free convective 

transient MHD flow over a vertical porous plate 

through porous media in the presence of radiation 

and chemical reaction by applying transverse 

variable suction velocity on the porous plate. Kumar 

and Bhadauria (2011a) studied thermal instability in 

a rotating viscoelastic fluid saturated porous layer, 

and calculate the heat transfer. Also Kumar and 

Bhadauria (2011b) studied linear and nonlinear 

double diffusive convection in a viscoelastic fluid 

saturated porous layer. Further, they (2011c) 

studied double diffusive convection in a rotating 

porous layer saturated by a viscoelastic fluid and 

calculated heat and mass transfer across the fluid 

layer. However, very few studies are available on 

convection in a viscoelastic nanofluid saturated 

porous medium. To the best of authors knowledge 

only Sheu (2011) have studied thermal instabilty in 

a porous layer, saturated with viscoelastic 

nanofluid, using Oldroyd-B type constitutive 

equation by considering the boundary conditions in 

which temperature and nanoparticle concentration 

can be controlled at the boundaries, he suggested 

that oscillatory instability is possible in both 

bottom- and top-heavy nanoparticle distributions. It 

was considered in old boundary conditions that one 

could control the nanoparticle concentration at the 

boundaries like in the case of temperature, but in 

real problem, this is however difficult to control the 

nanoparticle concentration at the boundaries, 

further more with the set of new boundary 

conditions, the concentration Rayleigh number is 

always positive. 

Recently, physically a more realistic model was 

studied for thermal instability by Nield and Kuznetsov 

(2014), considering new set of boundary conditions 

that the normal component of the nanoparticle flux on 

boundaries is zero. Further, Agarwal (2014) also 

studied the thermal instability of nanofluid convection 

in a rotating porous layer considering the new model 

of Nield and Kuznetsov (2014). Therefore, in this 

paper, we have made an attempt to study onset of 

thermal instability in a viscoelastic nanofluid 

saturated porous medium with the assumption that 

there is no nanoparticle flux at the boundaries, which 

is physically a more realistic condition. 

2. GOVERNING EQUATIONS 

We consider an infinitely extended horizontal porous 

layer saturated by viscoelastic nanofluid, confined 
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between the planes z = 0 and z = d. We choose 

Cartesian frame of reference as origin in the lower 

boundary and the z-axis in vertically upward direction. 

The gravitational force is acting in vertically 

downward direction. It is assumed that the fluid and 

solid phases are in local thermal equilibrium. hT  and 

cT  are the lower and upper plate temperature 

respectively with the condition that h cT T , cT is 

taken as reference temperature. Oldroyd-B model is 

used to describe the rheological behaviour of the 

viscoelastic nanofluid. Further, the density variation is 

considered under Boussinesq approximation. Also for 

linear theory, it is assumed that the change in 

temperature in the viscoelastic nanofluid is small as 

compared to cT . Then using the approximated 

buoyancy term, the governing equations under the 

above considerations are as follows: 

. 0,D q                                                                           (1) 

0
1

2

ρ
1 λ ( { ρ (1 )ρ

ε

      [1 β( )]} ) 1 λ ,
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 
     

 

q

g q

         (2) 

2(ρ ) (ρ ) . κ

ε(ρ ) . . ,

m f D m

T
m B

c

T
c c T T

t

D
c D T T T

T



    



  
      
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2 21
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ε
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c
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We write ( , , )D u v wq . We assume that the 

boundaries are held at constant temperature and the 

nanoparticle flux is zero on the boundaries. Thus the 

boundary conditions are taken as follows 

0, , 0 at 0,T
h B

c

D T
w T T D z

z T z

 
    

 
           (5) 

0, , 0 at .T
c B

c

D T
w T T D z d

z T z

 
    

 
           (6) 

We introduce dimensionless variable by using the 

following transformations: 

* * * * 2

* * *

*

*
0 0

( , , ) ( , , ) / ,    α ,

                   ( , , ) ( , , ) / α ,

                          ( ) / ( ),

            / α , * ( ) /
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m
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m
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p pK



    

 



  
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               (7) 

Where
κ (ρ )

α ,    .
(ρ ) (ρ )

m m
m

f f

c

c c
   

The nondimensionlized equations (after dropping the 

asterisks for simplicity) are: 
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
q                  (11) 

0, 1, 0  at  0,A

T
w T N z

z z

 
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 
                    (12) 

0, 0, 0  at  1.A

T
w T N z

z z

 
    

 
                   (13) 

The nondimensional parameters, which appeared in 

the above equations are defined as follows: 

αm

B

Le
D

                                                                          (14) 

is the Lewis number, 

ρ β ( )

α

h c

m

g Kd T T
Ra




                                                      (15) 

is the thermal Darcy Rayleigh number, 

0 0[ρ ρ(1 )]

α

p

m

gKd
Rm

 



 
                                       (16) 

is the basic density Rayleigh number , 

0(ρ ρ)

α

p

m

gKd
Rn






                                                       (17) 

is the concentration Rayleigh number, 

0

( )T h c
A

B c

D T T
N

D T 


                                                           (18) 

is the modified diffusivity ratio, 

0

ε(ρ )

(ρ )

p
B

f

c
N

c
                                                       (19) 

is the modified particle density increment, 

11 2

α
λ λm

d
                                                                        (20) 

is the stress relaxation parameter 

22 2

α
λ λm

d
                                                                      (21) 

is the strain retardation parameter. 

