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ABSTRACT 

In this paper, an analytical investigation and 3D numerical simulation are presented for the breakup of floating 

non-Newtonian droplets in a non-Newtonian fluid. The considered geometry is a T-junction with unequal-width 

branches that can generate droplets with un-equal size. There is a very good agreement between the analytical 

solution and numerical simulation results obtained in this research. Various quantities such as branches flow 

rate ratio, branches velocity ratio, droplet’s length in each branch, the whole length of the droplet, vorticity and 

pressure have been investigated during the breakup process in this study. The results showed that the branches 

flow rate ratio and the branches velocity ratio were constant during the breakup process. It was also observed 

that the length of the droplet in each of the branches and the whole length of the droplet increased linearly 

during the breakup process. Also, the vorticity has its maximum at the breakup moment.  

Keywords: non-Newtonian fluid; Asymmetric T-junction; Analytical solution; Numerical simulation; 3D, 

VOF. 

NOMENCLATURE 

k consistency index of non-Newtonian power-

law fluid 

Uc continuous fluid velocity 

LR length of right branch Ud droplet velocity 

LL length of left branch U fluid velocity in a branch 

n behavior index of non-Newtonian power-law 

fluid 

w channel width 

P fluid pressure σ surface tension 

Q volumetric flow rate Φ dimensionless quantity of the horizontal 

direction 

S droplet length in a branch Γ dimensionless quantity of the vertical 

direction 

t time   

 

1. INTRODUCTION 

Microfluidic processes are widely used in medical, 

Pharmaceutical, chemical, and other industries 

(Khoo et al. 2018; Xiong et al. 2018; Ruggeri et al. 

2018). Among the microfluidic processes, droplet-

based processes have particular importance (Maio 

and Dunlop 2018; Feng 2017; Mondal and Chatterjee 

2016). In these processes, there is a base fluid into 

which secondary fluids are added in the shape of 

droplets. Advantages of this method include: 

1. Droplets are not dissolved in the main fluid. 

2. Droplets have no contact with the wall. 

3. There is no droplet reaction with the wall 

Droplet-based processes involve various operations, 

such as breakup (KianiMoqadam et al. 2018), 

generation, coalescence (Rahman et al. 2019), 

mixing (Ahmadi et al. 2019), and control (Yang et 

al. 2018). 

In most droplet generation process, a T-junction is 

used to generate droplets (Liu et al. 2018). In this 

method, the secondary fluids are injected into the 

main fluid channel. As a result, secondary fluid 
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droplets are formed in the main fluid. In the droplet 

generation process, there are also methods for 

generating a large number of droplets at a given time 

(Yadavali et al. 2018). 

Various methods have been proposed for the breakup 

of droplets. In all these methods, an initial droplet is 

divided into two or more minor droplets. In some 

methods, a symmetric T-junction is used to breakup 

the droplet (Mora et al. 2018; Bedram and Moosavi 

2013). These methods can generate only a specific 

size of the droplet (because they divide the droplet 

into two equal parts). A T-junction can separate two 

droplets close to each other (Deshpande and Dekker 

2018). Using a T-junction with branches of unequal 

length, one can also divide a droplet or bubble into 

droplets of non-uniform size (Fu et al. 2014). The T-

junction with unequal-width branches can also 

divide an initial droplet into droplets of non-uniform 

size (Bedram and Moosavi 2011). By creating a 

wave, one can generate a droplet from the fluid of a 

channel (Hu and Cubaud 2018). By using a T-

junction with a valve, one can breakup an initial 

droplet into the droplets of the arbitrary size (Bedram 

et al. 2015a), there is also an analytical solution for 

this type of junction (Bedram et al. 2015b). Another 

method for generating unequal-sized bubbles is 

using a T-junction by which the initial bubble enters 

the system from one of the branches (Wang et al. 

2014). After breakup, the smaller part enters the main 

channel of the T-junction, while the larger one enters 

the other branch. Wang et al. (2014) experimentally 

investigated this method, finding that the minimum 

width of bubble had linear variation with time. Also 

their research showed that the length of the initial 

bubble had no special effect on the breakup process. 

In another way, by passing a bubble from a direct 

tube, the bubble is divided into smaller parts (Wang 

et al. 2017); the limitation of this method is that the 

generated droplets (after the breakup process) are 

located near each other; so we need another process 

for the separation of them. 

