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ABSTRACT 

The head shape of a high-speed maglev train was optimized in this study, based on the adjoint method, and the 
aerodynamic drag of four optimized train models were simulated and compared using different control point 
generation methods. The effectiveness of using the adjoint method to develop a compressible model for a 
maglev train was verified. The results show that the adjoint matrix optimization method can quickly and 
effectively capture the shape characteristics of the train head that are sensitive to aerodynamic resistance. When 
the design variables of the head are not defined separately, the grid control point set and surface control point 
set can be used to carry out the adjoint closed-loop optimization of the train head shape, and the exchange 
control point generation method can be used to perform closed-loop optimization. The results of a numerical 
simulation show that the optimized train model reduces aerodynamic resistance by approximately 4.8%.  

Keywords: Maglev; Aerodynamic drag; Adjoint method; Optimization. 

NOMENCLATURE 

A   reference area klr   distance between two control points 

DC   drag coefficient iS   search direction 

D drag force X   coordinate vector of the grid node 

lc   a constant x design variable 

kd   displacement vector of the k th control 
point 

lx    coordinate vector of the control point. 

d X   displacement of the grid node s
kx s th  coordinate of the k th node in the mesh 

F objective function    constant vector 

 ,b l klf r  radial basis function i   search step length 

k is the number of design variables  l   expansion coefficient 

N number of control points T   adjoint solution variable 

R numerical residual   

 
1. INTRODUCTION 

With the continuous development and improvement 
of high-speed train technology, train running speeds 
are increasing. Rapid increases in train speed have 
led to increased drag and energy consumption. Shape 

optimization is an important method of drag 
reduction. Aerodynamic shape optimization, which 
aims to improve the aerodynamic performance of 
high-speed trains and solve some aerodynamic 
problems, plays an important role in the design of 
high-speed trains. The aerodynamic problems of 
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high-speed trains are closely related to the air flow 
around the vehicles. In the past decade, several 
researchers have carried out extensive research on 
high-speed trains and maglev air flow characteristics 
under different scenarios (e.g., Hemida and 
Krajnovic 2010; Baker 2010; Krajnovic et al. 2012; 
Huang et al. 2019; Jia and Mei 2018). Once the flow 
field structure has been measured, it is possible to 
carry out targeted optimization. Genetic algorithms, 
particle swarm optimization, and other optimization 
methods can extract valuable information from 
existing data and solve optimization problems 
through specific strategies. Vytla (2011) carried out 
single-objective optimization for multiple design 
variables in the context of an open-air environment 
using geometric parameterization and a genetic 
algorithm. Yao et al. (2014) used a genetic algorithm 
to improve the safety and comfort of train operation 
with aerodynamic lift of the tail car and streamlined 
head volume as objectives. Munoz-Paniagua et al. 
(2014) used a genetic algorithm to optimize the train 
head shape to reduce the maximum pressure gradient 
at the tunnel entrance. Zhang et al. (2017) took the 
total aerodynamic resistance and tail car 
aerodynamic lift as optimization objectives and 
carried out multi-objective aerodynamic 
optimization using a non-dominated sorting genetic 
algorithm (NSGA-II) and Kriging model, which 
improved the aerodynamic performance of trains in 
environments with and without cross winds. Li et al. 
(2016, 2020) used a free-deformation method and 
non-dominated sorting genetic algorithm to select 
multiple geometric parameters for drag reduction 
and multi-objective optimization of high-speed 
trains. The computational complexity of the 
optimization depends on the number of design 
variables that parameterize the best candidate 
features. The realizable improvement depends on the 
choice of geometric parameters (Othmer and Grahs 
2005). Therefore, the calculation of the variable 
values can be carried out flexibly and reliably. This 
strategy becomes more critical as the complexity of 
high-speed train flow simulation increases. 

The adjoint optimization method is based on the 
objective function gradient. Its sensitivity is 
independent of the number of design variables; 
therefore, it can save time and reduce costs. Each 
point on the optimization surface can be regarded as 
a design variable. The adjoint method eliminates 
constraints imposed by the dimension of geometric 
design and can calculate all gradient components. 
The cost is independent of the number of gradient 
components. Design and optimization using adjoint 
methods is a topic of interest in various engineering 
fields, such as aviation (Nejati and Mazaheri 2017; 
Bobrowski et al. 2017), automotive engineering 
(Othmer 2014; Han et al. 2016), and thermal and 
hydraulic turbine design (Mueller et al. 2012). In 
fluid mechanics, Pironeau (1974) was the first to 
propose the adjoint design equation. In practical 
applications of computational fluid dynamics 
simulation optimization, the gradient-based method 
and adjoint method are combined (Jameson 1988; 
Jameson and Martinelli 1998; Giles and Pierce 1997) 
to calculate the sensitivity derivative, that is, the 
gradient of the objective function relative to the 

