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ABSTRACT 

In this work, a numerical study of forced convection of an incompressible fluid through a cylinder filled with 
a porous medium is carried out by taking into account the heat due to viscous dissipation. Dimensionless 
equations of the problem are solved numerically. The energy transport bidimensional model is based on the 
local non-thermal equilibrium assumption with consideration of viscous dissipation effects. The influence of 
various parameters like Darcy number, Reynolds number, Forchhheimer coefficient and Eckert number on 
temperature fields is investigated and examined throughout this paper. It is found that all these parameters 
have significant influence on thermal performance of the packed bed within certain conditions. 
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NOMENCLATURE 

A-1 form factor V* dimensionless velocity 
Bi Biot number z axial component     
Cp specific heat at constant pressure Greek symbols 
D cylinder diameter     ε porosity 
Da Darcy number η dimensionless radial coordinate 
Ec Eckert number θ dimensionless temperature 

F Forchheimer coefficient,
 3

1.75

150
F


  λ thermal conductivity      

H heat transfer coefficient  1 μ dynamic viscosity    

Hfs iInterfacial heat transfer coefficient    ξ dimensionless axial coordinate 

K 

permeability of the porous medium  
3 2

2150(1 )

pd
K







    

ρ density     

L cylinder height     τ dimensionless time 
P* dimensionless fluid pressure � dimensionless viscous dissipation 
Pr Prandtl number Subscripts 
r radial component     eff fluid effective
Re Reynolds number efs solid effective 
Rk thermal conductivity ratio f fluid 
s specific interfacial area      inlet 
T temperature     s solid 
U velocity     
 

1. INTRODUCTION 

The problem of heat transfer convection through 
porous media is frequently encountered in many 

practical fields of science and engineering, such as 
thermal insulation in buildings, packed bed reactors, 
sensible heat-storage beds, chemical and petroleum 
engineering, thermal management of electronic 
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cooling, improvement of performance of heat 
transfer systems and others. Over the last several 
decades, heat transfer in conducts fully and partially 
filled with porous media has been investigated 
experimentally, theoretically and numerically by 
many researchers. A comprehensive review of the 
subject was given by Nield et al. (1999). 
Ranganathann et al. (1984) and Chen et al. (1996) 
have studied the combined free and forced 
convection for vertical plates embedded in porous 
media. Kuznetzov et al. (2006) have used a 
perturbation approach to obtain analytical 
expressions of the velocity, temperature, and 
transient Nusselt number for the problem of forced 
convection with laminar pulsating flow in a 
saturated porous channel or tube. The porosity 
variation and the viscous dissipation effects were 
neglected in this study. Yee et al. (2002) have 
treated the viscous dissipation effects on forced 
convection heat transfer in cylindrical packed beds 
taking into account the porosity variation. Local 
thermal equilibrium was adopted and special 
emphasis was given to the heat generation due to 
viscous dissipation in forced convection liquid flow. 
It was found that, in the case of the adiabatic 
boundary, the effect of internal heat generation 
associated with viscous dissipation increases with 
the radius of the packed column to the particle 
diameter ratio and Reynolds number. An analytical 
study on fully developed forced convection in a 
homogeneous porous medium is developed by 
Hung et al. (2009). The temperature distributions in 
the transverse direction with the inclusion of 
frictional heating due to viscous dissipation are 
obtained, with variations of Darcy number and 
Brinkman number. The frictional heating effect on 
the temperature distributions is investigated and 
analyzed for both heating and cooling processes. 
Variations of Nusselt number as a function of Darcy 
number and Brinkman number are examined, and 
the deviations of the Nusselt numbers with that of 
the model without incorporating the effect of 
frictional heating are presented in a contour 
deviation map for a more holistic comparison. 