When a droplet is generated in the T-junction, large 

vortexes are formed inside it; this significantly 

increases the mixing inside the droplet, making the 

material in it well mixed (Cui et al. 2020). 

Amani et al. (2019) also studied the breakup of a 

bubble bypassing the bubble through a tube with 

varying cross-sections. Dai et al. (2017), on the other 

hand, examined the breakup of a bubble by passing 

the bubble through a hole. In their research, the 

bubble was floating in the non-Newtonian fluid. 

Further, Jejurkar et al. (2017) reviewed the breakup 

of the non-Newtonian fluid jet. However, the 

limitation of these three methods is that small and 

large droplets generated after the breakup are close 

together; therefore, another process is required for 

the separation of them. 

Some researchers have focused on non-Newtonian 

droplets generation and droplet generation in non-

Newtonian continuous fluid (Rostami and Morini 

2020, Zhao et al. 2020). One of the common methods 

for the generation of non-Newtonian droplets is 

using a symmetric T-junction in which the secondary 

fluid and the main fluid flow inside two 

perpendicular tubes. In this process, the secondary 

fluid is formed as droplets in the main fluid (Sontti 

and Atta 2017; Chiarello et al. 2017). In some 

studies, the generation of non-Newtonian droplets in 

a cross-junction has been investigated (Rostami and 

Morini 2018). 

The droplet breakup process has numerous 

applications in the pharmaceutical and chemical 

industries (for the production and transfer of the 

nanoliter units of different materials). On the other 

hand, the use of non-Newtonian fluids is also 

common in those industries. Therefore, processes are 

needed to study the breakup of non-Newtonian 

droplets. One of the effective methods for the 

breakup of droplets is using an asymmetric T-

junction.  

In the previous researches, the breakup of non-

Newtonian droplets in a T-junction with unequal 

widths has not been studied; so we focused on this 

subject in this paper. Therefore, the novelty of this 

paper is the investigation of the non-Newtonian 

droplet breakup in a T-junction with unequal width 

branches. The geometry of this paper can produce 

unequal non-Newtonian droplets from an initial 

droplet. Also, the continuous fluid is considered non-

Newtonian. The research method consists of the 

analytical solution and 3D numerical simulation 

using the VOF method. The analytical and numerical 

results of this study have a very good agreement. 

Also, the numerical results of this paper are in a close 

agreement with those of an analytical benchmark 

problem (Bretherton 1961). Also, grid independency 

and time step independency were checked for this 

study. By using the analytical solution of the present 

study, the flow rate ratio of branches, the velocity 

ratio of the fluid in the branches (for 3D geometry) 

and the droplet length during the breakup (for 2D 

geometry) were obtained. Also, the pressure 

distribution, velocity and vorticity inside the droplet 

at different moments during the breakup process 

were investigated. The results showed that the flow 

rate ratio of the branches and the velocity ratio of the 

branches were constant during the breakup process. 

It was also observed that the length of the droplet in 

each of the branches and the total length of the 

droplet increased linearly during the breakup 

process. The results also revealed that vorticity 

values in the regions near the droplet surface were 3 

to 7 times higher than those in the middle of the 

droplet (therefore, the mixing of the materials inside 

the droplet increased). Also, the maximum vorticity 

(after the start of the droplet deforming process in the 

center of the junction until the end of the process) is 

related to the moment when the droplet is broken up 

and the two new droplets are separated. 

2. SYSTEM GEOMETRY 

The geometry of the problem (T-junction with 

unequal widths) is shown in Fig. 1. Non-Newtonian 

continuous fluid flow (wherein the droplets float) 

enters the vertical branch, leaving the two horizontal 

branches. The cross-section of all channels is 

rectangular. Depth of geometry (in the direction 
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perpendicular to the paper) is 6µm. The width of the 

right branch is 19µm and that of the left one is 20µm. 

The input droplet length (the distance between points 

A and B in Fig. 1) is 60µm. The beginning and end 

of the droplet are circles with a radius of 9µm. The 

boundary condition of the input of the system is 

constant velocity, and the boundary condition at the 

outputs of the system (right and left branches) is 

constant pressure. The velocity fluid at the input of 

the system is 0.2m/s. The continuous fluid is a non-

Newtonian fluid with the consistency index k=0.001, 

a behavior index of n=1.1 and a density of 

1000kg/m3. The droplet is a non-Newtonian fluid 

with the consistency index of k=0.00125, the 

behavior index of n=1.1 and the density of 800kg/m3. 