design variable. In aerospace engineering, Lei et al. 
(2019) used the adjoint method to study the 
integrated aerodynamic design of aircraft and power 
engines to optimize the layout of wing engines while 
reducing overall drag. Kapsoulis et al. (2018) used 
the adjoint method and a genetic algorithm to carry 
out section optimization of an aircraft airfoil and 
obtained optimized results for two kinds of wing 
airfoils based on maximum lift and minimum torque. 
Kun et al. (2018) used a discrete adjoint method and 
two curve control methods to generate two transonic 
airfoil optimization schemes to reduce drag under 
constraints of wing cross-sectional area and lift. 
Kungurtsev and Juniper (2019) used a gradient-
based adjoint method to optimize the shape of a drop-
type ink-jet printhead to suppress residual 
reverberation and vibration without increasing the 
pressure drop required to drive steady flow. Shape 
optimization using the adjoint method to reduce total 
pressure loss and increase the tumble moment has 
also attracted attention (Verma et al. 2018; Kubota et 
al. 2016). In vehicle shape design, sensitive 
components are selected based on a sensitivity 
analysis based on gradients, and continuous adjoint 
methods and discrete adjoint methods are used to 
optimize vehicle aerodynamic shapes to improve 
aerodynamic resistance and lateral torque under 
wind measurement conditions (Papoutisis-
kiachagias and Giannakoglou 2016; Papoutisis-
kiachagias et al. 2019). Munoz Paniagua et al. (2015) 
used the adjoint method to optimize the shape of 
high-speed train heads, demonstrating the 
effectiveness of the method. When the number of 
solver calls is low, the aerodynamic resistance is also 
significantly reduced. Zhang (2017) used a set of 
surface control points to optimize the head shapes of 
high-speed trains, reducing the aerodynamic 
resistance in open-line environments. 

The purpose of this study was to prove the 
effectiveness of the adjoint method in the 
optimization of maglev train head shapes. In adjoint 
optimization with aerodynamic drag as the objective, 
the optimization results of two methods for 
generating the optimal control point set of the head 
shape were compared. The effectiveness of the 
single-objective adjoint optimization method for 
maglev train head shape was evaluated using a flow 
field analysis optimization model. 

2. METHOD AND FORMULATION OF 

THE PROBLEM 

The objective of this study was to optimize the head 
shape of a high-speed maglev train by reducing the 
aerodynamic drag coefficient when the train faces 
into the wind. This single-objective optimization 
problem can be defined as follows: 

Minimize  F x     

subject to   0jg x    1j m    (1) 

   0ph x    1l m  .   

 l l l
k k kx x x    1k m     
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1i i ix x                                              (2)  

where i  is the search step length in the search 

direction iS . Based on the definition of the search 

direction, different optimization algorithms can be 
formed. If the search step size is calculated based on 
the value of the objective function, a zero-order 
algorithm, such as a genetic algorithm, can be used; 
if the search step size is calculated based on the first 
derivative of the objective function, a gradient 
algorithm can be used. 

2.1 Discrete joint formulation 

The simplest way to define the search direction is  

  ,i iS F x   and the following finite difference 

scheme can be used for gradient calculation: 

   d
, 1,2, ,

d
k k k

k k

F x x F xF
k K

x x

  
 


         (3)  

where 𝐹 is the objective function, and 𝑘 is the 
number of design variables.  

The adjoint method can be used to reduce the 
computational complexity of the objective function 
relative to the gradient d d kF xƒ  of the optimal 

design variables. The main feature of the adjoint 
method is that the calculation of the gradient of the 
optimal design variables by the optimization 
objective function is independent of the number of 
optimal design variables. In this way, it can 
significantly reduce the time consumed during the 
calculation of the optimal design variable gradient of 
the objective function (Papadimitriou and 
Giannakogluu  2008). 

When a series of design variables 𝑥 are given to 
optimize the train head shape, the objective function 
𝐹 is not only related to the head shape design variable 
𝑥 but also to the flow field variable 𝑢 on the grid 
node. Therefore, the gradient of the objective 
function relative to the design variable can be 
expressed as follows: 

d d d

d d d

F F u F

x u x


 


                                              (4)  

The constraint conditions are satisfied: 

d d
0

d d

R R u R

x u x x

 
  
 

                                        (5)  

where 𝑅 is the numerical residual. According to 
formula (5), it can be concluded that: 

1
d

d

u R R

x u x

      
                                           (6)  

Substituting formula (6) into equation (4), we can get 
the following results: 

