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ABSTRACT 

An experimental procedure with post processing to measure the temperature fields in premixed turbulent 
flame is presented. Temperature measurements were performed on turbulent premixed flame CH4-air with an 
equivalence ratio 0.6 1.3.    It utilizes the Fine Wire Compensated Thermometry (FWCT) technique. 
Using fine wire thermocouples for a temporal resolution of the measurement in high temperature requires 
specific treatment of these values. When the temperature of the environment is high, the radiant loss becomes 
important. The temperature measured by the hot junction is less than the environment temperature.  
These losses are estimated by one model, which make it possible to correct the difference between 
thermocouple temperature and gas temperature. Temperature measure by Fine Wire Compensated 
Thermocouple requires knowledge of flow velocity, the experimental conditions, the acquisition parameters 
(sampling frequency) for post-processing. In addition to this, the catalytic effect was incorporated to the final 
balance equation. The flame temperature and its fluctuations are analyzed by digital processing algorithms. 
Measurements validation made by the FWCT technique with optical measurement methods (Rayleigh 
scattering) shows a good agreement. 
 
Keywords: Experimental; Premixed combustion; Fine wire; Compensation; Thermometry. 

NOMENCLATURE 

c progress variable Tg gas temperature 

CD blocking coefficient t time 

Cp gas conductivity U,V radial and axial velocity 

D burner diameter U0 radial velocity on axis flow 

d wire diameter u', v’ radial and axial velocity fluctuation 

dh hole diameter of grid u'/U turbulence intensity 

dx unit length y, z vertical axis 

H flame heights ε gas emissivity 

M distance between holes λ wire conductivity 

R wire radius, burner radius  wire density 

T flame temperature τcv time constant 

TC wire temperature   

1. INTRODUCTION 

A better understanding of turbulent combustion is a 

capital interest in the field of reactive flows, by the 
complexity of the phenomena involved but also 
because widespread in our lives. Studies of 
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thermocouples is made with two wires having 
small-diameters (10 ÷ 500 μm) so as to increase the 
temporal and spatial resolutions. The wires are 
fixed on pins, which are made in the same alloy 
(Fig 3).  

2.2 Thermocouples in a Reacting Flow 

The use of thermocouples for a temporal resolution 
of the measurement in high temperatures requires 
specific treatment of these values. When the 
temperature of the environment is high, the loss of 
radiant heat from the wires becomes important. 
Thus, the temperature measured by the hot junction 
is less than the temperature of the environment. 
These heat losses have been estimated and 
discussed by many authors (Scradron and 
Warshawsky 1952; Kaskan 1956; Entwistle and 
Bradly 1961; Bradly and Matthews 1968; 
Paranthoën and Lecordier 1996). Their estimates by 
the proposed models can correct the difference 
between the thermocouple temperature and the 
realgas temperature. In addition, knowledge of the 
temporal resolution for the thermocouple signal is a 
very important parameter for fluctuating flows 
studies. The study presented by Lenz and Günter 
(1980) characterizes the temperature fluctuations up 
to 8 kHz in a turbulent diffusion flame, fueled by 
natural gas. Neveu et al. (1994) have coupled the 
measurement of temperature (2 kHz) and speed 
obtained simultaneously to correlate and examine 
the turbulent flow of a nonpremixed methane/air 
burner. Poireault (1997) studied a swirled burner in 
order to understand the influence of the swirl 
number on the flame stabilization. He characterized 
the areas of the three-dimensional flow through the 
modality of the probability function of the 
temperature signal. One can also note further 
investigations where the response time of the 
thermocouple is essential, in the methanol flames 
(Weckmann and Strong 1996), in the deflagration 
of solid combustion (Lu et al. 1995), or during the 
characterization of detonations (Rickman and 
Barker 1997), in studied of the thermal and dynamic 
fields in a domestic model boiler (Larass 2000). For 
obtaining a temporal resolution which is sufficient 
to study different flow types, several options were 
selected in the literature. Howard et al. (1995) used 
a thermocouple with a fine wire diameter small 
enough (d=51μm) to respond to temperature 
fluctuations in the flow. But to capture fluctuations 
beyond a few tens of Hertz, the thermocouple signal 
must be compensated for its inertia. Such 
compensation can be done 'in situ' by using an 
electronic compensator (Ballantyne and Moss 1977; 
Lockwood and Moneib 1981; Yoshida et al 1997), 
or by two identical thermocouples with two 
different diameters (Vachon et al. 1986; Mc Quay 
and Cannon 1996; Tagawa and Ohta 1997).  

