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ABSTRACT

The use of two-phase gjectors to improve refrigeration systems encounters today a great interest. However,
modeling of such devices with low void fraction at the entrance of the motive nozzle, presents significant
challenges. The choking conditions and the discontinuities appearing in a two-phase flow in a nozzle are not
well documented and some works are needed to better anticipated flow behavior under these conditions. This
paper presents a steady state two-phase flow model including new choking criterions for one-dimensional
conservative systems. The present model is a two-fluid, one pressure model with thermal equilibrium and
mechanical disequilibrium. As a first step, this model is used to study the flow in the motive nozzle of an
gector.

Keywords. Two phase flow; Critical flow; Critical location; Nozzle flow.

NOMENCLATURE
A nozzle section area u velocity
A droplet section area \% volume
A, droplet surface Z compressibility factor
G specific heat Greek letters:
e internal energy a void fraction of phase
E energy flux r source term
F external forces _ v aquantity of phase
fex enthalpy ratio in energy equation » volumic term
fep pressure ratio in energy equation P density
feu velocity ratio in energy equation s saturation density
fap pressure ratio 2 gas density
fiu momentum ratio )
fm mass flow rateratio 4 train tensor
E g:]?lxq/;%t)l/onnal force Subscripts/ Superscripts:
he heat transfer coefficient (5 :arilg':‘daigltzgﬂrn dar
hy enthalpy of vaporization E eneray term y
hm mass transfer coefficient Eu kineg}c,: transfer
J momentum flux :
Eq convectiv transfer
M mass flux Eh enthalpy transfer
n normal vector 3 momm¥um term
N droplet flow K phase
p pressure kf boundary term
q heat exchange M mass term
R gas constant L
: h 0 reference term, initial value
S dlipratio 12 phase 1.2
t time ' '
T temperature
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1. INTRODUCTION

The steady state flow of compressible fluid through
convergent-divergent nozzle covers various
important flow phenomena like the occurrence of
critical flow conditions, transition from subsonic to
supersonic  flow or the occurrence of flow
discontinuities. For single-phase gas, relatively
simple algebraic solutions exist as described in
many gasdynamic textbooks. For two-phase flow
conditions, iterative algebraic solutions can be
derived only for simple one-dimensional case with
homogeneous assumption and thermo-mechanical
equilibrium between phases. For the more general
case of nonhomogeneous and disequilibrium
conditions, the numerical resolution present a major
challenge.

In fact, severa mathematical models have been
published in the literature for two-phase flows but
only afew have addressed the steady state behavior
in a nozzle, especialy with low void fraction, heat
and mass transfer between phases, and phase
interaction. In addition, two-phase critical flow has
been the subject of many anaytica and
experimental investigations, mainly because of its
importance in the safety analyses of pressurized
water in nuclear reactors and converging-diverging
nozzles.

One phenomena still of interest is the choking
condition in a critical flow such as in supersonic
gectors. Supersonic eectors are widely used in a
range of applications such as aerospace, propulsion,
refrigeration and many therma systems. In
refrigeration applications, gjectors could be used as
thermo compressor or to recover part of the work
that would be lost in the expansion valve. The flow
at the entrance of the eector coming from the
condenser unit of a refrigeration system is either a
subcooled or a saturated liquid. Inside the motive
nozzle, the flow undergoes important pressure
variation resulting in a very fast phase change
(flashing process) giving turbulent two-phase flow
with thermo-dynamical disequilibrium. Even if
condensation and evaporation have been studied for
several years, many uncertainties about low void
fraction two-phase flow and critica conditions
remain.

In this paper, a one-dimensiona compressible
steady state two-phase flow model is presented with
new choking criterions that are directly related to
optimal flux conditions developed by Dostie et al.
(2009). As a first step, this model is used to study
the flow in the motive nozzle of an gjector.
2. MODELING APPROACH

Fig.1 shows a control volume with boundary ay
moving at a speed 0, . By supposing that this
control volume has two phases separated by
boundary a4 moving at a speed Gy , the evolution of
a quantity w, associated at the phase k is given by

the following integral form of the genera
conservation eguation (Delhaye et al. 1981):
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where p, is the density of phase k, Vi his volume,
4, et 0, arevelocity of phase k and the boundary
respectively, i, isthe normal vector on the control

volume boundary, J, isatensor, and ¢, isa source
term by unit volume of the variabley, .