1d

d

F F R R F

x u u x x

           
                             (7)  

By introducing the multiplier T , the gradient of the 

objective function relative to the design variable can 
be written as follows: 

d

d
TF R F

x x x
  

  
 

                                         (8)  

where T  is the adjoint solution variable, the 
following equation is satisfied: 

TF R

u u
 


 

                                                          (9)  

Equation (9) is the adjoint equation, from which we 
can see that the adjoint equation only needs to solve 
the current flow field variable U, and it has nothing 
to do with the design variable x. To solve the gradient 
of the objective function relative to the design 
variables, it is not necessary to do one numerical 
calculation for each design variable but only need to 
solve the initial flow field and the adjoint flow field. 
This can significantly save the time consumed during 
the optimization of the design. 

Figure 1 shows a workflow with optimization. In the 
fluid simulation software, the overall framework of 
shape optimization based on gradient continuous 
adjoint method is realized with the goal of adjoint 
flow optimization. The modules used in each 
optimization cycle include: 1. Solution of original 
flow equation; 2. Solution of objective function; 3. 
Solution of adjoint equation; 4. Gradient calculation; 
5. Updating design variables; and 6. Geometric 
displacement and mesh deformation. After 
optimization, the optimization results are verified, 
and it is observed that the results are in line with the 
requirements. 

2.2 Surface deformation and mesh 
deformation 

s
ks

k

F
dF dx

x





                                                      (10)  

Among them, the deformation node is the node of the 

surface mesh. s
kx is the 𝑠 th coordinate of the 𝑘 th 

node in the mesh (𝑥௞ is the 𝑘th node). Then 

s
k s

k

F
dx c

x





                                                         (11)  

provides the maximum adjustment of 𝐹  for given 
2L  norm of s

kdx ， c  is an arbitrary scale factor. It 

should be noted that the use of formula (10) to 

calculate / s
kF x    in some areas may result in many 

inflection points on the target surface. Therefore, to 
ensure the continuity of the surface, it is necessary to 
use the mesh deformation tool to smooth the surface 
sensitive field and internal mesh. 

In this study, the radial basis function-based mesh 
deformation method is used to deform the maglev 
train head. This method is used for aerodynamic 
optimization of the head shape, which can realize the 
smooth deformation of the head shape and avoid the 
repeated generation of the mesh in the optimization 
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Fig. 1. Adjoint optimization flow chart. 

 

process, to improve the efficiency of the 
optimization design. A series of control points are 
arranged around the train head to control the 
deformation of the grid. Each control point is related 
to the displacement of its surrounding mesh nodes. 
Based on the interpolation theory, a mesh 
deformation interpolation field can be generated for 
a given control point displacement. To generate the 
interpolation field, the control point displacement is 
expanded as follows: 

 ,

1

N

k b l kl ld f r  


                                        (12)  

where, kd is the displacement vector of the 𝑘 th 

control point, N  is the number of control points, l
is the expansion coefficient,  is the constant vector, 

and  ,b l klf r  is the radial basis function, which are 

expressed as follows: 

  2 2
,b l kl kl lf r r c                                              (13)  

lc is a constant, which is set to 0 in this study, and 

klr  is the distance between two control points: 

kl k rr x x                                                         (14)  

The expansion coefficient, 𝜆௟, satisfies the constraint 
conditions 

1

0
N

l

l




                                                                 (15)  

When the displacements of each control point are 
known, l  and constant vector 𝛼  can be obtained 

simultaneously using Eqs. (12) and (15), and the 
displacement interpolation of grid nodes can be 
obtained as follows: 

 ,

1

d
N

b l l

l

X f r  


                                          (16)  

d X  is the displacement of the grid node,

  2 2
,b lf r r c  ， lr X x  ， X  is the 

coordinate vector of the grid node, and lx  is the 

coordinate vector of the control point. 

Based on the calculation of initial and adjoint flow 
fields, the sensitivity data of the objective function to 
the coordinates of control points are obtained.  

The displacement 𝑑  of each control point can be 
obtained by the Eq. (11). 

 d s
k s

k

F
x c

x





                                                     (17)  

From the displacement of control points, the 
displacements of each grid node can be obtained by 
Eqs. (12), (15), and (16), to realize the mesh 
deformation in the calculation area. 

3. OPTIMIZED APPLICATION 

The preprocessing of the numerical simulation and 
the associated optimization cycle calculation are 
carried out in star-ccm+. Closed loop and iterative 
solution are allowed in the software. In the 
optimization process, the convergence of the 
simulation is affected by the quality of the deformed 
mesh, and we observe that the mesh quality will 
gradually decrease with each iteration. Therefore, it 
is necessary to check the mesh quality after each 
optimization cycle and repair the grid with poor 
quality, to ensure the stability of grid quality. 