It is also possible to apply digital offsetting by post-
processing (Hilaire et al. 1991; Neveu 1994 and 
Larass 2000). The FWCT (Fine Wire Compensed 
Thermocouple) technique, was chosen for this 
study. It has the advantages of allowing a better 
signal processing and the use of a single 
thermocouple. The use of this technique requires an 
accurate knowledge of heat transfer between the 

thermocouple and the flow, the physical 
characteristics of the materials of the probe used 
and its geometrical dimensions. 

2.3 Heat Exchange 

The theoretical study of heat transfer between a 
thermocouple and its environment was carried out 
by Scradron et al. (1952). The study takes into 
account signal compensation for the radiation losses 
and quantifying the response time of the 
thermocouple. There are also recent studies that 
discuss the theoretical approach of this method and 
show its advantages and its limit (Nina et al. 1985; 
Sbaibi et al. 1989; Neveu et al. 1994). The energy 
balance performed on a unit length dx of the 
thermocouple in a flow (Fig 3) is presented below. 
It is valid for an ideal welding of the fine wire of 
the thermocouple. This is considered as a 
cylindrical body. 

Accumulation (Acc) = Convection (A) + 
Conduction(B) + radiation (C) + Catalysis (D)  

Acc          A              B 

(1)  
2

2 2
2

4 4 4

2

2 2

c c
P g c f

c pa pa g g c cat

T T
r dx c r dxh T T r dx

t x

r dx T T T r dxQ

    

     

 
  

 
     

 

         C                     D 
Convection (A):  

The A term of energy balance characterizes the 
convection heat transfer between the thermocouple 
and its environment. It is assumed in all the 
measures that the flow temperature is constant over 
the entire wire length. This assumption is valid only 
in the two-dimensional flow and by placing the 
thermocouple wire in the axis of zero temperature 
gradient.  

Conduction Exchange (B): 

The temperature uniformity of the environment 
around the wire does not ensure on its own the 
temperature homogeneity along the wire.At high 
temperature, there is always a gradient between the 
wire and pins bearing the fine wire, as a result of 
radiation losses, which vary according the diameter.  
Bradley et al. (1986) have determined the length of 
wire for which the exchange between the 
conductive wire and its support no longer influences 
the measuring point(1 = 200 d). It can therefore be 
assumed that B part of the heat balance is negligible 
compared to the other terms. 

Radiative exchange (C): 

The C term represents the radiative exchange 
between the thermocouple and the environment, 
therefore gas flow and the burner walls. The 
methane/air flames producing mainly CO2, H2O and 
nitrogen. The combustion products emissivity of 
such a flame can be neglected because it is very low 
(εg~ 0.03 for a stoichiometric mixtureand an open 
burner (Hottel and Sarofim1967).  

Inflow of heat via catalytic effect (D):  

The thermocouples B type are composed of 
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thermocouple and a sufficient mechanical strength. 

2.6 Stability of the Response Signal of 
Thermocouples 

The use of thermocouples in a reactive flow at high 
temperature can alter their physical characteristics.  
The phenomenon has been studied by Ahmed et al. 
(1987); Hayhurst and Kittelson (1977) where from 
1000 K Iridium oxide forms and vaporizes. This 
vaporization alters the composition of the wire alloy 
Ir4O% Rh, which is enriched in Rhodium, and 
consequently the electromotive force of the 
thermocouple is changed. The signal from a 
thermocouple Iradium-Rhodium (Ir/Ir40% Rh) in 
evaporation case will first slightly increase and then 
decrease when the composition of the alloy exceeds 
50%. The presence of silicon derivatives (SiO2 
from refractory, silicone oil) in the environment of a 
B thermocouple may cause its poisoning. From a 
temperature above 1400 K, platinum silicate can 
form in a B thermocouple and change its 
characteristics (Bennett 1961). In this case, the best 
way to obtain reliable results is to protect the 
thermocouple with a coating. To minimize the 
effects due to thermal and mechanical stresses, 
some authors apply a process which consists in 
annealing the thermocouple at high temperatures 
(Ahmed et al.1987). Using this process signal 
stability thermocouple can be improved. 

