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ABSTRACT 

A numerical study was conducted to investigate thermal non equilibrium natural convection heat transfer in a 
square porous cavity with partial active vertical walls. The left vertical side wall is partially heated while the 
right side wall is partially cooled. The remaining portions of the vertical side walls as well as the top and 
bottom of the cavity are adiabatic. Depending on the location of hot part and cold part, respectively on the left 
and right side walls, different cases may be obtained. In this study we are limited to two cases: Upper-Lower 
and Lower-Upper active walls. The Brinkman Forchheimer extended Darcy model is used in the present 
study. Moreover, the two equations model is used to take into account separately local temperatures of the 
fluid and the solid. The resulting governing equations are solved by finite volume method and the standard 
SIMPLER algorithm. Numerical experiments have been carried out for a wide range of parameters, namely: 
Rayleigh number, Darcy number, inter-phase heat transfer coefficient and modified conductivity ratio. The 
obtained results reveal that the location of the hot and cold parts on the vertical side walls has a significant 
influence on the flow structure and the rate of heat transfer within the enclosure. 
 
Keywords: Partially active walls; Non-Darcy Brinkman-Forchheimer model; Numerical approach; Local 
thermal non-equilibrium model. 

NOMENCLATURE 

CF coefficient of form drag f thermal diffusivity of fluid 

Da Darcy number = K/L2  thermal conductivity ratio 
f sεk / (1 ε)k  

F  Forchheimer number = 
1/ 2

FC L / K  s non-dimensional temperature of solid

K  permeability f non-dimensional temperature of fluid 
L cavity length  porosity 

H inter-phase heat transfer coefficient f
2 k/hL    Subscripts 

h volumetric inter-phase heat transfer coefficient s solid 
s thermal diffusivity of solid f fluid 

 
1. INTRODUCTION 

Different types of porous materials have been used 
in convective flowdue to wide range of applications 
in engineering such as geothermal energy, compact 
heat exchangers, buildings insulation, agriculture, 
cooling of electronics devices and solar receivers. 
Detailed reviews can be found in the books by 
Nield and Bejan (1999), Ingham and Pop (2002) 
and Vafai (2000), to name a few.  

In most of these applications, the local temperature 
difference between the two phases is neglected. 
That is, there is no heat transfer from one phase to 
another. Such situation is called local thermal 
equilibrium (LTE). When the Rayleigh number is 
important or when we are in the presence of a faster 
heat transfer due to a significant flow velocity as in 
the case of storage of thermal energy derived from a 
solar energy conversion system, where a heated 
fluid flows from the solar collectors into a bed of 
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rocks. In such situation, one can expect that the 
local thermal equilibrium becomes invalid. Thus, 
the porous medium is said to be in local thermal 
non-equilibrium (LTNE) state. Hence, a significant 
temperature difference between the fluid and solid 
phases is observed.  

From a practical point of view the local non-
equilibrium thermal theory plays an important role 
in porous media such as microprocessor computers 
using porous metal foams (Calmidi and Mahajan 
2000), drying/freezing of foods (Zorlia 
andRubiolo2005), heating microwave (Dincov et al. 
2004), etc. 