Surface tension between the two fluids is 0.005N/m, 

with the contact angle of 180°. 

 

 

Fig. 1. Geometry of the T-junction with unequal 

widths. 

 

3. NUMERICAL SIMULATION 

The flow is incompressible. The continuity and 

momentum equations are as follows (White 2011): 
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where iu  is the vector of velocity and τij is the 

viscous stress tensor. For power law non-Newtonian 

fluids, the shear tress tensor can be written as in the 

following relations: 
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where η is the effective viscosity, k is the consistency 

index and n is the flow behavior index. In this 

research, VOF algorithm has been used for 

simulation of the two-phase flow.   and   are 

respectively, the average density and viscosity of the 

fluid obtained from the following relations: 

   1dc
 (3) 

   1dc
 (4) 

The subscript c is related to the continuous fluid and 

the subscript d represents the droplet.   is the 

volume fraction of the continuous fluid in each 

computational cell, such that 0 1  . For the 

precise location of the boundary, 0.5  , which is 

obtained by the Piecewise linear interface 

reconstruction method. The quantity of φ is obtained 

from the following relation: 
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The discretization of the momentum equations is 

done by the second order upwind method. The 

coupling of the pressure and velocity equations is 

established by the SIMPLEC algorithm. The 

convergence criterion is such that all residuals should 

be smaller than 0.001. The residuals are obtained 

from the following equation: 


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where X is a general variable in the cell P and N is 

the total number of cells in domain. nb refers to the 

neighboring cells of the cell P, and   is the constant 

part of the source term ( )c pS S S X   and the 

boundary conditions. 

The grid independency is done by solving the 3D 

breakup problem. Droplet profiles at the moment of 

deforming in the center of the junction and in 

different grid sizes were compared. The comparison 

results are presented in Fig. 2. 

As shown in Fig. 2, for the grid with more than 

104880 nodes, the results are independent of the grid. 

 

 

Fig. 2. Grid independency (3D simulation) for 

the moment at which the droplet is deformed in 

the center of the junction. 

 

Bretherton (Bretherton 1961) presented an analytical 

solution for the velocity of a floating droplet in the 

main fluid moving through a channel. The 

Bretherton relation is   3/2
329.11  UUU c

, where U is the velocity of the droplet, and  , 
c  

and U  are the surface tension between the two 

fluids, the viscosity, and the average velocity of the 

continuous fluid, respectively. In order to validate 

the 3D simulation of the present paper, the problem 

of Bretherton is simulated and its results are 

compared with the analytical relation of 

Brwetherton, as can be seen in Fig. 3. This showed a 

very good agreement (for the Bretherton problem 

and the grid independency, the fluid viscosity of the 
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droplet and continuous fluid is considered 0.001Pa.s 

and 0.00125Pa.s, respectively). 

 

 

Fig. 3. Comparison of Bretherton’s analytical 

relation (Bretherton 1961) for the velocity of the 

droplet moving in a channel with the present 3D 

numerical study. 

 

4. ANALYTICAL SOLUTION 

In this research, an analytical solution for a T-

junction with unequal-width branches has been done. 

One of the novelties of this research is presenting an 

analytical theory for the formulation of some non-

Newtonian droplet breakup parameters. Also, a 3D 

numerical simulation is done to investigate further 

parameters of the breakup process. It should be noted 

that there are a few analytical solutions for the 

breakup process (e.g. Leshansky and Pismen 2009; 

Bedram et al. 2015b). Each of these analytical 

solutions presents a few parameters of the breakup 

process. In other words, an analytical solution cannot 

formulate all parameters of the breakup process. 

However, these analytical solutions are very useful 

and important because they present the exact 

behavior of the quantities and can be used as the 

benchmark problems. Therefore, the analytical 

solution of this paper formulates some breakup 

process parameters. Further parameters are 

investigated using a 3D numerical simulation. 

The geometry of the problem is a T-junction that has 

branches with a rectangular cross section (Fig. 4). 

Figure 1 shows the lengths and widths of the 

channels. Depth of the geometry (in the direction 

perpendicular to the paper) is 6 µm. 

 

 

Fig. 4. Geometry of the T-junction with unequal 

width branches. 