2.1   Basic Solution 

The basic state of the nanofluid is assumed to be 

quiescent thus, temperature field and nanoparticle 

volume fraction vary in the z-direction only. This 
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gives the solution of the form 

0,    ( ),    ( ),b bu v w T T z z                         (22) 

which satisfy the following equations 

22

2
0,

                                

b b b bB A Bd T d dT dTN N N
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  
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Using the boundary conditions (12–13), Eq. (24) 

may be integrated to give 
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A

d dT
N
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
                                                           (25) 

Using Eq. (25) in Eq. (23), we get 

2

2
0.bd T

dz
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The solution of the Eq. (26), subject to the boundary 

conditions (12–13), is given by 

1 ,bT z                                                                          (27) 

also the Eq. (24) has been solved subjected to the 

boundary conditions (12–13) using (27), we get 

0 .b AN z                                                                   (28) 

2.2   Perturbation State 

We apply perturbation to the basic state of the system 

as 

, , , .b b bq q p p p T T T                        (29) 

Substituting the above Eq. (29) in Eqs. (8–13) and 

neglecting the product of primes to linearize the 

equations, we get the following set of equations: 
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Taking curl twice of the Eq. (31), we get 
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3. LINEAR STABILITY ANALYSIS 

We use normal mode technique for linear stability 

analysis to solve the eigenvalue problem defined by 

Eqs. (32, 33, 34) subject to the boundary conditions 

given by Eq. (35). Using time periodic disturbance in 

horizontal plane, we take normal mode form as: 
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where l, m are horizontal wave number in x and y 

directions respectively, and ω ω ωr ii  is growth 

rate, which is, in general, a complex quantity. 

Substitution of the above Eq. (36) in Eqs. (32, 33, 34) 

gives the following set of equations 
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where d
D

dz
 and 2 2 2.a l m   The approximate 

solution of the above Eqs. (37–39) is obtained by 

using a Galerkin type weighted residuals method. As 

trial function (satisfying the boundary conditions), 

we choose 
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satisfying the boundary conditions (40). Substitution 

of above Eqs. (41–42) into Eqs. (37–39) yields a set 

of 3N linear algebraic equations in the unknowns

, , ; 1,2,..., .p p pA B C p N  The orthogonality of the 

trial function, and vanishing of the determinant of 

coefficients gives the expression for thermal 

Rayleigh number as a function of nondimensional 

parameters. We take trial functions only upto first 

order i.e corresponding to the value N = 1. We get 
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the expression of thermal Rayleigh number as: 
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where 2 2 2δ .a   

For neutral stability state ω 0,r  whereas for 
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system is always unstable. 

3.1 Stationary State 

The expression of thermal Rayleigh number for the 
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3.2   Oscillatory State 

To obtain the expression of thermal Rayleigh number 

for oscillatory convection at the marginal state, we 

substitute ω ωii  (since the real part of ω for 

marginal oscillatory state is zero i.e ω 0r  ) in Eq. 

(43) and clear the complex quantity from 

denominator. After simplification, we get 
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For oscillatory onset of convection, we have 2 0   

(since Ra is a physical quantity, therefore it must be 

real, also ω 0i   for oscillatory convection). This 

gives a biquadratic equation in ωi  
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                (50) 
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                    (51) 

and 

2

2

2 2 2 2
i 1 2 2 1 i

2 2
1 i
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4 2
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δ
                   

ω ((1 λ λ ω )δ (λ λ )ω

(1 λ ω )

δ 1 1 ω

ε ε
                .

δ ω

Osc

A

Ra
a

Pr

Le Le
N Rn

Le





 

   
  
  

  
      

 
 

 
 

           (52) 

The possibility of oscillatory convection depends 

upon the condition that, ωi must be positive, 

therefore we seek the set of appropriate values of 

nondimensional parameters for which oscillatory 

convection is possible. 

4. RESULTS AND DISCUSSION 

The rescaled concentration Rayleigh number is 

defined in terms of particle fraction, so it cannot be 

negative as considered in the earlier results, therefore 

we take only positive values of concentration 

Rayleigh number for our numerical calculations. The 

expression of thermal Rayleigh number given by Eq. 

(43) is independent of the modified particle-density 

increment parameter BN , this happens due to the 

orthogonality of the trial functions of first order. 

Eq. (44) can be rewritten as 



A. Srivastava and B. S. Bhadauria / JAFM, Vol. 9, No. 6, pp. 3117-3125, 2016.  

 

3122 

4

2

δ
1 .

