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ABSTRACT 

Thermal comfort in buildings is an important property for the quality of indoor environments, but also for the 
quantity of energy to be supplied by heating equipment. It is therefore important to understand and control the 
heat exchanges that come into play in the electric heaters. The electric heaters transfer their energy to the 
environment by convection and radiation. This paper presents a 3D numerical study of turbulent and steady 
airflow, in a living space (width 3.4m, 4.5m length and 2.6m height). The influence of the electric heater 
position in the room will be reviewed to improve the thermal comfort and energy performance of the system. 
Transport equations of mass, momentum and energy are solved numerically using the finite volume method. 
Also, the radiative heat exchanges between surfaces are considered. 
 
Keywords: Thermal comfort; Electric heater; Natural convection; Radiation; CFD. 

NOMENCLATURE 

a absorption coefficient s path length 
A element surface T temperature 
Cp specific heat capacity u, v, w velocity components 
g acceleration of gravity x, y, z axis coordinates 
h user height Y facade heater height 
H room height ς Stefan-Boltzmann constant 
k thermal conductivity ε Emissivity 
l room width Φ phase function 
L room length ν kinematic viscosity 
n refractive index μ dynamic viscosity 
P* driving pressure Ω solid angle 

r


 position vector   density,  

s


 direction vector   scattering coefficient 

s

  scattering direction vector   heater operating rate 

 
1. INTRODUCTION 

Thermal comfort in buildings is an important 
property for the quality of indoor environments, but 
also for the amount of energy required by the 
equipment’s room. In addition, the energy 
consumption of systems is a highly watched topic in 

current thermal regulations. It is therefore important 
to understand and control the exchange of natural 
convection airflow coupled with radiation coming 
into play in domestic heating units. Several models 
have been developed for a better understanding in 
the prediction patterns of heat transfer in buildings. 
Some are traditional models based on energy 
simulations (zonal models) and others are based on 
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bracket) and electronic (cables, power board, 
control panel) parts of the heater are not involved in 
the heat transfer from the heater to the environment. 
For this reason; these elements are removed to 
simplify the geometry of the initial case (Fig. 2a). 
To further simplify the geometry of the heater 
without affecting the thermal characteristics of the 
device we have replaced, firstly, the standard 
geometry of the heating resistance by flat heating 
resistances (Fig. 2b) of the same height and same 
width (243.0mm x 2.4mm). Secondly, the air outlet 
blades have been removed (Fig. 2c). 

 
Fig. 2.Simplification steps. 

In Figures 3 and 4 a comparison was made on the 
velocity and temperature profiles 20cm above the 
heater, in order to determine the influence of the 
successive simplifications on the thermal 
characteristics of the device. It can be seen that 
these different simplifications have almost no 
influence 20cm above the heater on the air 
velocities and temperatures at the outlet of the 
heater. 

 

Fig. 3. Velocity profiles at 20 cm above the 
heater. 

Simplifying assumptions of the air outlet and 
heating elements can be selected (case 
Simplification 2) which allowed us to reduce the 
mesh size to 11 million cells. The successive steps 
of the simplification allowed us to obtain a 

simplified geometry shown in Fig 5. 

 

Fig. 4. Temperature profiles at 20 cm above the 
heater. 

 
Fig. 5.Heater geometry: (a)initial and (b) 

simplified. 

3. METHODS 

3.1 Physical model 

The indoor airflow physical model of natural 
convection coupled with radiation includes the 
transport equations of mass, momentum, energy and 
radiative transfer (Eqs 1 – 8). The numerical 
simulations are carried out for a 3D steady and 
turbulent flow. The Reynolds-Averaged Navier–
Stokes (RANS) equations and more specifically the 
k-ω SST turbulence model, governs the turbulent 
flow. These equations are obtained by introducing 
the Reynolds decomposition, which consists in 
considering that, in turbulent flows, each 
instantaneous variable is the sum of a mean 
component and a fluctuating component. Thermo-
physical properties of the fluid are assumed to be 
dependent of the temperature because Boussinesq 
approximation is not valid in the considered 
temperature range (Gray and Giorgini 1976).The 
governing equations are: 

Continuity equation: 

(1) 
ρu ρv ρw

x y z

  
  

  
0 

Momentum equations 
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(2) 

ρu ρu ρu u
u v w μ

x y z x x x

u u u μ v μ
μ μ

y y z z x x x y

w μ ρu u ρu v ρu w

x z z

P

x

*

y

      
             

          
                   
         

  
    

 

(3) 

ρv ρv ρv v
v w μ

x y z y x x

v v u μ v μ
μ μ

y y z z y x y y

w μ ρv u ρv v ρv w

P

y

u

z
 

y

*

x

 

z

      
             

          
                   
         

  
    

 

(4) 