Phase k

Fig. 1. Diphasic flow illustration.

The one-dimensional conservation equations are
obtained using the following substitutions contained
inthe Table 1.

Table 1 Substitution termsfor conservation

eguations
Equation WYy J K Pk Po
Mass 1 0 0
Momentu - _ -
m U Ty Foe
a-u
% | q-7.0| F.a
Ener n 0
ay oy
G Ay A,

Entro s o —

by Ty Px

where e+u5+gAy is the sum of the interna,

kinetic and potential energies, 7, is the strain
tensor, Ife)q is the external forces vector by mass
unit, g, is the heat exchange vector, and Ty is the
temperature of phase k. The term7, - U, represents

viscous dissipation of the kinetic and heat energies,
A, is the entropy source by mass unit, and A, is the

interfacial entropy source between phases.
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2.1. Diphasic Flow Modds

While two pressure models shown interesting
aspect about two phase flow, none of them have
reached a sufficient level of maturity to solve
technical and scientific problems. In this model,
each phase can have a distinct pressure since the
pressureratio is introduce as a closure law.

Neglecting the influence of heat conduction and
viscous dissipation in comparison with mass and
energy transfer at the interface between phases, the
assumptions for the following air-water model are:

- noviscosity

- adiabatic

- onepressure

- onetemperature

- no phase change

- permeable boundaries

For this diphasic flow model, the following
conservation eguations are used:

d
™ A =Tim +Tiom

2

d

&(Akpkulg + Akpk) =Ty +Tk3

d u? c
&(Akpkuk) hy Ay Aol =T e+TkE

where the k indices identify the phase, A¢isthe
flow area occupied by phase k, p, is the
density of phase k, u her velocity, px her
pressure and hy her enthalpy. The " terms are
source terms. Subscript ¢ is for boundary
terms and M, J and E are linked to mass,
momentum and energy source terms,
respectively. Lo s I, I, . represent

respectively the transfer term for mass,
momentum and energy. At the flow boundary,
Iiw, e, and I} arelinked to the transfer of

kM 1
mass, momentum and energy. Their
formulations are presented in Martel (2012).
These equations are equivaent to those
habitually found in literature.

Globally, since we face off conservative system, the
source terms summation must be null:

Zrk,M =0 Zrk,J =0 ZFK,E =0

Since this two-fluid models of two-phase flow are
formulated around the macroscopic separate
balance eguations for each of the two phases, based
on space and time averaging of the loca
instantaneous phasic flow equations, this model can
provide information only on the average flow
behavior, which assumes that sufficiently accurate
empirical correlations can be used to describe heat,
mass and momentum transfer processes at the
phasic interface and at the boundary walls.

2.2 Closure laws

In this system, we encounter ten unknown, five for
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each phase: Ty, pv U, ax and p. To close this
system, we need two more equation for each phase.
First of al, a constant density for incompressible
phase and a state equation for compressible phase is
introduced:

Pk = Zek xRk ©)]

Where zy is the compressibility factor, Ry perfect
gas constant and T, the temperature of the phase k
defined as a function of his enthalpy by assuming
that the specific heat is Cy is constant:

h<:h?+Cpk(Tk_TkO) @
where hE et TE are constant values.
In addition, the following constraints are used:
TA=A

©)

Zak =1

Where oy is the void fraction defined as a function
of total cross sectional area A:

A

g =——

A (6)

These constraints are not linked to a particular
phase but to the global mixture. These are global
flow conditions.

One more relation is needed to define the flow
topology. This equation is often replaced by a
correlation linking pressure between phases:

P2 = f(p) Y]

This correlation can take several forms and the
simplest is identical local pressure for each phase.
This is the case in this model so we obtain a one
pressure model.

2.3 Critical conditions

The critical conditions for this system have been
developed by Dostie et al. (2009) and presented by
Martel (2012). Considering a system with n phases,
the criterion is based on global flux terms for mass,
momentum and energy:

M =2 Aol
K

2
J :Zk:AakPkUk +Zk:Aak P )]

2
U
E-= Z(hk +2k] Aakpkuk
k

By using Eq. (5), the energy flux becomes:

C
E:Z{hg_,.pkpk_,.uk

2
Ay pru 9
K ZRe Pk ] KAk

2

By scaling each phasic flux by respect to the flux of
compressible phase (phase 1), the following scaling
factor are obtained:
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£ = APk

Mk =—
/Y

£oo= akpkuf

Juk = 2
U

k= 2 Pk

P P

AP

fexk=—"—"—"1 (19)
a1y

The mixture flux can now be express as.