The majority of the available studies have 
considered thermal equilibrium between solid 
porous matrix and saturated fluid whereas the 
analysis devoted to porous media as a non-
equilibrium system are to our knowledge scarce. 
Saeid (2004) has analyzed mixed convection in a 
vertical porous layer by considering the non-
equilibrium model. He found that for a mixed 
convection region, the total average Nusselt number 
is more for lower Rayleigh number than that for 
higher Rayleigh number. Baytas and Pop (2002) 
have investigated steady state flow and heat transfer 
characteristics in a square cavity filled with a 
porous medium assuming a non-equilibrium model. 
They found that the behavior of the flow 
characteristics is substantially modified, especially 
those of the local heat transfer coefficients. Vitro et 
al. (2009) have presented an experimental study to 
elucidate the several causes of local thermal non-
equilibrium, even in steady or quasi steady heat 
transfer processes in saturated porous media, and to 
evaluate the influence of structural characteristics of 
porous media and the presence of surfactant in the 
saturating liquid phase. Wu et al. (2015) have 
conducted a numerical simulation to study natural 
convection in a rectangular cavity filled with a heat-
generating porous medium by using the two-energy  
equation model. The top and bottom walls of the 
enclosure are adiabatic and the left and right walls 
are partially heated and partially cooled by 
sinusoidal temperature profile. It is found that the 
phase deviation has significant influence on fluid 
flow and heat transfer in the porous cavity. 
Furthermore, they found that the increase of inter-
phase heat transfer coefficient leads to faster 
reduction of dimensionless total heat transfer rate 
with the increase of periodicity parameter. 
Badruddinet al. (2007) numerically investigated 
heat transfer by convection, conduction and 
radiation in a saturated porous medium enclosed in 
a square cavity by using a non-equilibrium model. 
Effect of various parameters such as the inter-phase 
heat transfer coefficient, modified conductivity 
ratio, radiation and Rayleigh number on local and 
average Nusselt numbers, isotherms and streamlines 
is analyzed. Pipal and Bera (2013) numerically 
investigated the influence of local thermal non-
equilibrium state between solid porous matrix and 
saturated fluid on natural convection in a square as 
well as slender enclosure. They found that, in both 
(LTE as well as LTNE states), maximum heat 
transfer takes place at a minimum value of aspect 

ratio A0 of A. Furthermore, in LTE State A0 is 
almost independent of LTE parameter and lies in 
between 1 and 1.5, however, the same under LTNE 
state is function of modified thermal conductivity, 
and the value of A0 may be as large as 6. Baytas 
(2003) performed a numerical study on natural 
convection of a heat-generating porous cavity with 
isothermally cooled walls using thermal non-
equilibrium model, and the heat generation in the 
porous cavity takes place within the solid phase. 
Abdedou and Bouhadef (2015) have conducted a  
numerical study in the perspective to determine 
under what circumstances the local thermal 
equilibrium is valid in forced convection through a 
porous channel, and to compare between two most 
local thermal non-equilibrium criteria used in the 
literature. They showed that low values of the solid-
to-fluid thermal conductivity ratio, Reynolds and 
Prandtl numbers and high values of the porosity and 
Biot number are found to have favorable effects to 
satisfy the local thermal equilibrium between solid 
and fluid phases.   

The aim of this work is to investigate the non-
Darican natural convection heat transfer in a square 
porous cavity with partial active vertical walls using 
a thermal non-equilibrium model. To the best of our 
knowledge, natural convection through porous 
medium confined in a square cavity partially heated 
and partially cooled under the assumption of LTNE 
has not been reported so far. 

2. PHYSICAL MODEL  

A schematic diagram of the two dimensional square 
cavity of length L, under the present investigation, 
is shown in Fig. 1(a) and Fig. 1(b for the two 
studied cases: Top-Bottom and Bottom-Top 
locations of heating and cooling portions of the 
vertical side walls), respectively. A portion of the 
left wall is kept at temperature h and a portion of 
the right wall is at temperature c with h c. The 
remaining parts of the left and right walls as well as 
the horizontal walls of the cavity are insulated. The 
porous medium is considered to be homogenous 
and isotropic. The fluid is assumed to be 
incompressible and the gravity acts in the 
downward direction. The velocity components are 
taken in the x and y directions, respectively. The 
porous medium is assumed to be in local thermal 
non-equilibrium state with the saturating fluid, and 
the generalized non-Darcy model reported in Bera 
et al. (2014) is adopted for modeling the fluid flow 
in the porous cavity. The thermal properties of the 
fluid are kept constant except the density in the 
buoyancy term in the momentum equation, which is 
satisfied by the state equation (Boussinesq 
approximation). 

With these assumptions, the conservation equations 
for mass, momentum and energy for steady, two 
dimensional flow in an isotropic, homogenous 
porous medium can be written in non-dimensional 
form using the dimensionless variables: 
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characteristics. The values of the above 
dimensionless parameters are varied in the range of  
103 Ra 106, 0.1 100,10-1 Da 10-6 and 
0H1000, while the Prandtl number (Pr), the 
Forchheimer number (F) and the porosity () are  
kept constant at 0.7, 1 and 0.9, respectively. 