Chen et al. (2011) have studied the effects of 
viscous dissipation on the temperature profiles for a 
fully developed forced convection flow between 
two parallel plates with a constant heat flux 
boundary condition. A two-equation model that 
includes viscous dissipation in the fluid phase is 
solved analytically and exact solutions for the 
temperature fields are obtained. Based on the 
solutions, the effects of several parameters on the 
transverse temperature profiles and Nusselt number 
are studied. The same authors (2011b) extended this 
study by including thermally developing effects. 
They found that the local heat transfer coefficients 
depend strongly on the relative thermal resistance to 
fluid and solid conduction and to a lesser extent on 
Brinkman number and porous medium shape factor. 

Furthermore, there are controversial issues as 
reported in the literature by (Tso and Mahulikar 
1998; Kim et al. 2000; Lee and Vafai 1999; Marafie 
and Vafai 2001; Al-Hadhrami et al. 2003; Nield 
2000b, 2002; Amiri and Vafai 1994) on using 

which model to a better modelling and concretizing 
of heat transfer behavior in packed beds of porous 
media. In fact, there is not yet agreement between 
researchers on the appropriate form of the 
dissipation function. The viscous dissipation effect 
on forced convection in a porous saturated circular 
tube with an isoflux wall is investigated on the basis 
of the Brinkman flow model by Hooman et al. 
(2006). The case of a semi-infinite flat plate 
embedded in a saturated porous medium where the 
fluid is induced to move upwards by natural 
convection and during which viscous dissipation is 
considered is investigated by Amgad et al. (2013). 
Three terms were considered to contribute to 
viscous dissipation, namely Darcy’s term, 
Forchheimer’s term and Al-Hadhrami’s term. The 
governing dimensional set of equations take into 
account the influence of the Darcy, Gebhart and 
Rayleigh numbers and the Forchheimer term on the 
temperature and velocity distributions. It is found 
that the irreversible process of transforming the 
kinetic energy of the moving fluid to viscous 
dissipation is very much influenced by the relative 
magnitude of these dimensionless parameters. Nield 
et al. (2004) performed the modelling of viscous 
dissipation in a porous medium saturated by an 
incompressible fluid and discussed the cases of 
Darcy, Forchheimer and Brinkman models. It has 
been demonstrated for the Forchheimer model that 
the viscous dissipation is represented by a term that 
is apparently independent of the viscosity, and this 
paradox is resolved. Finally, scale analysis is 
employed to estimate the importance of viscous 
dissipation in various circumstances. Transient 
hydrodynamic and heat transfer behavior of 
Newtonian fluid flow in vertical parallel-plate 
channels partially filled with a porous medium has 
been investigated numerically by Mastaneh et al. 
(2012). The influences of macroscopic local inertial 
term and the viscous heating due to the viscous 
dissipation were taken into account in the 
momentum equations of the porous region and the 
thermal energy equations, respectively. Moreover, 
Forchheimer-Brinkman extended Darcy model was 
used to model fluid flow in the porous region. The 
effects of the porous medium macroscopic inertial 
term and the viscous dissipation were investigated 
carefully. The predicted results clearly indicate that 
neglecting the inertial effect in high permeability 
porous media or high velocity flows can alter 
substantially the flow and heat transfer 
characteristics. An analytical study on fully 
developed forced convection in a homogeneous 
porous medium is reported by Hung et al. (2008). 
Incorporating the internal heating effect of viscous 
dissipation, closed form solutions of the 
temperature distributions in the transverse direction 
are obtained and analyzed for both heating and 
cooling processes. Variations of Nusselt number as 
a function of Darcy number and Brinkman number 
and the existence of singularity in Nusselt number 
are also discussed. Many refinements have been 
made to the equations used to model single-phase 
fluid flow and heat transfer in a saturated porous 
medium, such as inertial effects, boundary friction 
and viscous dissipation. Also, additional effects 
such as those due to rotation or a magnetic field are 
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performed by Nield (2000).  