M= A(lelulszk

s (11)

J=Aogpyuip fyp+ Aplszpk
k k

E=

By using the following relation
n

o :1—Zak (12)
2

and the dip ratio

skzi
U

the phase 1 density can be express by:

pr= M (13

f
A Y fyg —M D MK
ulzk: MK gpksx

and the pressure by:

Do) ,
o

=|J-k
P S )
(14)

Kk
where

G= M (15)

T[]

kSk

At a singular point, a mixture flux should be an
optimum in respect to the primitive variable
variations:

or!"!
dy

=0 (16)

Where F is a given mixture flux and Y is a primitive
variable expressed as a function of mixture flux. For
example, Dostie et al. (2009) have shown that a
local optimum of the momentum flux express as a
function of the velocity of the compressible phase 1
and others global flux is given by:

dJ{ul} _dI(u,M,E)

dy  dwy
This equation shows a critical criterion and gives a
simple way to know if the flow is critical or not.
These critical points correspond to singular points

in the differential dynamical system trgjectory
associated to conservation equations.

17

The explicit relation for the momentum flux as a
function of u;, M and E is obtained:

w

-k
M D

zpksk_k A

atwd = g(u,M,E)=

U
ik XM
k k
(18)
where
D ik D fek )
wel| | X 'k PL |2
Zprk Zprk 2z4R
k k
> fak
u n
K M ka (19)

fJ szMk 2 pkskul_
P
k

C Z Epk Cpl E ;ka

Pk =
ZaR M D ek
k

At ZaR Y, prk
K

The following critical condition is then obtained:

2
LIS 1
= (20)
P f1k fe K
2 % “ 2R

o
“ sz K ZfE k Cot

where U, is the critical compressible phase velocity.
For a perfect gas, this critical condition is reduced to
the sound speed. Otherwise, for a liquid, in which R¢
isin the order of O, theright isequal to 1:

2
1-=1"1
Cpl

This criterion is then valid for compressible as well
as incompressible flows. In addition, this local
criterion is also valid to the entire flow. The critical
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position is obtained when the compressible velocity
is equal to the velocity in the critical condition asin
single phase compressible flow. The critica
condition is defined:

DIsS=Y>1 22)
Ue

3. NUMERICAL APPROACH

In this case, a two-fluid one pressure one-
dimensional two-phase flow model is obtained. This
model takes into account mechanical and thermal
disequilibrium between phases as well as phase
change. Compressible SIMPLE algorithm from
Patankar (1980) is used to solve this system. A
constant liquid density and perfect gas law are
assumed for incompressible and compressible
phases, respectively. In addition, uniform droplets
repartition in gas flow for momentum exchange
between phases is assumed. With these
assumptions, the following six equations model is
obtained:

Z( ka)Aalplul =0
k

dx
d dA 23)
— Ay 5 +—(Ap) = p—
™ mulel skt g (AP)= P

0 U12
d [fhszhk+Cp1leprk+ZZfEukJ _0o
- k K K =
ax

Ay oy

(AazppUiz)=Tom

dx
2 d c
&(Aazpzuz)Jf&(Mz P)=T23+T3, (24)
0 U%
v AazpUp| Cpoly + 1y 5= oE
where source terms are:
—_ NoApohy (Py2 — Ps2)
2M =
uz
A ACp
I y=—"=—"=p1(Uy - )|u, —U
2',] Vp 2 pl( 2 l)‘ 2 1‘ (25)
r$s = P (Aay)
' dx

Tpe=T5%+r5"+ 5

In these equations, T,;is the drag term between
phases, T,,is linked to the variable area in a
nozzle, T,, is the phase change source term, and
I,e is the energy transfer source term between
phases.

This source term can be defined with respect to
convective transfer:
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rEa_ N AR (T T2)
Uz

(26)

Where N, is the droplet flow rate, Aythe droplet
cross sectional area, and h, the convective
coefficient. Phase change produce energy and
momentum transfer between phases:

r&"=ri'n,
27
rEu_ﬁ (27)
Bu_
2

where hy is phase change enthal py.