ρw ρw ρw p * w
u v w μ

x y z z x x

w w u μ v μ
μ μ

y y z z z x z y

w μ ρw u ρw v ρw w

z z x y z

      
             

          
                   
         

  
    

 

Energy equation 

(5) 

p p pρC ρC T ρC T
u v w

x y z

k k k
x

T

T

x y y

T

z z

T

  
  

  

          
                     

 

Radiative transfer equation for an absorbing and 

scattering medium emissivity at a position rԦ in the 

direction sԦ is: 

(6) 

     

   
π

' '

dI r, s
a σ I r, s

ds

ςT σ
an I r, s Φ s.s dΩ

π π

  

 
4 4

2

0
4

 
 

   
 

The k-ω SST turbulence model (Menter2009) is a 
two-equation eddy-viscosity model that combines 
k-ω formulation in the inner parts of the boundary 
layer and k-ε formulation in the free-stream. Two 
additional transport equations for the turbulence 
kinetic energy per unit mass (k) and the specific 
dissipation rate (ω) are solved. These equations are: 

(7)   Γ
   

       
j k k k

j j j

k
ρkU G Y

x x x
 

(8)   Γ
   

        
j ω ω ω ω

j j j

ω
ρωU G Y D

x x x
 

where ௞ܻ, ఠܻ are the turbulent dissipationsof k and 
ω, respectively Γ௞, Γఠ are the effective diffusivities 
of k and ω, respectively;ܩ௞, ܩఠcorrespond to the 
generation of turbulence of k and ω, respectively 

due to the mean velocity gradients and ܦఠ is the 
cross-diffusion term. 

3.2 Numerical method 

Transport equations of mass, momentum, energy 
radiative transfer and turbulence (Eqs 1 – 8) are 
solved numerically using the finite volume method 
(Patankar). This method is based on the spatial 
integration of transport equations relative to control 
volumes. The coupling between velocity and 
pressure is achieved with the algorithm “Coupled 
Scheme” that solves the equations of continuity and 
momentum simultaneously and gives an advantage 
to treat flows with a strong interdependence 
between dynamic and thermal fields. Numerical 
simulations are performed with ANSYS Fluent® 
CFD commercial software. In this numerical study 
the Central-Differenced Scheme was used for the 
spatial discretization for diffusive term, the Second-
Order Upwind Scheme for the convective term and 
the Body Force Weighted Scheme for the continuity 
equation. The convergence criteria were based on 
the residuals resulting from the integration of the 
conservation equations over finite control volumes. 
During the iterative calculation process, these 
residuals were constantly monitored and carefully 
scrutinized. For all simulations performed in this 
study, converged solutions were achieved with 
residuals as low as 10-4 (or less) for all the 
governing equations.  

3.3 Validation 

Fig 6 shows a comparison between the numerical 
and experimental temperatures obtained by infrared 
thermography on the front of the heater. Thermal 
validation of the physical model and the mesh were 
conducted with the different electric powers of the 
heater (100, 500 and 1000 W) corresponding to the 
operating rate τ = 10, 50 and 100%. Whatever the 
operation rate used for the heater, it may be noted 
that the maximum deviation on the temperature 
facade between the numerical results and those 
obtained by the infrared thermography is 6%. 

Fig 7 and 8 present a comparison between the 
velocity profiles experimentally obtained using the 
PIV method (Particle Image Velocimetry) and 
numerical results in a plane which is located 10cm 
above the radiator, for two operating rate (τ = 20 
and 80%). Comparing these results, it is found that 
the experimental shape of velocity profiles is 
similar to that of numerical simulations, whatever 
the operation rate of the device (20 and 80%). 
However, a 13% gap was observed for the 
maximum velocity and a 5% one for the volume 
flow rate of the thermal plume, 10cm above the 
radiator. 

These differences on the maximum velocities 
between numerical simulation and experimental 
study can be explained by the use in the PIV method 
of an algorithm based on a spatial average 
(interpolation window) and of a temporal mean (200 
doublets of images at 3Hz) for calculating the 
velocity. So if the plume changes its position in time, 
we obtain a lower peak velocity amplitude but wider. 
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Fig. 6.Vertical temperature profile at front 

façade. 

 
Fig. 7. Velocity profile at 10 cm on top of the 

heater for τ=20%. 

 
Fig. 8. Velocity profile at 10 cm on top of the 

heater for τ=80% 

4. RESULTS 

In this paper, a 3D numerical study of indoor 
airflow and temperature field with a radiative and 
convective heater was achieved. The study focuses 
on the influence of the heater position in the room, 

nominal power 1000W. In the first studied case 
(Case 1), the heater is installed on a cold wall 
(outdoor type) maintained at 15 °C while the 
opposed walls are maintained at 19 °C (inner wall 
type). In the second case (Case 2) the heater is 
installed on an inner wall type (19 °C) while the 
opposite wall is of outdoor type (15 °C). The other 
walls of the room remain at 19 ° C (inner wall 
type). 