3.1 Optimization model 

The three-car body model investigated in this study 
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is based on the maglev train model of Shanghai 
maglev line, which is in commercial operation. This 
study focuses on the aerodynamic drag coefficient 
change of high-speed maglev train caused by the 
deformation in head shape optimization. Therefore, 
the body part of the proportional model is selected, 
including the proportional streamline and the 
proportional carriage. It is 3.7 m wide, 3 m high, and 
79 m long. The distance between the body of maglev 
train and the maglev track is defined by the bottom 
edge of the model head car. In the optimization work, 
it is necessary to ensure that the maximum range of 
optimization deformation conforms to the relevant 
specifications of a maglev train. 

To obtain the resistance coefficient of the car body, 
a calculation domain, as shown in Fig. 2, is 
established. The entrance is 60 m away from the head 
car, and the exit is 200 m away from the tail car. The 
width and height of the calculation domain are both 
80 m. The car body model is arranged in the middle. 
The inlet and outlet boundaries are free flow, and the 
velocity is Mach 0.49. The other boundaries are 
symmetrical. The Reynolds number based on 
entrance speed and train height is 3.4×10଻. 

 

 
(a) The train model  

 

 

(b) Computational domain  
 

Fig. 2. Car body model and computational 
domain. 

 
3.2 Turbulence Model and Numerical 

Set-up 

In the solver of star-CCM +, the adjoint optimization 
only supports the steady turbulence model. 
Therefore, the compressible steady K - ω (RANS) 
turbulence model is used for fluid simulation in this 
study. Previous studies (Papoutsis-Kiachagias et 
al.2019) have demonstrated the effectiveness of 
RANS-based turbulence model for adjoint 
optimization. To establish a reliable flow field, the 
grid is divided as shown in the Fig. 3. Ten prismatic 
layers are used, and the parts near the train body are 
properly encrypted. The mesh in dependence 
analysis shows that the final number of mesh is 8.34 
million. The value of Y + is 25 ~ 250. 

 
(a) Computational mesh 

 

 
(b) Prism layer mesh  

 
Fig. 3. Computational mesh. 

 
3.3 Sensitivity Analysis 

Before starting the optimization cycle, the sensitivity 
analysis of the target model is established. A 
sensitivity map is established based on the 
aerodynamic drag gradient of the car body model. 
We can observe that the sensitivity of most areas of 
the car body is within ± 40. However, the tip of the 
nose had a higher value. The red area of the model 
with reduced resistance represents the outward 
displacement of the model. Therefore, to reduce the 
aerodynamic resistance of the car body, the 
streamline of the car body should be selected, 
especially the deformation of the model at the nose. 

 
3.4 Optimization Settings 

In this study, grid control set points and surface set 
control points are used to discrete adjoint 
optimization of the model. After the first round of 
five optimization cycles, two optimization models 
were obtained. After the first round of optimization, 
another method was used to control the generation of 
assembly points, and the second round of 
optimization cycle was carried out three times. Four 
optimization results were obtained. They are named 
as A (grid set), B (surface set), C (grid set-surface 
set), D (surface set-grid set), and the original model 
is O. After the four optimized head shapes were 
obtained, the two methods of generating set control 
points were compared. RANS equation turbulence 
model and discrete adjoint optimization method were 
used to simulate and optimize the optimization 
process. The first round of optimization is five 
optimization cycles, and the second round is three 
optimization cycles. The main consideration is that 
the grid quality has been significantly reduced 
because of the increase in the number of closed-loop 
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optimization cycles. At the same time, the 
optimization effect was not sufficiently clear, and 
even the inflection point of aerodynamic resistance 
rising trend appeared. Therefore, the optimization 
results (A, B, C, D) with the best air performance and 
better grid quality were selected as the output results. 

 

 
 

(a) front 

 
 

(b) side 

 

 
(c) bottom 

 
Fig. 4. Sensitivity diagram of car body: the blue 
area is negative, which means that the outward 

displacement of the surface will increase the 
resistance; the red area is positive, which means 
that the outward displacement of the surface will 

reduce the resistance. 
 

The generation of grid set control points is shown in 
Fig. 3. Based on the size of the train head, the size of 
the control box is 5.5 m * 3.9 m * 3.4 m, and the 
control point is 10 * 8 * 6. Grid set control points are 
generated equally. The generation of surface 
collective control points is shown in Fig. 5. Based on 
the shape of the deformable zone of train nose, the 
surface collective control points with uniform point 
distance of 0.3 m are distributed at a distance of 0.3 
m away from the surface. 