In this model, only one variable remains for the
liquid phase since all other are defined in function
of the compressible phase using the scaling factors.
In order to take account of the mechanical
disequilibrium, the dlip ratio between phases must
be obtained.

3.18lipratio

To obtain the ratio of the velocity of each phase,
phasic momentum conservation equation is used:

d

dx (28)

d
M
( kUk)+d

7(Mk P)=Tks+Tky

where My is the mass flow rate of phase k. This

mass flow rate is obtained from the mass
conservation eguation:

9 (M)=0 (29)
dx

The discretized momentum equation for the phase k
is:

(Aasepic); = (Aancpic )4

Uk —Ui-1=— M, )
1 c
+M—kAxi (FK’J +Fk'3)m
with
Vi A Cp
o= _7E7pk(uk —uy)[u — by
P (31)
d( A«
Fﬁ'\] =p (dX k)

where V is the volume of phase k, V, is the volume
of a particle, AP is the cross section area of a
particle, and CD the drag coefficient. In this case,
virtual mass is neglected.

The pressure terms can be simplified together and
the following phase velocity equation is obtained:

1 { Qi + Ag 10
Uy *UM71=*W(WJ(Q - Pa)
Ty gi + Tk gi
+iAxi kJi T1k,gi-1
My 2

(32
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While the phase velocity is obtained, the dlip ratio is
calculated as follows:

(33)

4.  VALIDATION

At the nozzle inlet, a steady state homogeneous
flow from a reservair is supposed. For this reason,
each phase has the same temperature and same
pressure. The void fraction is imposed at the inlet.
At the outlet, the pressure is fixed. Initial conditions
in the nozzle are those of the inlet reservoir. This
assumption implies a big discontinuity at the outlet
for the first step of the numerical solution. To
obtain a converged solution, the relative variation of
each primitive variable between two iterations must
be less than 1x10-6.

The numerical scheme and the model have been
validated by comparing some experimental results
from Elliot and Weinberg (1968), Lemonnier and
Selmer-Olsen (1992) and with numerical results
from Stéadtke (2006). The phase change part of the
model has been validated and presented by Martel
(2012).

4.1 Elliot and Weinberg

Experimental results were obtained using a 1.27 m
experimental nozzle. They presented a pressure
profile and mass flow rate in addition of thrust
measurement. Inlet conditions are p,= 10.3421
MPa, Tp=293K and an exit pressure of 0.1013MPa.
Fig. 2 shows a good agreement between pressure
profiles. For this test, the mass flow rate ratiof, is
29.1. The experimental mass flow rate is 67.33 kg/s
and the numerical mass flow rate is 67.64kg/s for an
error of 0.45%.

12

—Pnum

Pressure (MPa)
o

044 |~=Throat| - — — 1 N_ 11
" Pexp ;
| ! |
0.2 q | i |
| ! I
0.0 I ! I I
0.0 0.2 04 0.6 0.8 10 12 14

Axial position (m)
Fig. 2.Pressure profilesin the nozzle.

Table 2 shows experimental and numerical results
for mass flow rate ratio between 15.3 and 64.9. For
al tests, the error for the mass flow rate is from
0.11% to 2.77%. However the thrust obtained
numerically is overestimated from 4.96% to 8.28%.
This overestimation comes from frictionless wall
assumption and constant slip ratio is used resulting
in a higher mean velocity used in the calculation of
the thrust. Some tests have shown that using a
variable dlip ratio instead of a constant dip ratio
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reduces mean velocity by about 7%.

Table2Comparison between numerical results
and experimental measur ements

rixegzlr?rineft‘s Numerical results

fu M Thrust M Error | Thrust | Error

kg9 | N | kg9 | ) | ) | )
15.3 445 6334 45.8 277 6748 6.54
17.2 47.7 6236 48.1 0.83 6753 8.28
211 51.8 6441 525 1.27 6760 4.96
223 53.6 6308 53.7 0.14 6762 721
28.3 57.7 6308 59.3 2.76 6773 7.38
30.1 60.9 6334 60.8 0.11 6776 6.97
391 67.7 6334 67.3 0.59 6760 6.72
51.6 745 6334 75.4 113 6813 7.55
64.9 81.4 6334 82.2 1.00 6844 8.04

4.2 Lemonnier and Selmer-Olsen (1992)

The nozzle geometry used by Lemonnier and
Selmer-Olsen (1992) has a throat with a constant
cross-section area. Flow inlet conditions are 0.6
MPa and 292 K with a mass flow rate ratio varying
from 27 to 50. Comparison between numerical
results and experimental measurements gives an
error less than 2% for the mass flow rate.

