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ABSTRACT 

In explosion-structure interaction problems, an accurate prediction of blast loading remains a hard challenge. 
The reflected overpressures around a complex structure, such as a building with an apse and an atrium are 
almost always unpredictable so that experiments and numerical simulations may be the only possibilities to 
evaluate the threat of an industrial explosion. Well instrumented blast experimental studies are first carried 
out at small scale on a rigid specimen with a variable incidence angle. The main objective is to observe and 
quantify the regular and irregular reflections and the diffractions of a blast wave on a real structure. In 
parallel, numerical simulations are performed with a home-made eulerian CFD code. The comparison with 
experimental results permits to discuss the capabilities and limitations of numerical blast predictions. 
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NOMENCLATURE 

Parameters Greek letters
R distance to the charge  λ energetically scaled distance  
d diameter of the charge  γ heat capacity ratio 
E energy of the charge  Superscripts
k scale factor + positive
P pressure  -  negative
ΔP  overpressure  Subscripts
I impulse  0 ambient
t Phase duration  i Incident
ta time of Arrival  r Reflected
Cr reflection coefficient   

 
 

1. Introduction 

Many industrial sites have the potential to cause 
major accidents because of the presence of a large 
amount of dangerous substances, such as oil 
products, natural gas, chemicals or 
explosives.Despite of considerable efforts towards 
safety many serious incidents have occurred these 
ten last years and renewed attention on such major 
hazards risks. Three recent explosions are taken as 
examples.Buncefield (United Kingdom) 2005 (HSE 
2011, Atkinson and Cusco 2011), Jaipur (India) 
2009(MoPNG 2011, Sharma et al. 2011) and 

Bayamon (Puerto Rico 2009 (CSB 2011) shared the 
characteristics of a violent blast generated by the 
ignition of a vapor cloud resulting from the spillage 
of a large amount of gasoline. In all cases, 
widespread structural damage to adjoining or 
off-site industrial units or commercial and 
residential buildings were observed. In these three 
different situations the collected evidences indicate 
that a deflagration to detonation transition is the 
most likely scenario. 

If the main objective remains to prevent such events, 
focus is also put on mitigating the consequences 
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and first and foremost limiting loss of life and 
injuries to occupants. In the case of buildings 
provided on a major hazard sites (e.g. chemical and 
petrochemical processing and storage plant) the 
ability to withstand the effects of blast loading is of 
utmost importance. Indeed, these buildings may not 
only serve to simply protect the plant and control 
systems from weather conditions, or only to be 
provided as accommodation for shelter. More 
importantly,they may be part of the overall 
containment strategy i.e. to prevent, control or 
mitigate major accident events. 

In order to evaluate the most effective measures to 
protect occupants in a building, an analysis of the 
blast resistance of various structural components 
must be performed. A key factor of this evaluation 
is an accurate description of the blast loading. 
Simple approximate procedures based on published 
analytical or empirical relationships are usually 
used due to their intrinsic advantages such as speed 
and simplicity. The most often mentioned 
publications for simplified analysis are Baker et al. 
1983, Kinney and Graham, 1985, and very 
extensively UFC-340-02, 2008(formerly 
TM5-1300). However, even when the building is 
assumed as a plain rectangular target, the 
interaction between the blast wave and the target 
remains a complex phenomenon: 

 As the incident blast wave encounters a 
structure in its path, it is reflected on flat 
surfaces with amplified overpressures. The 
reflection is normal when the shock front is 
parallel to the plane of the surface and oblique 
when there is an incident angle. In this later 
case the reflection is classified as either regular 
or irregular when the reflectedwave overtakes 
the incident one and merges with it. 

 As the blast wave is progressively travelling 
around the structure, it is also diffracted at 
corners in a complex manner, resulting in a 
decrease of the overpressures in these regions.  

 Some elevations of the structure can experience 
a positive overpressure while others can 
simultaneously be subjected to a suction phase. 

As a consequence, it is still not possible to 
analytically predict all the phenomena taking place 
during the interaction between the blast and a 
structure with a more complex profile such as a real 
building.  

Advanced numerical methods such as 
computational fluid dynamics are required as an 
alternative to get a precise description of the blast 
loading for complex structures. The disadvantage is 
the computer resources required, which means that 
very few 3D simulations are accurately performed. 
There are several reasons for the limitation of 
quality of blast loading numerical estimations: 

 Grid cell size: the impact of a mesh refinement 
was clearly established for example by Fairlie et 
al. 2000 and Catlin et al. 2001. 

 Approximations in the representations of the 
initial blast environment: most of the 
calculations,avoiding the computationally 

expensive reactive-flow description for the 
combustion process, are based on a TNT 
equivalent method. But this method can give 
inaccurate results for vapor cloud explosions 
due to the disparity between the pressure and 
impulse compared with solid high explosives 
(Dusenberry 2010). 