In the adjoint solver, the mesh deformation algorithm 
was the steepest descent method. To ensure the fine 

adjustment of the head shape and ensure that the 
original streamline length does not change too much, 

we set the deformation step size as 51.5 10 . 

 

 

(a) Grid set control point 
 

 

(b) Surface set control point 
 

Fig. 5. Two sets of control points. 
 

3.5 Optimization Results 

As shown in Fig. 6, the four types of Maglev heads 
have different deformations. At the end of the first 
optimization cycle, the nose tip of model A had 
obvious lifting deformations. While the nose tip had 
obvious inward deformation at the excessive 
streamline behind the nose tip, the length of the nose 
tip did not changed significantly, and the cab 
shoulder had also contracted inward. Regarding 
model B, the nose tip protruded and thinned forward, 
height did not change significantly, and cab shoulder 
contracted inward. After the initial optimization of 
the grid set control points, the surface collective 
control points were optimized for the second time, 
and the optimization result C showed that the nose 
tip height was further raised compared with A, the 
nose tip length was reduced compared with O and A, 
and the back of the nose tip and cab shoulder were 
further contracted inward. After the initial 
optimization of surface set control points, it can be 
observed from optimization result D that the height 
of the nose tip is slightly increased compared with O 
and B, and the length of the nose tip is not 
significantly different. 

4. VERIFICATION APPLICATION 

4.1 Validation Model 

The aerodynamic performance of the four 
optimization models is tested under open-air  
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(a) Grid set control point model A 

 
(b) Surface set control point model B 

 
(c) Grid-Surface set control point model C 

 
(d) Surface-Grid set control point model D 

 
(e) Original profile and optimized profile 

Fig. 6. Optimization results: the inner side is the 
original model; the outer side is the optimized 

model. 

conditions, and it is investigated whether the 
optimization of body streamline is effective for the 
overall aerodynamic resistance of a high-speed 
maglev train. The tr-08 three car equal ratio model is 
used in this study, which is 79 m long, 3.7 m wide, 
and 4.1 m high. The track height of the maglev train 
is 2.1 m. The calculation domain in front of the 
vehicle is 80 m in length, 140 m in width, and 40 m 
in height in the rear. The model is arranged in the 
middle and conforms to the national standard TB / T 
3503.4-2018. The inlet and outlet of the flow field 
are free flow, velocity is Mach 0.49, ground and orbit 
are moving walls, and boundary of other 
computational domains are symmetric surfaces. The 
compressible steady K-𝜔(RANS) turbulence model 
is used for fluid simulation. The narrow gap between 
track and car body uses a structural grid, and other 
parts use an unstructured grid. The total number of 
computational domain grids is 66.26 million. 

4.2 Numerical Simulation Results 

The drag coefficient calculated by numerical 
simulation of vehicle model shows that both gridset 
control points and surface set control points have 
certain drag reduction effect. The aerodynamic drag 
of grid set optimization A is reduced by 3.2% and 
that of surface set optimization B is reduced by 3.7%. 
At the end of the second optimization cycle, the drag 
reduction effect of optimization model B and D is 
further than that of the previous model, but the 
reduction range is obviously less than that of the first 
optimization cycle. The aerodynamic drag of grid 
surface ensemble optimization B is reduced by 3.9%, 
and that of surface grid ensemble optimization D is 
reduced by 4.8%. In general, both the grid set and the 
surface set control point optimizations have certain 
drag reduction effect. The drag reduction effect of 
the second optimization cycle is not as obvious as 
that of the first optimization cycle. 

21

2

D
D

C
V A

                                                 (17)  

where D is the drag force on the train,   is the air 

density (1.225 3
kg

m
), and 𝐴 is chosen as 10.9 m2. 

 
Table 1 Comparison of aerodynamic drag 

coefficients of optimization models. 

Model DC   %DC   

O 0.3417 - 

A 0.3306 -3.248 

B 0.3280 -3.922 

C 0.3289 -3.746 

D 0.3252 -4.829 

 

The deformation zones of the five simulation models 
were analyzed separately. The drag coefficients of 
the five groups of models shows that the drag 
coefficient of the original model O is the largest, 
while the drag coefficient of the optimized model A  
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Fig. 7. Computational domain of validation model. 

 

Table 2 Pressure in deformation zone of optimization model. 