Fig. 3 shows the pressure profiles comparison. A
good agreement is obtained throughout the entire
nozzle.

Inletof i Outlet of i
throat! ! throat ! !
- — I

00—
0.00 0.03 0.06 0.09

Axis position(m)

Fig. 3. Pressure profilesin the nozzle.

4.3 Stadtke (2006)

The ASTAR nozzle geometry presented by Stadtke
(2006) is used to compare numerical results.
Stadtke (2006) used a six equations hyperbolic
model with two fluids. For this case, fixed upstream
reservoir pressure and temperature of py = 1 MPa,
To = 400 K, u; = U, is used with a mass flow rate
ratio (f.p) of unity and an exit pressure of 0.6 MPa.
Numerical results obtained with this scheme are in
good agreement with those of authors as shown on
Fig. 4. Total mass flow rate obtained by authors is
5.68 kg/s compared to 5.70 kg/s obtained with this
numerical model which implied a difference of
0.35%.
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n | |
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o | | | |
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| | | |
0.0 ! ! ! :
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Axis position (m)
Fig. 4. Pressureprofilesin the ASTAR nozzle.

5. NUMERICAL STUDY

Numerical results study is made with ASTAR
nozzle and different mass flow rate ratio and exit
pressure. Fig. 5 shows the ASTAR nozzle
geometry.

Fig. 5. ASTAR nozzle geometry.

The numerical model is completely independent of
the theoretical development and this section will
validate this development. For all tests, inlet
conditions are: Ty = 400K, Py = 1 MPa, and u; = U,.
In addition, thermal equilibrium is assumed in the
entire nozzle with no wall friction and no exchange
(heat and mass) with nozzle walls.

5.1 Validation of the choking criterion

The SIMPLE compressible scheme has been
validated with experimental data and previous
numerical data from literature. Critical conditions
can now be explored using numerical results to
calculate choking criterion. These numerical results
obtained with the compressible SIMPLE scheme
have no explicit link with this criterion. As
mentioned before, at a singular point, mixture flux
variation express as a function of one dependent
variableisO:

oY)

dy 39

Fig. 6 shows numerical mixture variation flux
profiles for an air-water flow in the ASTAR nozzle
mechanical disequilibrium (fy, = 5, pin = 1 MPa,
Pout = 0.68MPa, T, = 400 K). It corresponds to a
critical flow condition like sonic flow conditions in
compressible single-phase flow. These five profiles,
calculated using numerical results, are effectively O
at the critical location. Other four profiles are not
shown on this graph for visualization purpose, but
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they are also zero at the critical point.

200 |

029

0,44 0,49
Axis position (m)

Fig. 6. Mixture mass flow ratethrough ASTAR
nozzle as a function of outlet pressure.

0,64

Fig. 7 shows the relative variations of the primitive
variables for the previous numerical air-water flow
in the ASTAR nozzle. At the critical point, no
particular change is observed. The critical point
seems to be an anonymous point in regard to the
compressible phase evolution. However, this point
corresponds to a mixture evolution change from
subcritical to supercritical state. In reference to Fig.
6, at this point, the compressible phase cannot
modify is state to allow a bigger mass flow rate
since:

{w} {1}
dv™  dwv A1 _o (35)
du, dpy

04010
0,008
¥ q000

¥ j
0,005 !

g4a4
Axis position {m)

Fig.7. Relative variations of primitive variables.