2.7 Correction Radiation Losses 

At high temperature, the value measured by the 
thermocouple does not correspond to the 
environment in which it is placed. This difference is 
mainly due to radiation losses from the 
thermocouple.  

The temperature of the flow can therefore be 
estimated if all variables are known with sufficient 
precision. The theoretical values for uncoated 
thermocouples were calculated from equations 
proposed by Entwistle and Bradly 1961; Hayhurst 
and Kittelson 1977). The emissivity of 
thermocouple metals depends on their electrical 
resistivity “r”, and the temperature “T”.  

Bradley and Entwistle: 

 
   

1/2
e e

1/2
e e

e 0.751. T . R 0.632.T.R

0.670. T.R 0.670 . T.R ²

 

 
              (10) 

Hayhurst and Kittelson:  

 1/2
e ee 0.751. T . R 0.396.T.R                       (11) 

The results obtained from these two correlations 
were presented by Larass (2000). There is only a 
slight difference between the two equations for B 
type thermocouple. A comparison of calculation 
models of emissivity of B type thermocouple has 
been made by Larass (2000).  

2.8 Sampling 

Temperature fluctuations that should be followed 
by the thermocouple in a flame are in the order of 

hundred Hz up to 1 kHz. To avoid bias in the 
experimental signal acquisition, the sampling 
frequency must be at least four times greater than 
the expected cut-off frequency (in our case 1 kHz) 
of measured signals. The sampling frequency has 
been chosen equal to 10 kHz and the acquisition 
duration was 5 seconds so as to correctly average 
the signal by integrating over a sufficiently long 
period. This helps to find a compromise between 
quality measurement (50000 points) and good 
management of computer memories. The signals 
have been filtered and a cutoff frequency of 300 Hz. 

2.9 Experimental Devices  

The experimental device used consists of a 
turbulent Bunsen burner where CH4/air  (G20) is 
convected with an average velocity of 6 m/s and an 
equivalence ratio in range φ = 0,6 ÷ 1,3 (Boulahlib 
et al. 2008). The burner diameter is 30 mm. The 
reacting flow is surrounded by an annular flow. The 
positioning of thermocouples in the flame was 
carried out through a system of movement of two 
axes Charly Robot (Fig 2). The movement precision 
is in order of 0.1 mm following (x), and 1 mm in 
the height flame direction (y). The uncertainty 
caused by the displacement table can be considered 
negligible. However, the expansion and contraction 
of the junction and pins in the hot and cold zones of 
the flow can cause deformation of the probe. This 
can vary the position of the junction. The 
importance of this variation according of flow and 
temperature and can therefore vary at each 
measuring point. Temperature measurements were 
made in each case according to a grid divided into 
four zones. The measures are carried out over a 
width ranging from x = 40 to 54 mm with a step of 
0.1mm. 

3. RESULTS 

The presentation of two-dimensional fields of the 
average temperature (Fig 4a, b and c) is very useful 
for the structures visualization of the reaction and 
cold zones in a flame. The analysis of these fields 
facilitates understanding of the flow thermal 
structure using a comparison between the different 
cases studied. The overall study of two-dimensional 
representations shows that the thermal structures are 
almost similar. The use of different scales of 
turbulence does not prima facie significant 
difference in the structure of thermal fields means; 
however, a closer examination will show a bit 
further other aspects in the analysis of radial, 
longitudinal evolutions, the heights and flames 
thicknesses. Temperature fields present a quasi-
parabolic form whose maximum is located just after 
the end of the internal conical part. On Fig 4a, 4b 
and 4c, the different areas of the flame and the 
secondary flow are clearly identified. The overall 
structure of these flames is that of two-dimensional 
Bunsen type flames. The flame area represented 
by the isotherm at 1500 °C is at the height y=15 
mm. The maximum width is about 54 mm at 
y=150 mm for the G grid. The combustion zone is 
surrounded by the air jet coflow, whose thermal 
structure is clearly identified. It may be noted that 
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protection while remaining very affordable in terms 
of costs compared to Rayleigh scattering. The 
FWCT has very acceptable results, and comes to 
correct the defects of the temperature measurement 
in the flames. The introduction of digital 
compensation and catalytic protection while 
remaining very affordable in terms of costs 
compared to Rayleigh scattering. The comparison 
between FCWT and Rayleigh scattering results 
shows a good agreement.  
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