For the non-Newtonian fluid that flows within a 

channel, the Reynolds number is defined as
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h
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Where   is the fluid density, U is the average 

velocity of the fluid in the tube, k is the consistency 

index, 
4
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A
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P
  the hydraulic diameter, and n is 

the non-Newtonian flow behavior index. Also, 1c  

and 2c  are functions based on the shape of the 

cross-section of the channel. On the other hand, for 

a non-Newtonian fluid inside the channel, the 

friction factor will be as f=64/Re (Muzychka and 

Edge 2008). 

The pressure of the fluid at the system outlet is 

equal to the ambient pressure. Therefore, the 

pressure drop in the two sub branches will be the 

same (Δ ΔL RP P ) the subscripts R and L represent 

the right and left branches, respectively. The 
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(7) 

Where U is the continuous fluid velocity in the 

channel, L is the channel length, A and P are the area 

and perimeter of the branches cross sections, 

respectively, and the subscripts R and L represent the 

right and left branches, respectively. 

The geometry of the problem is such that after the 

breakup of the initial droplet, the smaller droplet 

enters the right branch and the larger droplet enters 

the left one. Therefore, the “volume ratio” quantity is 

defined as 
LR  / , where 

R  and 
L  are the 

volume of the droplet entering into the right and left 

branches, respectively. In the case of droplet breakup 

in the T-junction, it can be assumed that the ratio of 

the volume of the two generated droplets is equal to 

that of the volumetric flow rate of the two junction 

branches (Link et al. 2004). So, we have 
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where RQ  and LQ  are the 

volumetric flow rate in the right and left branches, 

respectively. Therefore, the ratio of the volume of the 
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Inlet flow rate ( )inQ  equal to the sum of the branches 

flow rate (Qin=QR+QL). Therefore, we have: 
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We can calculate the ratio of the right branch velocity 

to the inlet fluid velocity by using the relation Q=UA, 

as follows: 

L

in

in

L

in

L

R

in

in

R

in

R

A

A

Q

Q

U

U

A

A

Q

Q

U

U
  

(10) 

For channels with a rectangular cross section, the 

aspect ratio, indicated with ε, is defined as the 

smaller side to the larger side of cross section and 

the c1 and c2 values are obtained based on the aspect 

ratio. According to the geometric sizes (Fig. 1),  

we have εR=0.3158, εL=0.3, PR=5×10-5m, 

PL=5.2×10-5m, AR=1.14×10-10m2, AL=1.2×10-10m2, 

Ain=1.2×10-10m2, and LR=LL=100×10-6m that P and 

A are the perimeter and area of the cross section, 

respectively. L is the branch length. With the aspect 

ratio (ε) for each branch, the values c1 and c2 

become as (c1)R=0.29389, (c1)L=0.29914, 

(c2)R=0.78932 and (c2)L=0.79536 (Muzychka and 

Edge 2008). In this research 1.1.n   Therefore, by 

substituting the geometric parameters in Eqs. (7) 

and (8), we have UR/UL=0.9872 and 

QR/QL=0.93784. Also, by substituting these values 

in Eqs. (9) and (10), we will obtain QR/Qin=0.484, 

QL/Qin=0.516, UR/Uin=0.5095 and UL/Uin=0.516. 

Figure 5 presents the analytical and numerical 

results of the ratio of the right branch flow rate to 

the left branch flow rate ( )R LQ Q  the right branch 

flow rate to the inlet flow rate ( )R inQ Q  and the 

left branch flow rate to the inlet flow rate ( )L inQ Q  

during the droplet breakup process. As can be seen, 

the ratio of the branch flow rate is constant in time. 

This is useful for industrial applications of the 

breakup of droplets since, in the pharmaceutical, 

chemical and petrochemical industries, the 

generation of a large number of equal sized droplets 

is important. On the other hand, it has been 

previously stated that the ratio of the volume of the 

generated droplets in the geometry of this paper is 

equal to that of the flow rate of the right branch to 

the left one. Now, if the ratio of the flow rate of 

branches remains constant over time, the ratio of 

the volume of generated droplets will not change 

with time, which is a desirable phenomenon. In 

addition, according to the figure, the flow rate of 

the right branch is about six percent lower than that 

of the left one. This is because the right branch, due 

to its lower width, has higher hydraulic resistance; 

so, a smaller percent of the flow rate of the inlet 

channel enters the right branch and the greater 

percent enters the left one. According to the figure, 

the analytical and numerical results of the flow rate 

ratio of the branches have a very good agreement. 