5.1 Critical location

In single phase flow, critica location is at the
throat. However, this is not necessary the case in
multiphase flow since mass, momentum and energy
exchanges between phases give a different
behavior. The critica point may occur in the
divergent. Fig. 8 shows critical location as a
function of outlet pressure for mass flow rate ratio
of 1, 2, 5 and 10. When mass flow rate ratio
increases, the position of the critical point get
farther of the throat location (0.35 m). Critica
location moves upward to the throat position when
pressure decreases until an asymptotical vaue
where outlet pressure has no influence on it. In
addition, when mass flow rate ratio increases, the
minimum critical location seems to reach an
asymptotical value.
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0.47 ‘ ‘ ‘ ‘

+ Mass flow ratio = 1
= Mass flow ratio = 2
A Mass flow ratio = 5
‘ ® Mass flow ratio = 10

0.45

.
Critical location | |

become

independent of -
outlet presstire

Critical location (m)

0.4 0.6 0.8

Outlet pressure (MPa)

Fig. 8. Critical location in ASTAR nozzleasa
function of outlet pressure.
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5.2 Critical flow ratewith pressure

In single phase compressible flow, when the exit
pressure is reduced below a critical pressure, the
flow becomes choked and the mass flow rate is
maximal. However, in two phase compressible
flow, the flow can be critical, but the pressure
reduction still has influence on the flow properties
until a certain value of outlet pressure — the limit
pressure. Fig. 9 shows a complex behavior where
the flow can be critical but not necessary choke.
This pressure range increases with the mass flow
rate ratio as shown in Table 3.

| Mass flow rate
become

- independent of
/ outlet pressure

critical ~ sub-gritical

#Massflowratio=1 | I
w Mass flow ratio = 2 4' ‘

A Mass flow ratio = 5
® Mass flow ratio = 10

- - 1

Mixture mass flow rate (kg/s)

o | | |
0 0.2 0.4 0.6 0.8

Outlet pressure (MPa)
Fig. 9. Mixture mass flow rate through ASTAR
nozzle as a function of outlet pressure.

Table3 Difference between first critical mass
flow rate and maximum mixture massflow rate
as afunction of fy»

fwa | M critical (kg/s) | M max (kg/s) | % diff
1 5.64 5.71 1.24
2 7.05 7.20 213
5 10.10 10.46 3.56
10 13.54 14.13 4.36

5.3 Slip ratio influence

The dlip ratio has an effect on flow behavior. The
use of constant dip ratio results in a sharp
discontinuity similar to single phase flow in the
divergent section as shown on Fig. 10. In addition,
the critical point is at the throat and the critical mass
flow rate is defined at this singular point. For a
variable dip ratio, behavior is more complex since
critica location is downstream the throat and sharp
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discontinuities are blurred as mass flow rate ratio
increases. Transitions between flow regimes are
smoother and variable dip ratio allows pressure to
decrease as section increases between throat and
critica location as shown on Fig. 11. These effects
are more marked as the mass flow rate ratio
increases. Variable dlip ratio allows an increasing of
critical mass flow rate when exit pressure decreases
up to a limit mass flow rate where properties
become independent of exit pressure. Fig. 12 shows
the variable dip ratio profiles for different tests
conditions.

o

-+~ Throat
—a—S1 |

Y

—S2 |
—»—S3

o
IS

Pressuroe (Mpa)

——S4 |
——S5 |
—0—S6

o
~

——S7 |

—o—S8 |

o
o

)

0.4 0.6 0.8
Axial position (m)

Fig. 10. Pressure profilesin the nozzle with fy, =
10 and constant dlip ratio of unity.

o

+=- Throat
—=—S1

o

——S2
—e—S3
——s4

Pressuroe (Mpa)

o
=

—%—S5
—0—S6

o
o

—4—S7
o S8

o
)

0

-

Axial positionu'(em)
Fig. 11. Pressure profilesin the nozzle with fy, =
10 and variable dlip ratio.
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—-=- Throat
—=—S1
——S2
——S3
—o—S4
—=—S5

—o—S6

B

——S7
o S8

'

0.0

Axial positiono'(sm)
Fig. 12. Slip ratio profilesin the nozzle with fy, =
10 and variable slip ratio.

6. CONCLUSION
Multiphase systems present significant scientific

challenges and the choking phenomenon has to be
taken into account properly to achieve an accurate
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model of two phase gectors. This paper presents a
steady one-dimensional model including new
choking criterion based on a new critical fluxes
analysis in conservative systems. They provide the
information needed to anticipate choking location
and critical conditions. It aso shows that steady
state models are achievable for critical multiphase
flows. Such an approach is in some cases simpler
than using transient models which involve much
more complex propagation phenomenon.
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