Model 

Pressure  
drag 

 Shear 
resistance 

 Drag 
coefficients 

 

Pa % Pa %  % 

O 1.1800×104  1.3179×103  0.0711  

A 1.1491×104 -2.619 1.3053×103 -0.956 0.0690 -2.954 

B 1.0866×104 -7.915 1.3779×103 4.552 0.0660 -7.173 

C 1.1079×104 -6.110 1.3739×103 4.249 0.0671 -5.626 

D 1.0012×104 -15.152 1.3575×103 3.005 0.0613 -13.783 

 

and C is significantly lower than that of the original 
model. Compared with A and C, the drag coefficient 
of the optimization models B and D decreased to 
varying degrees. The drag coefficient in the 
deformation zone of model D decreases more 
obviously than that in model B. Compared with 
model O, the pressure drag of the four optimization 
models decreased in varying degrees, and the drop in 
model D was the most obvious. In terms of shear 
resistance, the shear resistance of model A decreased 
by 0.956%, and the shear resistance of other models 
increased in varying degrees. The decrease of 
aerodynamic drag of the optimized model is related 
to the decrease of pressure drag in the optimized 
deformation region. 

4.3 Flow Field Analysis of Validation 
Model  

4.3.1 Surface Pressure 

The surface pressure diagram of the original model 
was compared with that of the four optimized models 
on the left and right in Fig. 8. Because the nose tip of 
model A rises to a certain extent, the positive 
pressure area of model A is smaller than that of 
model O. Based on model A, the nose tip of model C 
was further raised, resulting in the separation of the 
positive pressure region at the nasal tip, and the 
maximum value of the positive pressure area 
appeared in the lower part of the nasal tip. 
Meanwhile, the negative pressure area of the cab 
shoulder is deeper than that of the original model. 
The positive pressure region of model B is smaller 
than that of model O. Based on model B, the positive 
pressure region of model D is further reduced, which 
has a significant downward trend compared with the 
positive pressure region of the nose tip near the 
surface of the original model. With the optimization, 

the high-pressure area near the stagnation point can 
be reduced by the deformation of the deformation 
region to reduce the aerodynamic drag.  

4.3.2 Pressure Diagram of Symmetry 
Plane 

Figure 9 shows the pressure distribution on the 
symmetry plane of the original model and the four 
optimized models. In the figure, we can see that the 
positive pressure area in front of the nose tip of the 
four optimization results is smaller than that of the 
original model. The nose tip of model A rises to a 
certain extent, leading to a certain reduction in the 
positive pressure area compared with the original 
model, primarily due to the reduction of air mass 
volume in the high-pressure area. The nose tip of 
model C rises further based on A, which results in 
the separation of positive pressure area, and the 
maximum value of positive pressure area appears in 
the lower part of nasal tip. Compared with the 
original model, the positive pressure area of the nose 
tip of model B is marginally reduced, while other 
differences are not significant. Compared with the 
original model and model B, the positive pressure 
area of model D is significantly smaller than that of 
the original model and model B. The positive 
pressure area of model D is the smallest among the 
four optimization models, and the high-pressure part 
is also the smallest. 

4.3.3 Streamline 

Figure 10 shows the streamline diagram of the 
original model and the four optimization models. In 
the figure, we can see that the near surface streamline 
of the four optimization models is different from that 
of the original model. In general, the air velocity at 
the nose tip of the four models is significantly faster 
than before. This is consistent with the change of the  
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pressure distribution of the head carriage of the five 
models, and the air velocity at the nose tip becomes 
faster, which reduces the positive pressure area 
caused by air stagnation at the nose tip. At the same 
time, the streamline of the cab shoulder shows that 
the optimization model is faster than the original 
model when air flows through the cab shoulder.  

For model A and C, the rise in the height of the nose 
tip increases the air separated to the lower part of the 
nose tip, increases the air velocity under the nose tip, 
and decreases the positive pressure at the nasal tip. 
At the same time, the contraction of the cab shoulder 
improves the flow of the air passing through both 
sides of the cab, which reduces the aerodynamic 
resistance at the nose tip. For models B and D, 
 the nose tip length increases, nose tip width 
decreases, and cab shoulder shrinks, which 
accelerates the air velocity in the streamline part of 
the front car and reduces the aerodynamic resistance 
at the nose tip. 

5. CONCLUSION 

In this study, the discrete adjoint optimization 
method and two control sets are used to optimize the 
maglev car body model, and the maglev equal ratio 
model is used to verify and analyze the optimization 
effect. Through the analysis of geometry and flow 
field, the following conclusions are obtained. 

1. In this study, four optimization models are 
obtained by using the adjoint optimization 
method. Among them, the nose tips of models 
A and C are raised to a certain extent, and the 
nasal tips of models B and D are elongated to a 
certain extent, which leads to the reduction in 
the high-pressure area of the nasal tip stagnation 
point. The results show that the cross section of 
the cab shoulder of the four optimization 
models has been marginally reduced, which is 
consistent with the aerodynamic trend that the 
thinner the nose tip, the smaller the 
aerodynamic resistance. 

