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ABSTRACT 

3-D Lagrangian Particle Tracking (3DLPT) is becoming widely used to characterize the convective indoor air 
movements in large scale spaces. The need to implement a robust algorithm led us to develop a multi-scale 
based approach to detect features (Helium filled soap bubbles). On the other hand, the particle tracking is 
another challenging problem. To this end, a new tracking algorithm based on fuzzy Kalman filtering is 
proposed in this paper. The Kalman filter is used to optimally estimate the new position of the particles based 
on their actual position. In our approach, the initial particle positions are represented with multivariate fuzzy 
sets. 
 
Keywords: Indoor airflow; 3D PTV; Particle detection; Temporal tracking; Kalman filtering; Fuzzy logic. 

NOMENCLATURE 

dε random vector for process noise N number of particles at time instant t 
dm random vector for measurement noise pi particle i
FKF Fuzzy Kalman Filter Q process noise covariance matrix 
K optimal Kalman gain R measurement noise covariance matrix 
k discrete time instant Te time step 
M particle mass ε(k) state vector at time instant k 
m(k) measurement at the time instant k   

 

1. INTRODUCTION 

A critically important quantity of energy is required 
nowadays to heat and ventilate our buildings. In 
order to reduce this energy demand, we need to 
develop robust diagnostic tools for air flows in large 
scale spaces like buildings rooms. Particle image 
velocimetry (PIV) algorithms using cross-
correlation of particle images at two time steps can 
be used to obtain quantitative information of the 
airflow velocity field; it enables to calculate 
quantities like vorticity and deformation. However, 
they still limited when investigating strong 
gradients (Kähler et al. 2012). The velocity 
estimation is performed within an interrogation 
window; the required size of interrogation window 
depends on the particle size and the seeding density 
(Raffel et al. 2007), this leads to errors when 
particle density changes. Bubble tracking using PIV 
was studied in (Cheng et al. 2005), it was 
concluded that it is not applicable in dense bubbly 

flows as long as bubbles overlap. 

In order to obtain spatially resolved velocity 
measurement, Lagrangian particle tracking (LPT) 
and particle tracking velocimetry (PTV) techniques 
are used; PTV algorithms have two principal 
advantages with respect to classical PIV. First, they 
are able to provide three-dimensional (3D) flows. 
Second, Eulerian and Lagrangian statistics may be 
calculated from the Lagrangian-type PTV output; 
however, the calculation of Lagrangian statistics 
from a regular Eulerian data set, as obtained with 
PIV, is less accurate. 

The use of 3D PTV requires identifying the helium 
filled soap bubbles on the recorded images and then 
reconstructing their 3D trajectories via stereoscopic 
analysis. In this paper, the emphasis is on two 
dominant error sources: 

1. Particle positioning: errors related to 
determination of particle positions. 

2. Image pairing: errors due to false particle 
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matching. 

Noise present in recorded images, false detections 
and overlapping particles lead to not fully 
reconstructed trajectories, the performance of the 
tracking algorithm is hence widely influenced by 
the quality of particle detection results at high 
seeding concentrations. Using more than two 
cameras allows compensating the loss of precision; 
we designed here a feedback schema which uses 
multi-view information to correct uncertainty in 
particle positioning (Fig. 1). 

 
Fig. 1. A Global schema illustrating the proposed 

feedback approach. 

Bubble detection consists of analyzing the recorded 
particle images and calculating the bary-center of 
each particle on the image. The simplest manner to 
achieve this is to threshold the image by defining an 
intensity level to separate pixels belonging to 
particles and pixels of background, this binarization 
of the image can be performed automatically (Otsu 
et al. (1979)) by minimizing the interclass-variance 
of the separated classes of pixels; although this is 
intuitive, a big loss of information is engendered by 
such methods due to noise and illumination issues 
as only intensity is considered and not any other 
feature proprieties. Techniques like calculation of 
the optical flow equation (Shindler et al. 2010) and 
pattern recognition (Takehara et al. 2000) were 
proposed. These methods detects peaks in grey 
level intensity but still too sensitive to noise. Neural 
network particle algorithm was proposed to 
improve accuracy when the images are noisy 
Ouellette et al. (2006). Three-pinhole defocusing 
concept was employed in Yoon et al. (2006) for 
micro PIV to detect particles, yet low light intensity 
caused by pinholes is a drawback of the developed 
method, furthermore, the calibration step have to be 
repeated for different fluids. 