 The quality of used algorithms: discretization 
on Cartesian mesh, convergence rate, order of 
accuracy. 

The main objective of this study is to evaluate the 
load magnitude and distribution on a real building 
when subjected to a global explosion. Well 
instrumented reduced-scale experiments are 
performed on a blast table where the blast wave is 
generated by the detonation of a gaseous mixture. 
These benchmark results are then used to assess the 
possibility offered by a single computer to 
numerically reproduce the main experimental 
observations. 

2. Experimentalprocess 

2.1. Proposed reference case 

The building chosen is representative of an office 
located on an industrial site (Fig.1). It is 51 meters 
long, 18 meters large and 15.5 meters tall. This 
typical low-rise office building presents a complex 
profile due to the presence of an atrium with an 
apse and a hemispherical dome, a parapet 
surrounding the roof, and a plant room and stair 
towers at the rooftops. 

 

Fig. 1. Architect’s impression of the building. 

From the study of the consequences of a few typical 
industrial accidents involving detonation of 
condensed material (AZF, France 2001), detonation 
of a vapour cloud (Port Hudson, USA 1970), 
explosion of a vapour cloud (Buncefield, UK, 2005) 
or a BLEVE (Dagneux, France, 2007), it has been 
identified by INERIS (INERIS, 2014) that an 
incident overpressure between 140 hPa and 200 hPa 
could lead to significant structural damages on a 
structure. 

2.2. Reduced scale experiments 

Since blast experiments at real scale are 
prohibitively expensive and critical from a safety 
point a view, it is usual to perform small scale 
experiments in a secured experimental research 
laboratory. The experimental setup, presented in a 
previous work (Duong et al., 2012) consists of an 
instrumented blast table composed of four large 
plane panels (132cmx400cm). Shock waves are 
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- detonation phase where the explosive material 
ignites and the burn front expands in space; 

- propagation phase where the blast waves 
propagates in the surrounding medium freely; 

- interaction phase when the blast waves 
impinges the structure. 

The explicit modeling of the detonation event is 
required in the near-field since the overpressure 
distribution is significantly modified by the shape of 
the charge and the real point of detonation in the 
charge. In the proposed experiments, the blast wave 
results from a hemispherical surface burst and the 
target is in far-field regarding the distance between 
the target and the point of detonation. As a 
consequence, the calculation of the fields variable 
remote from the source of detonation can be done 
by replacing the explosive by a hemispherical 
pressurized balloon. This approach is based on the 
initial work performed by (Brode, 1955). In this 
approach the boundary between the compressed air 
and the free-air can be seen as a fictitious 
membrane equivalent with the diaphragm in a 
shock-tube problem. The initial balloon parameters 
can be adjusted so that the pressure-time function 
resulting from the release of the compressed balloon 
can match the curve of an air blast wave (Catlin et 
al., 2001; Larcher, 2010). 

The hemispherical surface-burst is equivalent to a 
spherical free-air burst so that before the blast wave 
interacts with an obstacle the problem presents a 
spherical symmetry. This spherical symmetry 
property justifies the study of a one-dimensional 
problem to be solved during the propagation phase. 
The output of the1D spherical solution is then 
remapped into the 3D domain with the building in 
it. 

The numerical simulations conducted at Orleans 
University used a mesh generated with 
CARTFLOW (Deisteret al. 2003) and research 
solver METAS(Benselamaet al., 2009) developed at 
the University of Valenciennes. The resolution is 
based on the traditional upwind scheme and a 
two-stage explicit time integration technique, which 
gives an accuracy of the second-order in both space 
and time. In order to prevent numerical oscillations, 
which may occur in regions with strong gradients, 
the total variation diminishing minmod limiter was 
used. 

As explained, the simulations were performed in 
two stages with the remapping of the results 
between each stage. A mesh refinement study was 
made, based on a criteria developed by (Catlin et al., 
2001).  

In this case the detonation was supposed to be 
located in a symmetry plane passing in the center of 
the building to halve the size of the computational 
mesh (Fig.4). 

The mesh generated in 1D is fine enough - 0.1 mm - 
to achieve convergence in both impulse and 
overpressure. The same refinement could not be 
achieved in 3D so that convergence is only ensured 
in impulse and the minimal mesh size near the 

model is 2.8 mm, for a total of 10 million cells. The 
3D simulation took about one month to run on a 2.7 
GHz processor workstation with 128 GB of RAM. 

 

 

Fig. 4. Structure embedded in a cartesian mesh. 