In fig 9 one can observe the streamlines and 
velocity field in the central plane of the room when 
the operation rate for the heater is 40%. First of all, 
it can be noted at the electric heater outlet, that the 
airflow approaches the adjacent wall. Approaching 
the ceiling, indoor airflow is dispersed along the 
vertical wall. Small vortices, are also formed along 
the edge wall / ceiling. Finally, indoor air becomes 
stratified and feeds the plume that exits the electric 
heater. Similar phenomena are observed for 
different heater operation rates. 

 
Fig. 9. Streamlines and velocity field in the 

middle plane of the room (τ=40%). 

To highlight the critical points of the device during 
use to different operation rates (τ = 20, 40, 60, 80 
and 100%), temperatures and air velocities have 
been observed (Table 1). Indeed, each element has a 
critical temperature that must not be exceeded. The 
heating foil consists of plastic polymer layers which 
may not exceed a temperature of 120 °C to prevent 
its melting. Accessible parts of the heater by the 
user, normally the facade, the box and the air outlet 
must not exceed a maximum temperature of 110 °C 
to prevent accidental burn. In addition, for indoor 
air quality reasons, the internal electrical resistances 
shall not exceed a maximum temperature of 250 °C 
to not dry out the air and dust carbonize. Regardless 
of the operation rate, it can be observed that the 
maximum temperatures of the heating elements and 
air output never exceed the critical threshold. 
However, the average temperature in the room, 
guaranteeing a comfort degree decreases only by 
0.5% to an operating rate of 80%. 

Table 1 Indoors physical parameters  
τ 20% 40% 60% 80% 100%

TmaxFacade (°C) 54.7 56.4 68 86 100
TmaxHeating

Foil (°C) 56 59.4 73 92.5 108 

TmaxResistance 
(°C) 90 123.6 161 197 228 

Tmax Outlet (°C) 46 58.6 68 79 92.3
Tav Room (°C) 19 19.4 19.7 20 20.1

Vmax(m/s) 0,72 0,914  0,98  1,17  1,20
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In Fig 10 and 11, the thermal fields are shown in the 
room center in the perpendicular plane to the 
radiator, for different configurations studied (cases 
1 and 2). Whatever the position of the heater, one 
can observe a stratification phenomenon in the 
room. Outgoing warm air through the outlet heater 
rises along the wall. This is due to its lower density. 
The warm airflow follows the ceiling and then 
descends again along the opposite wall. It can be 
seen that in case 2, the hot air down lower in the 
vicinity of the opposite wall unlike the case 1. 
Finally, the air stratified in the room according to its 
temperature and feeds the plume outgoing the 
radiator. 

 

Fig. 10. Thermal field in the middle plane of the 
room (Case 1)  

 
Fig. 11. Thermal field in the middle plane of the 

room (Case 2). 

To compare the two cases based on thermal 
comfort, we will create an arbitrary parameter 
called average temperature determined in a sphere 
of 1.25m diameters. In order to link the average 
temperature to the user comfort the sphere is 
located at 1m heights. In addition, this sphere was 
positioned at 2m of the heater to the room inside. 
The sphere position may be representative of the 
average position of the human body in the room. It 
is noted that the average temperature increased by 
one degree (22.3 °C to 23.1 °C) when, instead of 
installing the heater on an outdoor wall (maintained 
at 15 °C) it is installed on the interior wall 
(maintained at 19 °C). 

 Fig 12, 13 and 14 show the vertical temperature 
profiles obtained for cases 1 and 2, in the middle of 
the width of the room and at different distances 
from the radiator (1, 3 and 4 m). There is a thermal 
gradient in both cases between the floor and the 
ceiling of the room of about 6 ° C. 

 
Fig. 12. Vertical temperature profileat1 m in 

front of the heater. 

 

Fig. 13. Vertical temperature profileat 3 m in 
front of the heater. 

 
Fig. 14. Vertical temperature profileat4 m in 

front of the heater 

5. CONCLUSION 

A 3D numerical study of turbulent and steady 
natural convection airflow coupled with radiation in 
a room was conducted. Two heating configurations 
were analyzed: first the electric heater is positioned 
on the cold wall, and then the device is positioned 
on the wall opposite to the cold wall. The numerical 
model used in the case of a heater in a room gives 
reliable results for experiments. The numerical 
results have shown that if the heater is positioned in 
front of the cold wall average temperature felt in the 
center of the room by the user is greater than 1 °C 
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compared to the case where the device is attached to 
the cold wall. Moreover, in this configuration, the 
vertical thermal gradient is linear up to 2.3m 
whatever considered axis in middle plane of the 
room. In conclusion, the heater positioned opposite 
the outer wall provides better heat distribution 
within the room and thus better thermal comfort for 
the user. 
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