 

 

Fig. 5. Analytical and numerical results of the 

flow rate ratio of the branches during the 

droplet breakup process. 

 

Figure 6 represents the analytical and numerical 

results of the right branch velocity to the left branch 

velocity ( )R LU U  and right branch velocity to the 

inlet channel velocity ( )R inU U  and the left branch 

velocity to the inlet channel velocity ( )L inU U  

during the droplet breakup process. As can be seen, 

the fluid velocity ratio in branches does not change 

over time. As can be seen, fluid velocity in the right 

branch is about one percent lower than that the left 

one. The difference between the velocity of the 

right and left branches (1% according to Fig. 6) is 

less than that between the flow rate of the right and 

left branches (6% according to Fig. 5). It is since 

the flow of the right branch is less than that of the 

left one. So, according to Eq. (10), the percent of 

difference in the right and left branches velocity 

will be less than that between their flow rates. It can 

also be observed that the analytical and numerical 

results of the ratio of the branches velocities have a 

very good agreement. 

 

Fig. 6. Analytical and numerical results of the 

velocity ratio of the branches during the droplet 

breakup process. 
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As the droplet deforming occurs at the junction 

center, at a specific moment, the droplet becomes as 

shown in Fig. 4. This moment is considered as the 

initial time of the breakup process (t=0). As can be 

seen in Fig. 4, the volume of the droplet of the right 

branch (
R ) is equal to that of the ABCA part. The 

volume of droplets in the left branch (
L ) is equal 

to that of the ADCA part. As already stated, for the 

droplet breakup in a T-junction, we can assume that 

the ratio of the volume of the two generated droplets 

in the branches is equal to the flow rate ratio in the 

two branches (Link et al. 2004). So, as can be seen 

in Fig. 4, we have 
LRLR QQ //  . The value 

LR QQ / was obtained as shown in Eq. (8). We 

know that the sum of 
L  and 

R  is equal to the total 

volume of the droplet (
in ). Therefore, we have 

/ /L in L inQ Q    and / ,/R in R inQ Q   which 

can be obtained from Eq. (9). 

Our previous paper (Bedram et al. 2015a) indicated 

that in the droplet breakup problems, 2D and 3D 

results are very close. So, to shorten the analytical 

computations, we used the 2D geometry for the rest 

of the analytical solution. 

Dimensions of the 2D geometry are exactly as shown 

in Fig. 1. Several studies have already shown that the 

end of the droplet (i.e., the location of the points B 

and D in Fig. 4) is in the form of semicircles whose 

diameter is approximately equal to the channel width 

(Leshansky and Pismen 2009). So, by applying Eq. 

(9) and considering Fig. 4, we have: 
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(11) 

where 
inS  is the initial length of the droplet before 

reaching the junction center. Similarly, for the left 

branch, we have: 
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(12) 

A few moments after the start of the breakup process, 

the droplet shape changes to that represented in Fig. 

7. When the droplet enters branches, it fills the 

branch space. The velocity of the point B (Fig. 7) is 

equal to that of the continuous fluid in the right 

branch. 

 

 

Fig. 7. Geometry of the T-junction with unequal 

widths. The deformed droplet is shown at the 

center of the junction. 

 

So, we can calculate the length of the droplet in the 

right (SR) and left (SL) branches, as follows: 
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(13) 

UR/Uin and UL/Uin can be calculated from Eq. (10). 

Also, SR0/wR and SL0/wL can be calculated from Eqs. 

(11) and (12), respectively. 

In the 2D geometry, the depth of the system (in a 

direction perpendicular to the paper) is infinite; so, 

we have εR=εL=0, PR=PL=2Z, AR=19×10-6Z, 

AL=Ain=20×10-6Z and LR=LL=100×10-6m, where Z is 

the depth of geometry in the direction perpendicular 

to the paper. P and A are also the perimeter and area 

of the cross section, respectively. With the aspect 

ratio (ε) for each branch, the values c1 and c2 become 

as (c1)R=(c1)L=0.4938 and (c2)R=(c2)L=0.99275 

(Muzychka and Edge 2008). Therefore, by 

substituting the geometric parameters in Eqs. (7) and 

(8), we have UR/UL=0.90672 and QR/QL=0.86138. 