ε

S
A

Le
Ra N Rn

a

 
   

 
                                      (53) 

The minimum value of right hand side with respect 

to a can be obtained at a = π, hence the critical value 

of the right hand side of the Eq. (53) can be given by 

21 4
ε

S
c A

Le
Ra N Rn 

 
   

 
                                      (54) 

In the absence of nanoparticle, we recover the 

classical result of Horton-Rogers-Lapwood 

convection. 

In contrast to Newtonian fluid, viscoelastic fluid 

possesses overstability due to which we get the 

oscillatory convection. We consider the values of 

parameters appeared in the expression of thermal 

Rayleigh number as Rn = 0.1, Le = 200, 50,Pr   

1 21, λ 1, λ 0.5, 2, ε=0.9AN      or otherwise 

mentioned. 

 

 
Fig. 1. Neutral stability curves for the different 

values of 1λ . 

 
Figs. (1-11) shows the neutral stability curve for 

different values of parameters. In Fig. (1), we 

consider the effect of the stress relaxation 

parameter on the onset of convection, and observe 

that an increase in the stress relaxation parameter 

destabilizes the onset of oscillatory convection, as 

the convection takes place at lower value of the 

Rayleigh number. Fig. (2) represents the effect of 

the strain retardation parameter, and from the 

graph it is clear that the strain retardation 

parameter stabilizes the onset of oscillatory 

convection, since the critical value of the Rayleigh 

number increases on increasing the value of the 

strain retardation parameter. Figs. (3, 4) shows the 

effect of the concentration Rayleigh number on the 

onset of convection and is observed from the 

graph that the concentration Rayleigh number 

destabilizes the onset of stationary convection 

which is similar to the result obtained by Nield and 

Kuznetsov (2014), while stabilizes the onset of 

oscillatory convection for its increasing values. 

Fig. (5) shows the effect of the Darcy-Prandtl 

number and is observe from the graph that the 

Darcy-Prandtl destabilizes the onset of convection 

for its increasing values. Fig. (6) shows the effect 

of Lewis number on the onset of convection and is 

observed from the Lewis number destabilizes the 

onset of stationary convection while stabilizes the 

oscillatory convection, for its increasing values. 

Figs. (7, 8) shows the effect of modified diffusivity 

ratio on the onset of convection and is observed 

from the graph that the modified diffusivity ratio 

destabilizes the onset of stationary convection, 

while stabilizes the onset of oscillatory convection 

for its increasing values Fig. (9) shows the effect 

of heat ratio on the onset of convection and is 

observed from the graph that heat ratio stabilizes 

the onset of convection for its increasing values. 

Figs. (10, 11) shows the effect of porosity on the 

onset of convection and is observed from the 

graph that the porosity stabilizes the onset of 

stationary convection while destabilizes the 

onset of oscillatory convection for its increasing 
values. 

 

 
Fig. 2. Neutral stability curves for the different 

values of 2λ . 

 

 
Fig. 3. Neutral stability curves for the different 

values of Rn. 
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Fig. 4. Neutral stability curves for the different 

values of Rn. 

 

 
Fig. 5. Neutral stability curves for the different 

values of Pr. 

 

 
Fig. 6. Neutral stability curves for the different 

values of Le. 

 
Fig. 7. Neutral stability curves for the different 

values of AN . 

 
Fig. 8. Neutral stability curves for the different 

values of AN . 

 

 
Fig. 9. Neutral stability curves for the different 

values of σ. 

 

 

Fig. 10. Neutral stability curves for the different 

values of ε. 

 

 
Fig. 11. Neutral stability curves for the different 

values of ε. 
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5. CONCLUSIONS 

We investigate the onset of convection viscoelastic 

nanofluid convection in an infinite horizontal porous 

layer which is heated from with the set of new 

boundary condition which is physically more 

realistic. From the expression of Rn, it is observed 

that Rn is defined as a typical nanofluid fraction 

instead of the difference of two fractions so that, Rn 

cannot be negative, the modified diffusion ratio AN

is positive, also it is not necessary to take large values 

of Le as mentioned by Nield and Kuznetsov (2009), 

moreover, the Eq. (54) can be taken as an upper 

bound for the value of critical Rayleigh number in 

case of stationary convection. For the increasing 

value of various parameters, we found the following 

results: 

1. Relaxation parameter 1λ : destabilizes the 

onset of convection. 

2. Retardation parameter 2λ : stabilizes onset of 

convection. 

3. Concentration Rayleigh number Rn: 

destabilizes the onset of stationary convection, 

stabilizes the onset of oscillatory convection. 

4. Modified diffusivity ratio AN : destabilizes the 

onset of stationary convection, stabilizes the 

onset of oscillatory convection. 

5. Lewis number Le: stabilize the stationary 

convection, destabilize the oscillatory 

convection. 

6. Darcy-Prandtl number Pr: destabilizes the 

oscillatory convection. 

7. Porosity ε: stabilizes the onset of stationary 

convection, destabilizes the onset of 

oscillatory convection. 

8. Heat ratio σ: stabilizes the onset of convection. 
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