The aim of this paper is to study the effect of 
viscous dissipation on forced convection heat 
transfer inside a cylinder filled with a saturated 
porous medium based on the local non-thermal 
equilibrium assumption. In fact, in this study, the 
Forchheimer extended Darcy model is considered. 
Therefore, the viscous dissipation effects are 
included in the energy equation. In this context, 
efforts are focused on identifying the effects of 
different dimensionless numbers on  heat transfer, 
namely the Darcy number Da, the Reynolds number 
Re, the inertial parameter F, and the Eckert number 
Ec. We investigate under which conditions the 
viscous dissipation terms should be considered and 
when their effects have a significant impact on heat 
transfers in porous media. 

2. STATEMENT OF THE PROBLEM 

In this study, heat transfer characteristics 
accounting for viscous dissipation within a cylinder 
filled with a porous medium as shown in (Fig. 1) is 
carried out. It is assumed that the circulating 
incompressible fluid is at forced convection flow 
and initially at uniform temperature and velocity. 
Furthermore, the fluid is considered Newtonian 
with constant physical properties. The porous 
medium is considered to be homogeneous, isotropic 
and in non-local thermal equilibrium with the 
saturated fluid. The cylinder wall is adiabatic. The 
effects of the different terms namely Darcy’s term 
and Forchheimer’s term, contributing to viscous 
dissipations in saturated porous media are 
performed and investigated. The influence of the 
particular dimensionless numbers namely Reynolds 
number, Darcy number, Forchhheimer coefficient 
and Eckert number is studied in details. 

 
Fig.1. Schematic diagram of the problem and the 

coordinates system. 

3. ANALYSIS 

Considering (Fig. 1), the equations of motion and 
the thermal energy equations for an unsteady-state 
forced convection flow through a cylinder filled 
with a porous medium can be expressed as: 

3.1 Governing Equations 

The governing equations are non-dimensionalized 
to provide the equations with groupings of numbers 
permitting the determination of the dominating 

effects in the handled phenomenon. Consequently, 
using the dimensionless parameters, the continuity 
and momentum dimensionless equations are 
expressed by:  
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The dimensionless unsteady-state thermal energy 
equations for the fluid phase and the solid matrix 
are expressed respectively by: 
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Where � is the contribution due to viscous 
dissipation that works as a distributed internal heat 
generation source. It is currently expressed as:  
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Thus, as can be seen immediately for uniform 
forced convection flows, which is the case here, the 
energy balance equations (3) and (4) will be 
associated to equation (5) to deal with the effect of 
viscous dissipation. From these equations, we 
notice that the dimensionless temperature 
distribution is dependent on pertinent non-
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dimensional parameters which will be analyzed in 
the following sections. 

Moreover, theses equations are subject to the 
following dimensionless initial and boundary 
conditions: 

Initially, we have:  

 0, , 0f                                                     (6) 

 0, , 0s                                                     (7) 

              

The boundary conditions in dimensionless forms 
are: 
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Where A-1 = D/L is the form factor; L is the 
cylinder height. 

Ho and Hs are the solid exchange coefficients in the 
entrance and at the exit of the cylinder, respectively. 
Hf is the fluid exchange coefficient at the exit of the 
cylinder. 

4.  SOLUTION PROCEDURE 

Computational technique for the resolution of the 
considered equations along with the imposed 
boundary conditions is performed by using finite 
differences method for flow equations and finite 
volumes method for heat transfer equations based 
on a uniform grid structure in the computational 
space. The latter consists in defining a network of 
points on the considered medium and volumes of 
control around each point. The equations are 
integrated on these volumes. The fully implicit 
scheme is used for the time derivatives. Line by line 
iterative method is used to solve the obtained 
algebraic equations system. The obtained 
discretized equations are numerically solved and 
then results are discussed. 