Also, by substituting these values in Eqs. (9) and 

(10), we will obtain QR/Qin=0.46276, 

QL/Qin=0.53724, UR/Uin=0.48712 and 

UL/Uin=0.53724. In this paper, 

Sin=3.333×win=66.66×10-6m. Therefore, by 

substituting these values in Eqs. (11) and (12), we 

will obtain SR0/wR=1.70627, SL0/wL=1.78263. 

Finally, by substituting these values in Eq. (13), we 

have SR/wR=1.70627+5127.6×t and 

SL/wL=1.78263+5372.4×t. 

Figure 8 presents the analytical and numerical results 

of the droplet length in the right branch ( )/R RS w  

the length of the droplet in the left branch ( )/L LS w  

and the whole length of the droplet 

( )/ /R R L LS w S w  during the breakup process. As 

can be seen, the length of the droplet in each of the 

branches and the total length of the droplet increase 

linearly with time. The reason for this, as shown in 

RLLL

Lw
Rw

RSLS

inw

D BA

C

inL
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Fig. 7, is that the length of the droplet is equal to the 

distance between the point B and the center of the 

junction. On the other hand, the velocity of the point 

B is equal to that of the continuous fluid in the right 

branch. Therefore, the point B moves with a constant 

velocity, so its distance from the junction center (i.e. 

the length of the droplet) will increase linearly with 

time.  

 

 

Fig. 8. Analytical and numerical results of the 

droplet length in the right branch ( )/R RS w , the 

droplet length in the left branch ( )/L LS w , and 

the whole length of the droplet 

( )/ /R R L LS w S w  during the breakup 

process. 
 

It is also seen that the length of the droplet in the right 

branch is slightly less than that of the droplet in the 

left branch, because the right branch, due to its less 

width, has a higher hydraulic resistance; therefore, a 

less volume of droplets enters this branch. According 

to the figure, our analytical and numerical results 

have a very good agreement. 

Figure 9 shows the breakup process of the droplet in 

the T-junction with unequal width branches. The tip 

of the droplet is circular (we used this assumption in 

our analytical theory). The upper surface of droplet 

is an arc. 

 

 

Fig. 9. Breakup process of the droplet in the 

T-junction with unequal width branches. 

 

5. RESULTS AND DISCUSSION 

In this section, 3D numerical simulation results are 

reported in four different droplet modes. These 

include: 

1- Before reaching the droplet to the center of the 

junction 

2- in the early moments of droplet deformation 

3- at the last moments of droplet deformation 

4- after the droplet breakup 

One of the applications of droplet breakup is mixing 

different materials in a droplet and then breaking it 

to smaller parts. Therefore, the motion of droplet in 

a straight channel should be investigated. So, in this 

paper, the numerical results are reported for the state 

that the droplet is in the inlet channel. 

We define dimensionless quantities for the 

horizontal and vertical axes based on these relations: 

inin wywx //   (14) 

Here, win is the inlet channel width. The droplet 

breakup process is shown in Fig. 10. 

 

 

Fig. 10. Droplet breakup process. 

During the breakup process, the fluid pressure 

decreases in some locations of the system. This 

causes the fluid boiling temperature to decrease. 

Therefore, in the biological or chemical applications 

of droplet breakup process, some materials inside 

droplet may evaporate. Therefore, investigation of 

the pressure distribution during the droplet breakup 

process is important. 

Figure 11 represents the distribution of fluid pressure 

in five different sections of the droplet before the 

droplet reaches the center of the junction. The droplet 

location is shown in this Figure. As can be seen, the 

pressure of the fluid is constant along the width of 

the input channel, because there is no flow along the 

width of the channel; so, according to the Naiver-

Stokes equation, there is no pressure gradient. For 

each curve of Fig. 11, it can be seen that the pressure 

of the fluid near the wall is slightly less than that at 

the midpoints of the channel. This is also indicated 

by the dotted circles in Fig. 11. The reason is that the 

points of the beginning and end of each curve are in 

the continuous fluid and the other points are inside 

the droplet. On the other hand, the pressure of the 

fluid inside the droplet (which is due to the effects of 

surface tension) is more than that outside it 
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(Δ )P
r

 . Figure 11 also shows that the fluid 

pressure decreases along the inlet channel length 

because the flow exists in the pipe and the pressure 

is reduced along the pipe due to the effects of viscous 

flow. 

 

 

Fig. 11. Fluid pressure in five different sections 

of the droplet, before reaching the center 

of the junction. 
 