In order to consider the effect of non-dimensional 
inter-phase heat transfer coefficient (H), Fig. 2 
shows the streamlines and isotherms for solid (on 
the right) and fluid (in the middle) for the case with 
Bottom-Top heating and cooling. The other 
parameters are all kept constant as Da=10-3, 
Ra=106,  =1. As can be seen from the above figure 
that only the clockwise rotating convective cells 
appear in the streamlines plot whereas the variation 
of maximum magnitude of streamlines as a function 
of H is significant. For the fluid contours, no 
significant change is observed. As H is increased 
from 1 to 1000 modes of heat transfer in the solid 
changes from conduction to conduction as well as 
convection. Consequently, a significant change in 
the angle between solid temperature contour and 
sidewall is observed. At H=1000, the equilibrium 
between two phases is globally verified in view of 
the wide resemblance between the solid and liquid 
contours. It should be noted that the increase in H is 
associated with an increase in the rate of heat 
transfer from the fluid phase to the solid phase. As a 

result, the local Nusselt number for the fluid is 
decreased with the increase of H while the 
corresponding one for the solid is increased as can 
be observed from Fig. 3. Besides that, Nuf reveals 
an increasing trend at the beginning of the heated 
zone and then undergoes a monotonic decrease until 
the end of the heated zone. The corresponding one 
for the solid phase shows a quasi-uniform variation 
at smaller values of H on a large part of the heated 
zone. An increase of Nus is observed as H is 
increased, while it decreases along the heated zone 
(Y direction) regardless of the H values. 

In order to investigate the effect of the location of 
the heating and cooling zones, we present in Fig. 4 
the effect of H on streamlines and isotherms for the 
case with Top-Bottom heating and cooling. A 
careful examination of this figure reveals that the 
location of heating-cooling has a major influence on 
the streamlines. The trend to form a two flow cells 
is noticed for this case for all values of H. The 
center of each cell shifted toward the adjacent 
thermally active portion. However, the intensity of 
the recirculation cell for this configuration remains 
less than that relating to the case with Bottom-Top 
heating and cooling. On the other hand, the 
temperature distribution for the solid and fluid 
phases is modified to be parallel to the horizontal 
walls at the center of the cavity at large values of H.

 

Table 2 Comparison of average Nusselt numbers (solid and fluid) and of average Sherwood number for 
a square porous cavity with Pr=0.7,  =10 and F=0 

H Da Ra Nuf Nus Sh 
Present Beraet al.(2014) Present Beraet al.(2014) Present Beraet al.(2014) 

 
0.1 

10-2 104 2.4897 2.4916 1.0320 1.0321 1.0380 1.0393 

10-4 106 4.7366 4.8110 1.0470 1.0472 1.1351 1.1359 

 
1 

10-2 104 2.4680 2.4698 1.2608 1.2617 1.0387 1.0397 

10-4 106 4.7039 4.7774 1.3926 1.3948 1.1361 1.1369 

 
10 

10-2 104 2.4300 2.4195 1.9507 1.9514 1.0411 1.0406 

10-4 106 4.6166 4.6882 2.6266 2.6429 1.1387 1.1393 

 
Fig. 5 shows the fluid (Nuf) and solid (Nus) local 
Nusselt numbers for Da=10-3, Ra=106 and  = 1. It 
is obvious that the local Nusselt numbers decrease 
from the beginning to the end of the heating zone 
contrary to the case with Bottom-Top heating and 
cooling where an increasing trend in the beginning 
of the heated zone is observed. At the end of the 
heated portion, both Nusselt numbers tend to values 
close to zero. In addition, it can observed that the 
fluid local Nusselt number (Nuf) is practically 
independent of the inter-phase heat transfer 
coefficient, while the corresponding one of the solid 
(Nus) shows a certain degree of dependence. It is to 
be noted that for H=1, Nus is equal to unity over a 
large part of the active zone indicating that the heat 
transfer is purely due to conduction. 

