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ABSTRACT 

Acoustic streaming, as an important phenomenon, is used in a wide variety of applications such as drug 
delivery and the removal of plaque in the vein surfaces. The purpose of the current paper is to investigate the 
effect of blood, as a non-Newtonian fluid, on acoustic streaming. The governing non-linear differential 
equations, mass, momentum, and state equations for non-stationary fluid using second-order perturbation 
theory, are coupled and solved. An in house computational fluid dynamics (CFD) code based on the finite 
element method is utilized. Results show that viscosity is highly dependent on shear stresses, about 60%. In 
addition viscosity affects the acoustic streaming velocity field. 
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NOMENCLATURE 

p pressure  velocity 
T matrix transpose  density 
t time  angular velocity 

 viscosity  shear rate 
 

1. INTRODUCTION 

Ultrasonic waves have a variety of applications 
such as the diagnosis and treatment of diseases, 
drug delivery, and cell separation. As Ultrasonic 
waves pass through objects including tissues and 
organs. When used in tissues and organs, it leads to 
chemical, physical and biological changes. When 
ultrasonic waves pass through human body, heat, 
bubbles, stress and vibration areproduced; this can 
be beneficial or harmful. 

To reduce the hazard to health and improve the 
efficiency of acoustic wave, many researches have 
been conducted to manage the applied ultrasonic 
field. "Solovchuk et al. (2012)" investigated the 
influence of blood vessels on temperature 
distribution during high-intensity focused 
ultrasound (HIFU) ablation of liver tumors. They 
coupled a three-dimensional acoustics-thermal-fluid 
model based on the linear Westervelt, bioheat and 
Navier–Stokes equations and solved to compute the 

temperature field in the hepatic cancerous region. 
Also Solovchuk et al. showed that acoustic 
streaming significantly change the temperature in a 
large blood vessel. "Bernassau et al. (2014)" 
assessed the acoustic streaming in a multi-
transducer quasi- standing wave acoustic particle 
manipulation device. They experimentally observed 
that the streaming takes the form of two main 
vortices that have their highest velocity in the 
region where the standing wave is established. 
Bernassau et al. developed a finite element model 
that agrees with experimental results. They showed 
that the Reynolds stresses, that give rise to the fluid 
motion, are strongest in the high velocity region. 
The effects of temperature dependence of viscosity 
and density on the acoustic radiation force and the 
boundary-driven acoustic streaming in 
microchannel acousto fluidics investigated by 
"Muller and Bruus (2014)". They calculated the 
acoustic streaming slip velocity for the bulk flow 
for the case of an ultrasound wave scattering on a 
compressible, spherical particle suspended in a 
viscous, thermal conducting fluid. Muller and Bruus 
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entire channel is depicted in Fig 2. As shown wall 
shear stress for Newtonian and non-Newtonian fluid 
are 36 (1/s) and 41 (1/s), respectively. These values 
of viscosity justify our assumption of blood as non-
Newtonian fluid in selected channel.  

 
Fig. 2. Viscosity as a function of shear rate. 

Figures 3 and 4 depict the zero-order x-velocities 
profiles at vertical and horizontal sections 
respectively. As shown, the trend for the velocity of 
the Newtonian and non-Newtonian fluid is the 
same. However the magnitude of Newtonian fluid 
velocity is higher than non-Newtonian fluid. This is 
due to the shear rate value which is less than 100. 
Also non-Newtonian model reaches its fully 
developed velocity at a point closer to entrance.  

 
Fig. 3. x-velocity profile at vertical section. 

 
Fig. 4. x-velocity profile at middle height of 

channel. 

First-order x-velocity profile at the middle height of 
the channel is depicted in Fig. 5. As shown, again, 
the trend for Newtonian and non-Newtonian fluid is 
the same for first order perturbations velocity.  

Figure 6 shows the second-order velocity of the 
Newtonian model. Again, the velocity trend for 
both fluids are same, while the velocity magnitude 

 
Fig. 5. First order x-velocity velocity profile at 

middle height. 

of Newtonian is more than twice of the non-
velocity, acoustic streaming velocity, is highly 
dependent on the viscosity model of the blood. 
Increasing ultrasonic frequency or intensity, 
amplifies acoustic streaming velocity. 

 
Fig. 6. Second order x-velocity velocity profile at 

middle height. 

Newtonian fluid. As expected the second-orderThe 
total x-velocity profile at the middle height of the 
channel is shown in Fig.7. 

 
Fig. 7. Total x-velocity profile at middle height. 

As shown by applying acoustic field the steady-
state velocity is changed to a pulsatile velocity 
profile.  

Also the 750 KHz acoustic field causes a sinusoidal 
velocity just as like as a non-steady pulsatile flow 
by 180 (bpm), in comparison with blood velocity 
before applying acoustic field as shown in Fig.4. 
As blood flow passes the vessel at mean velocity of 
6 (mm/s) and one oscillation in velocity occurs at 
each 2 (mm), the 180 beats a minute is reached. It 
means that at 1 second, blood velocity oscillates 3 
times. 

Figures 8 and 9 depict the acoustic streaming inner 
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and outer boundary layer for non-Newtonian and 
Newtonian viscosity model respectively. 

 
Fig. 8. Acoustic streaming inner and outer 

boundary layer for non-Newtonian viscosity 
model. 

 
Fig. 9. Acoustic streaming inner and outer 

boundary layer for Newtonian viscosity model. 

A very important difference between Newtonian 
and non-Newtonian fluids in acoustic streaming 
velocity contours is observed. As Fig. 8 shows, 
outer boundary layer in non-Newtonian case has 
two split cores. These cores seem to be separated 
from each other by flow exited the channel. While 
for Newtonian one, as seen in fig 9, only one core at 
outer boundary layer is distinguished.  

3. CONCLUSIONS 

Effects of non-Newtonian viscosity, power law 
model on non-linear acoustofluidics are presented. 
A second-order perturbation theory is utilized. The 
following results are obtained: 

1. Power-law viscosity model changes the 
zero and first order x-velocities less than 
about 7% and 10%, respectively. 

2. It is shown that power-law model reduce 
the x-velocity by 60%. 

3. As shown zero and first order velocities 
for power-law and constant viscosity 
model are the same while a major 
difference in velocity pattern are observed 
by second-order velocity.  
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