For mixing some materials, one can inject them to a 

droplet. The locations inside the droplet that have 

more velocity gradients have better mixing 

performances. Therefore, the materials should be 

injected in these locations. So, investigation of fluid 

velocity distribution during the breakup process is 

needed. 

Figure 12 shows the velocity of the fluid in five 

different sections of the droplet. The droplet location 

is shown in the Figure. As can be seen, the fluid 

velocity distribution is parabolic. The reason is that 

the flow inside the inlet channel is laminar (Reynolds 

number is less than 10). 

In the section Γ=1.1, the tip of the droplet is 

approaching the junction center; so, the fluid velocity 

in these regions is different from other regions of the 

droplet. This issue is also illustrated in Fig. 12. 

 

 

Fig. 12. Fluid velocity in five different sections 

along the droplet. 

 

The amount of vorticity in five different sections of 

the droplet is shown in Fig. 13. The droplet location 

is displayed in this Figure. As the amount of vorticity 

is increased, the velocity gradient is increased within 

the droplet too. So, mixing inside the droplet is 

increased, which is desirable in industrial 

applications such as pharmaceutical and chemical 

industries. In regions near the wall, the vorticity 

increases because the velocity gradient is high. 

Therefore, the mixing of the material inside the 

droplet is increased near the wall. 
 

 

Fig. 13. Vorticity in five different sections along 

the droplet.  

 

Figure 14 depicts the fluid pressure in the five 

different sections of the droplet in the initial 

moments of the droplet deformation in the center of 

the junction. As can be seen, the pressure of the fluid 

in the regions near the center of the junction (Φ=0) 

has the highest value; by moving away from the 

center of the junction, the fluid pressure is decreased. 

It is because the flow from the center of the junction 

to the branches is established, and due to the presence 

of surface roughness and according to the 

momentum equation, the pressure will decrease in 

this direction. Also, due to the negligible fluid 

velocity component along the width of the channel, 

the pressure gradient is negligible in this direction. 

Therefore, the pressure of the fluid in width of the 

channel is constant; however, in the curve Φ=0, the 

pressure of the fluid is not constant, which is because 

this section is closer to the input channel. Due to 

surface tension, the pressure of the fluid inside the 

droplet is slightly higher than that outside it. For this 

reason, as can be seen in Fig. 14, the beginning and 

end of each curve (indicated by the dotted ellipse) 

have lower pressure. 

 

 

Fig. 14. Fluid pressure in five different sections 

of the droplet, at the initial moment of droplet 

deformation in the center of the junction. 
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Figure 15 shows the velocity of the fluid in five 

different sections of the droplet at the initial moments 

of the droplet deformation in the center of the 

junction. The regions near the point C in Fig. 4 act 

like a stagnation point, because in the center of the 

junction, the fluid passes from the two sides to the 

two branches. Therefore, in regions near C, fluid 

velocity will be low. For this reason, it is seen in Fig. 

15 that the curve of Φ=0 has a velocity near zero in 

the regions near the wall. 

 

 

Fig. 15. Fluid velocity in five different selected 

sections of the droplet, at the initial moment of 

droplet deformation in the center of the junction. 

 

Figure 16 shows vorticity magnitude in five different 

droplet sections at the initial moments of droplet 

deformation in the center of the junction. In all 

droplet sections, regions near the droplet surface 

have higher vorticity; so, mixing the materials of the 

droplet in these regions is increased. By comparing 

Figs. 13 and 16, we could find that the vorticity 

values at the initial moments of the droplet 

deformation are less than the moment at which the 

droplet has not yet reached the center of the junction. 

According to these two graphs, the vorticity values 

before the droplet reaches the center of junction are 

between 30,000s-1 and 150,000s-1. Also, the vorticity 

values at the initial moments of the droplet 

deformation are between 10,000s-1 and 11,000s-1. 
 

 

Fig. 16. Vorticity in five different sections along 

the droplet at the initial moment of droplet 

deforming in the center of the junction. 

 

Figure 17 shows the fluid pressure in five different 

sections of the droplet at the final moment of droplet 

deformation in the center of the junction. As can be 

seen, in each section, the fluid pressure is almost 

uniform, which is due to the absence of the 

component of the fluid velocity along the channel 

width, leading to the absence of the pressure gradient 

in this direction. As can be seen in Fig. 17, the 

sections closer to the output of each branch have 

lower pressure, because fluid pressure decreases 

along the branches (due to the effects of viscosity and 

surface roughness). Also, due to surface tension, the 

pressure of the fluid inside the droplet is slightly 

higher than that outside it. For this reason, it can be 

seen that the beginning and end of each curve (as 

indicated by the dotted ellipse) have lower pressure. 
 