5.  RESULTS AND DISCUSSION 

The resolution of the differential set of equations 
depends on the dimensionless variables namely, the 
Reynolds number Re, the Prandtl number Pr, the 
Biot number Bi, the Darcy number Da and the 
Eckert number Ec. The followings are the ranges 
considered in this study for the different 

dimensionless groups: 500 ≤ Re <1E+5, 1E-6 ≤ 
Da≤ 1E-9, 1E-9≤ Ec ≤1E-5, 0 ≤ F ≤ 4.5, 0.4 ≤ Pr ≤ 
2 and 2E+3 ≤ Bi ≤ 4E+4. The effects of each one of 
these dimensionless parameters are investigated by 
fixing all other parameters values. 

5.1 Effects of Ec/ Re number 

As the viscous dissipation due to Darcy’s term is 
expressed within a specific number: Ec/Re, the 
influence of this term for the temperature distribution 
is investigated and analyzed. In fact, Reynolds 
number describes the relative intensity of the inertial 
forces compared with viscous forces. Thus, higher 
values of Re number imply higher intensity of inertial 
forces and vice versa, while the Eckert number is 
useful in determining the relative importance in a 
heat transfer situation of the kinetic energy of a flow. 
It is the ratio of the kinetic energy to the enthalpy 
driving force for heat transfer. We consider 2E-12 ≤ 
Ec/Re ≤ 2E-10. The temperature distributions for the 
various entertained values are plotted in (Fig. 2). The 
other parameters were set as follows: Da =1E-9, F 
=4.5, Bi =20000, Pr =1.2 and K =0.01. 

Figure 2 shows the effects of Ec/Re ratio on the 
profiles of the non-dimensional temperature. It is 
observed that the temperature increases with time 
with a maximum attained at τ = 1200 and finally 
remains constant. It is also observed that the 
temperature increases with increasing values of the 
defined ratio. We can even notice that, for Ec/Re < 
5.E-11, there is no contribution of the viscous 
dissipation terms on the heat transfer. Such 
contribution is, indeed, really significant for Ec/Re 
≥1E-10. Therefore, as Ec/Re increases, the generated 
viscous dissipation increases. This may be explained 
by the fact that this term is multiplied by the fluid 
friction term in the energy equation leading to large 
kinetic energy available to be converted to heat 
through the viscous dissipation.  

Moreover, the temperature distribution across the 
packed bed is illustrated in (Fig. 3). The effects of 
viscous dissipation terms for Ec/Re  = 2E-10, Da = 
1E-9, F = 4.5, Pr = 1.2, K = 0.01 and Bi = 20000 are 
studied. It is obvious that the frictional heating is 
much important as the flow passes through the porous 
media. Thus, the heat transfer due to frictional 
heating temperature is increased with the increase of 
the porous media’s height, leading to more 
pronounced heat generation as ξ further increases.   

 

 
Fig. 2. Dimensionless fluid temperature profiles 
at the bed exit for Da=1E-9, F=4.5 at different 

Ec/Re. 
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Fig. 3. Dimensionless fluid temperature profiles 

across the bed for Ec/Re =2.E-10, Da=1E-9, 
F=4.5. 

5.2 Effects of Darcy’s number 

In this section, the effect of Darcy number on 
viscous dissipation is investigated. We consider 1E-
9 1 6Da E   . Whithin this range, viscous 
dissipation has shown to be significantly affected by 
the change of Da.   (Fig. 4) shows the outlet 
temperature distribution for various values of Da 
with the other parameters set at Ec/Re  = 2E-10, F = 
4.5, Pr = 1.2, K = 0.01 and Bi = 20000. It is clear 
from this figure that the temperature increases with 
time. It depicts also that the Darcy number decrease 
enhances the effect of the fluid friction resulting in 
higher generated viscous dissipation. It is absolutely 
clear that the viscous dissipation generation is 
getting dramatically pronounced for small Darcy 
number, implying that the internal heating effect 
intensifies with decreasing Da. Indeed, as Darcy 
decreases, so as the permeability decreases, the 
viscous dissipation increases due to high restrictive 
medium. Therefore, it can be concluded that the 
contribution of Darcy becomes much more 
considerable for Da ≤1E-8, i.e., lower values of 
Darcy number lead to smaller convection in a more 
restrictive medium. Therefore, the internal heat 
generation increases and consequently, the fluid 
temperature increase becomes higher. On the 
opposite side, it follows that larger values of Darcy 
reveals that the permeability is large (approaching 
clear fluid scenario), and then, the internal heat 
generation is much less intense, even insignificant. 
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Fig. 4. Dimensionless fluid temperature profiles 
at bed exit for Ec/Re =2E-10, F=4.5 at different 