The effect of the location of partial thermally active 
vertical walls and inter-phase heat transfer 
coefficient on the dimensionless solid-to-fluid 
temperature difference at the horizontal mid-plane 

(Y =0.5) and at the vertical mid-plane (X =0.5) of 
the cavity is presented in Fig. 6. By way of 
comparison, we present the case of total heating. It 
is clear that the inter-phase heat transfer coefficient 
(H) has significant influence on the solid-to-fluid 
temperature difference. As H increases, the solid-to-
fluid temperature difference decreases and 
approaches zero for large values, indicating that the 
LTE state is verified anywhere in the cavity. The 
maximum and minimum values of the solid-to-fluid 
temperature difference emerge close to the vertical 
active walls of the cavity. Whereas in the middle of 
the cavity a small effect is observed for all values of 
H where the solid-to-fluid temperature difference 
gets close to zero except for the case with total 
heating at the vertical mid-plane (X=0.5). At this 
position, the solid-to-fluid temperature difference 
decreases gradually from Y=0 to Y=1 at the point 
where the solid-to-fluid temperature difference is 
almost zero for all values of H. 
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H= 1 

   
H= 10 

   
H= 100 

 
Da = 10-3, Ra = 106 , γ = 1

Fig. 2. Effect of H on streamlines and isotherms for fluid (in the middle) and solid (on the right). 
Configuration:Bottom-Top. 

 

Fig. 3. Effect of H on Nusselt number distributions for fluid (Nuf) and solid (Nus), Configuration: 
Bottom-Top. 
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H =1 

   
H =10 

  
H =100

Da = 10-3, Ra = 106 , γ = 1
Fig. 4.  Effect of H on streamlines and isotherms for fluid (in the middle) and solid (on the right). 

Configuration: Top-Bottom. 
 

 
Fig. 5. Effect of H on Nusselt numbers for fluid (Nuf) and solid (Nus), Configuration: Top-Bottom. 

 
Fig. 7 illustrates the effect of H at different values 
of thermal conductivity ratio on the average 
Nusselt numbers for fluid and solid as well as the 
maximum absolute value of the solid-to-fluid 
temperature difference inside the cavity for three 
thermally active locations in which Da =10-3 and Ra 
=106. An overview of the figure reveals that the 
average Nusselt number for fluid decreases steadily 

with H for low values of . In the contrary, the 
average Nusselt number for the solid phase 
increases with increasing values of H. For , 
the average Nusselt number for the fluid phase 
becomes almost independent of H, while the 
average Nusselt number for the solid phase 
increases up to H 200 and then it becomes 
independent of H. 
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Top-Bottom heating 

  
Bottom -Top heating 

  

Total heating 
Fig. 6. Solid-to-fluid temperature at the horizontal mid-plane (Y= 0.5 on the left) and the vertical mid-

plane (X= 0.5 on the right) for different values of H at Da= 10-3, Ra= 106 and γ= 1. 

On the other hand, the difference between average 
Nusselt number of fluid and solid phases decreases 
with increase of and until both fluid and solid 
Nusselt numbers are equal. At this stage, the solid 
and fluid phases reach the thermal equilibrium state. 
Further, it is obvious that the heat transfer for the 
case with Bottom-Top heating and cooling produces 
a better heat rate compared to the case of Top-
Bottom heating and cooling. Moreover, the heat 
transfer rate relating to Bottom-Top heating and 
cooling is comparable to the corresponding one 
produced by the total heating case. Finally, the 

corresponding maximum absolute value of the 
solid-to-fluid temperature difference inside the 
cavity confirms the above findings.  

Fig. 8 shows the variations of average Nusselt 
number for fluid and solid with respect to Rayleigh 
number and the thermal conductivity ratio  for the 
two previous cases of thermally active locations and 
for the case with total heating and cooling. An 
overview of the figure reveals that the average 
Nusselt numbers for fluid and solid increase 
steadily with Rayleigh number. In particular, they 
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Bottom -Top heating 

 
Top-Bottom heating 

 
Total heating

Fig. 7. Average Nusselt number (on the left) and the maximum absolute value of the fluid-to-solid 
temperature difference (on the right) vs Hat Da= 10-3, Ra= 106 and γ= 1. 