 
（1） O-A 

 

 
（2） O-B 

 
（3） O-C 

 
（4） O-D 

 
Fig. 8. Optimize model surface pressure. 
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（2） A 

 
（3） B 

 
（5） C 

 
（4） D 

 
Fig. 9. Pressure diagram of symmetry plane of optimization model. 

 

 
（1） O 

 
（2） A 

 
（3） B 

 
（4） C 

 
（5） D 

 
Fig. 10. Optimization model head streamline diagram. 
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2. The decrease of high-pressure area near the 
stagnation point leads to the improvement of 
aerodynamic drag. The most effective 
aerodynamic drag reduction is 4.8%. The 
decrease of aerodynamic drag in deformation 
zones mainly comes from the decrease of the 
pressure drag. The deformation of the nose tip 
leads to the acceleration of air velocity around 
the nose tip, which reduces the aerodynamic 
resistance. 

3. The sensitive area of the car body is the nose tip, 
and the deformation in this area can achieve the 
best aerodynamic drag reduction. Through the 
closed-loop optimization of two adjoint 
methods, this information is consistent with the 
aerodynamic performance changes given by the 
optimization. 

4. In the optimization execution, we chose a 
relatively small step deformation factor to 
prevent the geometric surface from being 
generated due to no dimensional constraints and 
aesthetic constraints. It is necessary to add some 
geometric constraints in the future research to 
get as close as possible to the best candidate of 
the objective function. It was also observed that 
the quality of deformation mesh generation 
decreased while the closed-loop optimization 
was carried out. Therefore, the closed-loop 
adjoint optimization has a certain number of 
optimization times in this study. 

ACKNOWLEDGEMENTS 

The authors would like to acknowledge the financial 
support from the National Key R&D Program of 
China (Grant number 2016YFB1200602-11, 
2016YFB1200602-12) and the Fundamental 
Research Funds for the Central Universities of 
Cenral South University. 

REFERENCES 

Baker, C. (2010). The flow around high speed trains. 
Journal of Wind Engineering and Industrial 
Aerodynamics 98(6-7), 277-298, SI.  

Bobrowski, K., E. Ferrer, E. Valero and H. 
Barnewitz (2017). Aerodynamic Shape 
Optimization Using Geometry Surrogates and 
Adjoint Method. AIAA Journal 55(10), 3304-
3317. 

Giles, M. and N. Pierce (1997). Adjoint equations in 
CFD: duality, boundary conditions and solution 
behaviour. In AIAA Paper 1997-1850 13th fluid 
dynamics conference, New Orleans, LA. 

Han, T., S. Kaushik, K. Karbon, B. Leroy, K. 
Mooney, S. Petropoulou and J. Papper (2016). 
Adjoint-drivenaerodynamic shape optimization 
based on a combination of steady state and 
transient flow solutions. SAE Int J Passenger 
Cars - Mech Syst 9(2), 695-709. 

Hemida, H. and S. Krajnovic (2010). LES study of 
the influence of the nose shape and yaw angles 

on flow structures around trains. Journal of 
Wind Engineering and Industrial Aerodynamics 
98, 34-46. 

Huang, S., Z  .W. Li and M.  Z. Yang (2019) 
Aerodynamics of high-speed maglev trains 
passing each other in open air. Journal of Wind 
Engineering and Industrial Aerodynamics 188, 
151-160. 

Jameson, A. (1988). Aerodynamic Design via 
Control Theory. Journal of Scientific 
Computing 3(3), 233-260.  

Jameson, A. and L. Martinelli (1998). Optimum 
Aerodynamic Design using the Navier-Stokes 
Equations. Theoretical and Computational 
Fluid Dynamics 10, 213-237. 

Jia, Y.   X. and Y. G. Mei (2018). Numerical 
simulation of pressure waves induced by high-
speed maglev trains passing through tunnels. 
International Journal of Heat and Technology 
36(2), 687-696. 

Kapsoulis, D., K. Tsiakas, X. Trompoukis, V. Asouti 
and K. Giannakoglou (2016). A PCA-assisted 
hybrid algorithm combining EAs and adjoint 
methods for CFD-based optimization. Applied 
Soft Computing 73, 520-529 

Krajnovic, S., P. Ringqvist, K. Nakade and B. Basara 
(2012). Large eddy simulation of the flow 
around a simplified train moving through a 
crosswind flow. Journal of Wind Engineering 
and Industrial Aerodynamics 110, 86-99. 

Kubota, M., S. Tokuda and Y. Noguchi (2016). 
Development of CFDinverse analysis 
technology using the transient adjoint 
methodand its application to engine in-cylinder 
flow. SAE Int J Engines 9(2), 675-683. 