Da. 

5.3 Effects of the non-Darcy parameter 

The non-Darcy parameter F defines, generally, the 
structural properties of the saturated porous medium 
continuum. It equals the ratio of pressure drop 
caused by gas-solid interactions to that by viscous 
dissipation. In this study, temperature distributions 
for various values of F at Ec/Re = 2E-10, Da = 1E-
9, Pr = 1.2, K = 0.01 and Bi = 20000 are plotted in 
(Fig. 5). The different values undertaken, here, are 
0, 0.5, 1.5, 2.5 and 4.5. From this figure, it is clear 
that the temperature distribution keep the same 
profiles shown previously, and, manifest a 
progressive increase in the generated heat with the 
increase of F. Higher values of F imply higher drag 
forces. Otherwise, the inertial effect (with 
increasing F) intensifies resistance to flow (Lee and 
Vafai, 1999) which further increases the internal 
heat generation and temperature.  
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Fig. 5. Dimensionless fluid temperature profiles 

at bed exit for Ec/Re =2E-10, Da=1E-9 at 
different F. 

5.4 Effects of the Porosity 

The influence of the solid matrix porosity, as a 
basic characteristic of a porous medium, on the 
convection heat transfer is presented in (Fig. 6). The 
study is performed for three different values of 
porosity, namely 0.1, 0.2 and 0.3. It is obvious that 
the distribution of the outlet dimensionless 
temperature is considerably influenced by the bed 
porosity. A comparison of the three undertaken bed 
porosities effects on the outlet non-dimensional 
temperature reveals an increase of 10.8 %, 2.4% 
and 0.9% respectively, of fluid outlet temperature 
with regard to the inlet one. Therefore, it is clear 
that the viscous dissipation is more significant as 
the porosity is lower. 
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Fig. 6. The effects of the porosity on heat 
transfer distribution for  Ec/Re =2E-10, F=4.5, 

Da=1E-9. 
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6.  CONCLUSIONS 

This study has successfully determined the 
temperature profiles for forced convective heat 
transfer in a cylinder filled with a porous medium 
when taking into account the effects of viscous 
dissipation and local non-thermal equilibrium 
between solid and fluid phases. The effect of 
various parameters like Darcy number, Reynolds 
number, Biot number, Eckert number and 
Forchheimer parameter were investigated. The main 
findings are: 

 Higher Ec/Re  values lead to high inertial 
forces, resulting in heat generation 
enhancement by frictional heat 
generation. 

 As Darcy decreases, the permeability 
decreases and the viscous dissipation 
increases due to high restrictive medium. 

 The temperature increases with an 
increase in inertial term, which acts as a 
flow resistance in the porous region. 
Otherwise, higher values of F imply 
higher drag forces and consequently 
higher heat generation due to viscous 
dissipation. 

Otherwise, it is obvious that the energy dissipation 
has a significant effect on the heat transfer 
characteristics that should be managed to enhance 
the performance of the processes. 

Moreover, it is found that the heat transfer in porous 
medium is dramatically influenced by the variation 
of the bed porosity. Indeed, it is clear that the 
viscous dissipation is more significant as the 
porosity is low. Reducing the porosity increases the 
interior tortuosity of the porous medium, leading to 
an increase of the friction factor.  
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