4. Results and discussions 

4.1. Repeatability and signal post 
processing 

In order to make sure that our experiments are solid 
and reliable, each configuration has been tested at 
least three times. Fig. 5 shows the pressure–time 
history and impulse-time curves obtained at sensor 
C23. This sensor is located directly in front of the 
center of detonation before any rotation of the 
model (Fig. 3 and Fig. 10). The impulse at current 
time tc is calculated form the pressure-time history 
as the integral of pressure from the time of shock 
arrival to the current time tc. Fig.5 reveals that the 
discrepancies between the different shots are less 
than 5%.  

 

Fig. 5. Overpressure and impulse time histories 
showing the repeatability of the measures 

(reference sensor C23) 

With the rotation of the model and the high number 
of sensors, more than 2000 pressures signals were 
to be analyzed.The more varying parameters are the 
overpressure (4.15%), then the time of arrival 
(1.64%), then the impulse (0.96%). 

However, for some experiments, high frequency 
noise was recorded (Fig.6). The comparison with a 
non-noisy record shows that the impulse value is 
not changed. Anyway, to avoid an inaccurate 
overpressure prediction, the decision was taken to 
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Fig. 14. Reflection coefficient, furthest column 
behind the atrium 

For all the vertically aligned sensors located in the 
lighted area, we can notice an increase of the 
reflection coefficient between 50° and 60° (Fig.11 
and Fig. 12). As already mentioned, this sharp 
variation can be associated with the Mach reflection 
(Fig. 7). It must be emphasized that this effect for 
low incident overpressure has been open to debate 
and is still considered as negligible (TNO, 2005). 
Caution should be taken when interpreting the 
results of reflected overpressures for the sensors the 
closest to the atrium (Fig. 12). The peak reflected 
overpressure - almost three times the incident one– 
is interpreted as the combination of two 
concomitant effects: Mach reflection and 
recombination of two reflected shock waves (on the 
atrium and on the building). Additional tests need to 
be performed to assess the validity of this analysis. 

On the contrary, Fig. 13 and Fig. 14 show an 
important decrease of the reflection coefficient 
behind the atrium.  

This is explained by the rotation of the model, 
which put sensors in the shadowed area behind the 
atrium. A limit value close to 0.6 can be observed 
for the column the closest to the atrium (C7, C14, 
and C21). 

As the vertically aligned sensors are at a greatest 
distance from the atrium, the limit value approaches 
1 (Fig. 14) as if the effect of the diffraction of the 
shockwave tends to vanish. 

The reflection coefficients on the rear wall (when 
the model is not rotated) or the side walls (when the 
model is rotated 90 degrees) are not different with a 
mean value close to 0.5. Otherwise, the curves are 
similar to the ones presented in Fig. 11 and Fig. 12.  

Reflection coefficients on the roof show different 
values (Fig.15). Most of the time, they have a value 
within the range 0.4 to 0.6. This means that the 
overpressure is quite different from the side on 
value. This discrepancy is explained by: 

-  the fact that in our experiments the shockwave 
is spherical and not supposed to be planar; 

-  the presence of a parapet wich generates ad 
iffraction of the shockwave. 

The three sharp increases in reflection coefficients 

observed in Fig. 15 for different angular for sensors 
13a and 18a are explained by reflections of the 

 

Fig. 15. Reflection coefficient on the roof 

diffracted shockwave on parapet, atrium and plant 
room. Globally, it can be considered that the 
parapet plays the role of a protective barrier. 

 

Fig. 16. Reflection coefficient on the atrium 

The comparison of the numerical and experimental 
reflection coefficients (Fig.11 to 15.) shows a good 
agreement in all situations. This trend should be 
confirmed by ongoing numerical simulations with a 
rotated model in order to numerically quantify the 
Mach reflection. 

This good agreement is confirmed by a comparison 
of pressure-time histories of sensors located all 
around the building. The discrepencies between 
numerical and experimental data are less than 10% 
in term of overpressure and less than 5% in term of 
time of arrival.  

 

Fig. 17. Position of the sensor compared with the 
numerical results
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Fig. 18. Comparison for the reference sensor 

 

Fig. 19. Comparison in front of the atrium 

 

Fig. 20. Comparison behind the atrium 

 

Fig. 21. Comparison on the roof 

 

Fig. 22. Comparison on the back 

 

Fig. 23. Comparison in a corner 

Because of the mesh refinement some multiples 
reflections may be overlooked numerically but the 
reflected coefficient is good thanks to the 
conservative impulse (Fig. 23). 

5. CONCLUSION 

In this paper, we experimentally and numerically 
studied the reflection of a shockwave on a complex 
building. We ascertain the possibility of an eulerian 
code to correctly predict the parameters of an 
overpressure located in the shadowed area. 
Especially, the time related parameters matches the 
experimental results thank to the use of a 
compressed balloon method using perfect gas 

equation of state. These results can be applied to 
similar situation, for any materials, and gives a 
good alternative to the use of TNT equivalent and 
JWL equation of state. 

Mach reflection of blast waves with low 
overpressures should be investigated. 
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