Kungurtsev, P. V. and M. P. Juniper (2019). Adjoint-
based shape optimization of the microchannels 
in an inkjet printhead. Journal of Fluid 
Mechanics 871, 113-138. 

Lei, R. W., J. Q. Bai and D. Y. Xu (2019). 
Aerodynamic optimization of civil aircraft with 
wing-mounted engine jet based on adjoint 
method. Aerospace Science and Technology 93. 

Li, R., P. Xu, Y. Peng and P. Ji (2016). Multi-
objective optimization of a high-speed train 
head based on the FFD method. Journal of Wind 
Engineering and Industrial Aerodynamics 152, 
41-49. 

Li, R., P. Xu and S. G. Yao (2020). Optimization of 
the high-speed train head using the radial basis 
function morphing method. Proceedings of The 
Institution of Mechanical Engineers Part F-
Journal of Rail and Rapid Transit 234(1), 96-
107. 

Mueller, L., Z. Alsalihi and T. Verstraete (2012). 
Multidisciplinary optimization of a 
turbocharger radial turbine. ASME Journal of 
Turbomachine, 135(2), 021022–1, 021022–9. 

Munoz-Paniagua, J., J. Garcia and A. Crespo (2014). 



H. C. Li et al. / JAFM, Vol. 14, No. 6, pp. 1839-1850, 2021.  
 

1850 

Genetically aerodynamic optimization of the 
nose shape of a high-speed train entering a 
tunnel. Journal of Wind Engineering and 
Industrial Aerodynamics 130, 48-61. 

Munoz-Paniagua, J., J. Garcia, A. Crespo and F.  
Laspougeas (2015). Aerodynamic Optimization 
of the Nose Shape of a Train Using the Adjoint 
Method. Journal of Applied Fluid Mechanics 
8(3), 601-612. 

Nejati, A. and K. Mazaheri (2017). Application of 
the adjoint optimization of shock control bump 
for ONERA-M6 wing. European Journal of 
Computational Mechanics 2(5-6), 557-583. 

Othmer, C. (2014) Adjoint methods for car 
aerodynamics. J Math Ind 4(6), 1–23. 

Othmer, C. and T. Grahs (2005). Approaches to 
Fluid Dynamic Optimization in the Car 
Development Process. In 6th International 
Conference on Evolutionary and Deterministic 
Methods for Design, Optimization and Control 
with Applications to Industrial and Societal 
Problems, EUROGEN 2005, Munich, 
Germany. 

Papoutsis-Kiachagias, E. M. and K. C. Giannakoglou 
(2016). Continuous adjoint methods for 
turbulent flows, applied to shape and topology 
optimization: industrial applications. Arch 
Comput Methods Engineering 2(2), 255–299. 

Papoutsis-Kiachagias, E. M., V. G. Asouti, K. C. 
Giannakoglou, K. Gkagkas, S. Shimokawa and 
E. Itakura (2019). Multi-point aerodynamic 
shape optimization of cars based on continuous 
adjoint. Structural and Multidisciplinary 
Optimization 59(2), 675-694. 

Papadimitriou, D. I. and K. C. Giannakoglou (2008). 
Aerodynamic Shape Optimization Using First 
and Second Order Adjoint and Direct 
Approaches. Archives of Computational 
Methods in Engineering. 15(4), 447-488. 

Pironneau, O. (1974). On Optimum Design in Fluid 
Mechanics. Journal of Fluid Mechanics, 64, 
97–110. 

Verma, I., C. Hill and M. Xu (2018).  Multi-objective 
adjoint optimization  of flow-bench port 
geometry. In: SAE WCX world congress 
experience, 2018-01-0772. 

Vytla, V. V. (2011). Multidisciplinary Optimization 
Framework for High Speed Train using Robust 
Hybrid GA-PSO Algorithm. Ph. D. Thesis, 
Wright State University. 

Wang, K., S. J. Yu and Z. Wang (2018). Adjoint-
based airfoil optimization with adaptive 
isogeometricdiscontinuous Galerkin method. 
Applied Mechanics and Engineering 344, 602-
625. 

Yao, S. B., D. L. Guo,  Z. X. Sun, G. W. Yang and  
D. W. Chen (2014).Optimization design for 
aerodynamic elements of high speed trains. 
Computers & Fluids 95, 56-73. 

Zhang, L., J. Y. Zhang, T. Li and Y. D. Zhang 
(2017). Multi-objective aerodynamic 
optimization design of high-speed train head 
shape. Journal of Zhejiang University-Science 
A 18(11), 841-854. 

Zhang, L. (2017). Study on Aerodynamic Shape 
Optimization Design of High-Speed Trains. Ph. 
D. Thesis, Southwest Jiaotong University. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