On the other hand, the particle pairing is another 
challenging problem. The particle image 
information acquired at each time steps is used for a 
reliable particle pairing, in PTV study case the 
particles used are identical soap bubbles filled with 
helium, this makes the reconstruction of particle 
trajectories particularly difficult. In an attempt to 
remedy this, a nearest neighbor algorithm was first 

used (Malik et al. 1993); this approach works only 
at low densities. Alternatively, (Pereira et al. 2006) 
investigated neural networks and relaxation 
methods, relaxation schema was found to be robust 
and much faster than neural networks. The 
prototype of multi-frame tracking algorithms was 
described in Guezennec et al. (1994). Ouellette et 
al. (2006) and Cierpka et al. (2013) proposed then 
4-frame predictive algorithms for 3D PTV using 
extrapolation based on proprieties of the flow like 
acceleration and velocity. Regression instead of the 
extrapolation was later employed (Biwole et al. 
2009, Li et al. 2008) to recover longer trajectories. 
Temporal tracking algorithms were developed 
based on polynomial. Cardwell et al. (2011) 
employed a variable pair-matching algorithm which 
utilizes displacement preconditioning and estimated 
particle proprieties. Suziki et al. (2012) algorithm 
optimizes the data input temporally and spatially by 
introducing a reduced-order Kalman filter. Several 
other tracking techniques such as the combined 
extended Kalman filter and nearest neighbor 
standard filter approach was described in Straw et 
al. (2010). 

Kalman filtering was recently used in this field to 
predict the particle trajectory in PIV algorithm 
(Suzuki et al. 2012). While these works are devoted 
to PIV methods and generally only small-scale 3D 
flows, this paper highlights the problem of 
enhancing performance of temporal tracking for 3D 
PTV methodology; a new tracking algorithm based 
on fuzzy Kalman filtering and is proposed herein. 

2. OUR METHOD 

In what follows, the basic principles of our 
approach is presented as well as the numerical 
experiments, which show accurately determined 
and tracked particles in a stable manner over time. 

2.1 Multi-scale Particle Positioning 

The recorded images include particles of variable 
sizes; in fact, in the case of PTV the injected 
particles are 1.3mm-3.8mm helium filled soap 
bubbles, also, their size depends on their distance 
from the camera. On the other hand, intensity and 
shape of particles pixels vary with the way particles 
are enlightened. This makes particle detections step 
a challenging step, besides, a precise positioning of 
the tracked bubbles significantly enhances matching 
process functioning. In this case, a simple 
barycenter calculation is not efficient due to 
overlapping problem. 

Using more than two cameras enables us to 
compensate the loss of precision; hence we 
designed a feedback schema witch uses multi-view 
information to correct uncertainty in particle 
positioning. The particles detected by our multi-
scale method are classified according to their 
reliability; two classes of responses were defined: 

1. One-view particles: isolated and well viewed 
particles are detected by the method as one 
position corresponding to their barycenter, in 
these cases no verification is needed and 
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positions are tagged a detected particles. 

2. Two-view particles: isolated bright pixels are 
considered as potential particles, they may be 
due to poorly enlightened bubbles or bubbles 
situated on the border of the observed area, in 
these cases we need to verify if the bubble is 
visible bye other cameras, if not it is concluded 
that the pixel is aberrant. 

These positions are used as feedback information; it 
allows correcting the first iteration of bubble 
positioning. At the second iteration, only the 
positions classified at least once as One-view 
particles will be kept. 

 

Fig. 2. (3D/2D) Gaussian function compared to 
particle image. 

The need to implement robust detection algorithm 
led us to improve our method by developing a 
multi-scale based approach to detect features, for 
this purpose, we employed a pattern recognition 
technique using the cross-correlation between 
artificial patterns close to the real particle 
appearance and an interrogation region in the 
particle image plane. The prototype of this method 
is described in Mann et al. (2000), here, a particle 
pattern approximates an ‘‘ideal” particle image as a 
two dimensional Gaussian distribution template 
with a standard deviation δ, see Fig. 2. 