increase steeply when Ra 105, whereas when Ra< 
104 both Nusselt numbers maintain a constant and 
uniform value which correspond to prevailing 
conduction heat regime. In fact, for this case (Ra< 
104), the Nusselt number for fluid and solid are 
almost equal to 0.5 for partially heating and cooling 
and 1 for total heating and cooling. Also, the results 
clearly show that at low the average Nusselt 
number for solid is constant and uniform 
irrespective of the Rayleigh number (0.5 for partial 

heating and cooling and 1 for total heating). The 
increase of thermal conductivity ratio   enhances 
heat exchange between solid and fluid phases, 
which can leads to thermal equilibrium state 
between the solid and fluid phases even though H is 
low (H=10) as one can see it for the case with 
 Again, it is clear that the minimum rate of 
heat transfer takes place when the arrangement of 
the heating-cooling is Top-Bottom, irrespective of 
Ra and and that the local thermal equilibrium is
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γ =0.1 γ =1 

γ =10 γ =100 
Fig. 8. Average Nusselt number vsRa for different values of γ at Da= 10-3, H= 10. 

the first achieved for a given value of Ra for this 
arrangement. 

Fig. 9 illustrates the variation of average Nusselt 
number with respect to Darcy number. It can be 
seen that the fluid and solid average Nusselt 
numbers remain almost constant up to Da =10-5 
irrespective of  and the locations of the thermally 
active zone. Beyond this value, they reveal an 
increasing and then undergone a quasi-uniform 
variation for Da10-3. It is interesting to observe 
that the difference between the fluid and solid 
Nusselt numbers in this case is higher than the 
corresponding one in Fig. 8 indicating that non-
equilibrium state prevails over a wide range of 
Darcy number irrespective of values. The effect of 
Forchheimer number on average Nusselt number is 
depicted in Fig. 10 for different values of thermal 
conductivity ratio γ. It can be observed from the 
figure that for the case with Top-Bottom heating 
and cooling, the Forchheimer number has no effect 
on the heat transfer rate of the solid phase and the 
liquid phase.. For the case with Bottom-Top and 
total heating and cooling, the effect of Forchheimer 
number on heat transfer rate is negligible. For this 
reason, the value of Forchheimer number has been 
fixed for all results obtained previously. Similar 
observation has been reported by Bera et al. (2014). 

5. CONCLUSION 

Numerical investigation using finite volume method 
is conducted to study the effect of partially heating-
cooling zones on natural convection in a square 
porous cavity under the influence of local thermal 
non-equilibrium state (LTNE). The analysis is 
mainly focused on the location of the heating-
cooling zones on the natural convection whitin the 
cavity as a function of control parameters, such as 
the inter-phase heat transfer coefficient, Darcy and 
Rayleigh numbers and the modified conductivity 
ratio. It was observed that: 
1. The arrangements of active portions play an 
important role on the fluid flow and heat transfer 
rate. 

2. The highest heat transfer rate was obtained for 
the Bottom-Top arrangement while the lowest heat 
transfer rate is obtained for the Top-Bottom 
arrangement. 

3. Heat transfer rate increases with increasing 
Rayleigh and Darcy numbers irrespective of 
heating-cooling location zones. 

4. For a given value of H and at low values of Ra 
and Da numbers, the local thermal equilibrium state 
between fluid and solid phases prevails whatever. 
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Fig. 9. Average Nusselt number vsDa for different values of γ at Ra= 106, H= 10. 
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Fig. 10. Average Nusselt number vs Forchheimer number for different values of γ at Ra= 106, Da= 10-3, 
H= 10. 
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the thermal conductivity ratio value (γ). By 
increasing the Da and Ra numbers the difference 
between Nusselt numbers increases and the rate of 
increases of this difference with respect to Da is 
more important than the corresponding one for Ra 

5. As H increases, the solid-to-fluid temperature 
difference decreases and approaches zero, 
indicating that the LTE state is verified anywhere in 
the cavity. 
6. In the case of total heating, the solid-to-fluid 
temperature difference (at X =1) decreases 
gradually from Y =0 to Y =1 where the solid-to-fluid 
temperature difference is almost zero for all values 
of H contrary to the case with partially heating-
cooling zones where the distribution of temperature 
difference varies symmetrically with respect to Y 
axis. 
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