Furthermore, the particles partially overlapped (see 
Fig. 2), this constitutes regions of bright pixels with 
a shape resulting from adding two or more Gaussian 
functions. Unlike isolated particles, overlapping 
particles cannot be detected when scanning image 
using a Gaussian pattern. Thus it is clear to see that 
a blob detection technique is more suitable to our 
problem. These mathematical methods aim to 
extract regions in image that differ in brightness, 
color and other properties, in fact these regions of 
interest, also known as blobs, have a high degree of 
variation in all directions hence the values of their 
pixels vary according to well defined functions (a 
two dimensional Gaussian distribution in our study 
case as concluded before). 

2.2 Fuzzy Kalman Filter for temporal 
tracking 

In this section, it is shown that the particle 
image information acquired at each time step 
can be used for a reliable particle pairing and 
tracking by introducing a new kind of 
estimator called the Fuzzy Kalman Filter 
(FKF). The Kalman filter is used to optimally 
estimate the new position of the particles 
based on their actual positions, this is done 

through a simple mechanical model of the 
particles evolution combined with a 
measurement process. The initialization step is 
usually performed via the first image camera 
samples. However, some uncertainties are 
always present. In our approach, this is taken 
into account by representing the initial particle 
positions with multivariate fuzzy sets. In this 
way, the algorithm starts in a state of fuzzy 
knowledge about the particle matching; but, as 
we accumulate information through the 
measurement process, we improve the particles 
location estimate. 

In what follows, some basic principles of the 
standard Kalman filter are given and the extended 
to its fuzzy version in the context of particle 
tracking. 

Roughly speaking, a Kalman filter is an optimal 
recursive data processing algorithm (Maybeck 
1979). The optimality must be understood as the 
best estimate which we can make according to the 
model used for the measurement process as well as 
the data used to compute; this estimate it is based 
on the state-space model describing the evolution of 
the system of interest. These state-space and 
measurement models are represented by the 
following linear discrete stochastic equations 
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
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The noise vectors are assumed to be independent 
(of each other), white, and with normal probability 
distributions dε(k) ~ N(0,Q), dm(k) ~ N(0,R). These 
matrices are assumed to be known, in fact as we 
will see, Q and R can be be used as tuning 
parameter of the Kalman filter. The objective is to 
design an optimal estimator which combines a prior 
estimation of ε(k) and the measurement m(k), so 
that the resulting posterior estimate is optimal in a 
sense which will be defined further. 

The Kalman filter is then given by: 
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The optimal Kalman gain K is given by the 
stationary solution of a Ricatti equation obtained 
when the aim of the optimization is that the 
expectation of the posterior estimation error is zero 
and its variance is minimal. In what follows we 
present a guideline on the choice of the matrices Q 
and R. 

As said before, the matrices Q and R can be 
adjusted by the user according to the confidence 
placed in the prediction or measurement phase. 
When the largest eigenvalue of Q is very small 
compared to smallest eigenvalue of R this mean that 
a great importance is accorded to the prediction 
phase, in other words we are confident with the 
precision of the model used to represents the system 
under study. This means also that we are not very 
confident with the measurement process. When the 
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smallest eigenvalue of Q is big compared to the 
largest eigenvalue of R, this mean that a small 
importance is accorded to the prediction phase, in 
other words we are not too much confident with the 
accuracy of the model and a great importance is 
accorded to the measurement process. 

The figure Fig. 3 illustrates, in two dimensions, the 
problem of particle tracking: knowing the 
coordinates of the particle pi at the time instant k, 
where is this particle at the time instant k+1? The 
knowledge of the coordinate of the particle at any 
time allows constructing the trajectory followed by 
the particle. 

 

Fig. 3. 2D representation of the particles image 
for two successive time instants .The coordinate 
of the particle pi is known at time instant k but 
where is the particle pi at the time instant k+1? 
This is the problem of particle tracking which is 

not at all obvious notably when the density of 

particle is high. 

The solution to this problem is not at all obvious 
notably when the density of the particle is high 
and/or the sampling time Te is high. To solve this 
problem used a Kalman filter with a simple 
mechanical model of the particle evolution 
combined with a measurement process. 

The position of a particle pi is defined by its spatial 
coordinates: pi(t)=(xi(t), yi(t), zi(t))

T. The velocity of 
the particle is given by its time derivative d/dt((xi(t), 
yi(t), zi(t))

T=(vxi(t), vyi(t), vzi(t))
T. By application of 

the fundamental principle of the dynamic we get the 
equation of motion of a particle pi according to one 
direction, say x-direction: 
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In equation (3), Fxi(t) is the unknown force acting 
on the particle pi for x-direction. 

The same equations are applied for the other 
directions and are omitted for the simplicity of the 
exposition. 

To make use of the Kalman filter we have to 
discretize the continuous time equation of 
movement (3): 
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The complete dynamic equation including the 
dynamic evolution of the state vector together with 
the measurement process is then given by: 
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Which is in the required form to apply the Kalman 
filter. 

 

Fig. 4. The initialization procedure is realized 
from the first frames taken at the time instant 

k=0 and k=1. The particle pairing is based on a 
proximity criterion. 

 

2.3 Initialization of the Kalman temporal 
tracking algorithm 

As shown in the figure Fig. 4., to take into account 
the uncertainty in the particle pairing, we consider 
around each particle pi(k-1) a sphere of uncertainty 
of radius ρ. For ρ=0 we recover the Kalman particle 
tracking described above. We associate to pi(k-1) 
the two near particles denoted pi

+(k-1) and pi
-(k-1), 

we can then define for each direction an interval of 
uncertainty. For instance, in the x-direction the 
intervals of uncertainties Ix

i(k-1)and Ii
vx(k-1) are 

defined between the minimum and maximum of 
coordinates and velocities of pi(k-1), pi

+(k-1) and pi
-

(k-1). 

We will assume that the real position and velocity 
of the particle pi is distributed with a confidence 
function over the intervals Ix

i(k-1)and Ii
vx(k-1) 

respectively. In what follows, the confidence 
function will be referred to as membership function 
associated to some fuzzy sets. Here, three fuzzy sets 
are associated to the interval Ix

i(k-1) namely: 
Lower, Medium and Upper (see Fig. 5). The same 
fuzzy partition is associated to Ii

vx(k-1), it is omitted 
here for simplicity. 

 

Fig. 5. Fuzzy sets associated to the interval Ix
i(k-

1) and Ii
vx(k-1). 

According to what has been said before, the fuzzy 
Kalman filter is defined via a fuzzy rule base 
associated to the fuzzy partition defined above. 
Note that this fuzzy Kalman filter is similar to the 
Takagi-Sugeno fuzzy model adopted fuzzy control 
area. However our approach is used in an entirely 
different context and has nothing to do with fuzzy 
modelling. With this fuzzy Kalman filter three 
predictions are weighted by the center of the 
uncertainty sphere. The final prediction is realized 
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by a weighted average of these three predictions 
(standard defuzzification). 

3. VALIDATION 

Two data sets were chosen here to validate our 
approach; these benchmarks fit our purpose of 
investigation very well, they provide 3D flow 
trajectories of various lengths: 

1. Synthetic data: Data set 352 are from Standard 
PIV Images project developed by the 
Visualization Society of Japan (Okamoto et al. 
(2000)), this describes a jet flow impinging on a 
wall, about 300 particles were observed at each 
time frame. 

2. Experimental data: This was provided by [1], it 
describes a particle flow composed of 310 
trajectories observed during 200 frames. 

Table 1 FKF application results 

 
Data set 

Correct 
ratio 

Correct 
trajectory 

ratio 

VSJ data 
set 352 

0.98 0.94 

Wesleyan 
U. data set 

0.96 0.92 

The proposed FKF is used to track particles during 
their displacement; it has been applied to the 
synthetic and experimental data, table 1. shows, for 
each data set, the “correct ratio” described in Li et 
al. (2008), this ratio shows the percentage of 
correctly tracked particle images, the ratio of the 
number of correct tracked trajectories divided by 
the total number of input was calculated as well. 

The detection error is calculated for both data sets, 
figure Fig. 6 shows the distribution of this error 
versus the length of particles in the image, the 
detection algorithm parameters were fixed for each 
data set as follows: 

1. The scale interval A = [0.25, 1.25] for LoG 
based calculation and α = 0.25 for Hessian 
based extraction. 

2. The scale interval A = [0.3, 1.3] for LoG 
based calculation and α = 0.3 for Hessian 
based extraction. 

Fig. 6. Distribution of the detection process 
error. 

 
 

4. CONCLUSION 

A new FKF based algorithm is proposed here for 
particle tracking, it was also designed to take into 
account uncertainties at initial state and errors due 
to bad bubbles positioning are efficiently avoided 
using a modified multi-scale blob detection 
approach combining two different measures. 
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