 

Fig. 17. Fluid pressure in five different sections, 

at the final moments of the droplet deformation. 

 

Furthermore, by comparing Figs. 14 and 18, we can 

find that the pressure of the fluid in the center of the 

junction at the initial moments of droplet 

deformation (Fig. 14) is an average of 20000 Pa; 

meanwhile, the pressure of the fluid in the center of 

the junction at the final moments of the deformation 

(Fig. 17) is an average of 20000 Pa (in this analysis, 

the regions shown in Figs. 14 and 17 with dotted 

ellipses should not be considered, because these 

regions of the fluid are close to the droplet surface). 

Therefore, the fluid pressure at a specific point in the 

system does not change over time. 

Figure 18 shows the velocity of the fluid in five 

different sections of the droplet at the final moments 

of the droplet deformation in the center of the 

junction. As can be seen, the Φ=0 curve showed very 

low velocity at places near zero. This is because in 

the center of the junction, the points near the bottom 

wall (regions near the point C in Fig. 4) must have a 

negligible velocity, because the flow in this region is 

divided into two parts and in two opposite directions. 

 

 

Fig. 18. Fluid velocity in five different sections 

along the droplet length at the final moments of 

droplet deformation in the center of the junction. 
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Figure 19 shows the vorticity magnitude in five 

different droplet sections at the final moment of the 

droplet deformation in the center of the junction. As 

can be seen, the regions near the droplet surface have 

higher vorticity; so, the vorticity values near the 

droplet surface are 3 to 5 times more than those in 

the middle of the channel. Therefore, the mixing of 

the material of the droplet in these regions is 

increased. As can be seen, the vorticity distribution 

in all sections is almost parabolic. 

 

 

Fig. 19. Vorticity in five different sections along 

the droplet at the final moment of droplet 

deformation in the center of the junction. 

 

Figure 20 shows the fluid pressure in six different 

sections after the droplet breakup. According to this 

figure, the sections near the center of the junction 

have higher pressure (due to the flow from the 

junction center to the branches output). Also, the 

fluid pressure at each section is uniform (due to the 

absence of the flow along the channel width). Some 

industrials that employ microfluidic processes use 

fluids with a low boiling point. In these cases, the 

pressure of the fluid must not be reduced because it 

may then reach the vapor pressure; so, part of the 

fluid is evaporated and the process is disrupted. In 

this study, the minimum pressure can be seen in Fig. 

20, in the curves Φ=3.65 and Φ=-3.6 at the points 

near the droplet surface. Therefore, the choice of 

fluid type for microfluidic systems should be 

carefully considered. 

 

 

Fig. 20. Fluid pressure in six different sections of 

the droplet, after the droplet breakup. 

 

Figure 21 shows the velocity of the fluid in six 

different sections after the droplet breakup. As can 

be seen in Fig. 21 at dimensionless vertical place 

0.37, the curves Φ=-2.15 and Φ=2.15 have the 

highest velocity. The reason for this is that in 

Φ=-2.15 and Φ=2.15 sections, the dimensionless 

vertical point 0.37 corresponds to the upper droplet 

surface. On the other hand, at the moment when the 

droplet is in the state of Fig. 21, the shape of each 

droplet in each branch is similar to the airfoil. 

Therefore, the droplet tends to circle itself due to the 

effects of surface tension. So, the upper surface of the 

droplet takes a higher velocity to bring it to the upper 

wall, forming a circular droplet. 

 

 

Fig. 21. Fluid velocity in six different sections 

from the beginning to the end of droplet after the 

droplet breakup. 

Figure 22 shows vorticity magnitude in six different 

sections of the droplet after the droplet breakup. By 

comparing Figs. 16, 19, and 22, we can find that the 

greatest vorticity occurs after the droplet breakup. In 

other words, at the first moments of droplet 

deformation (Fig. 16), the vorticity in different 

sections of the droplet is between 10000s-1 and 

110000s-1; at the final moments (Fig. 19), the 

vorticity in different sections of the droplet is 

between 10000s-1 and 110000s-1. After the droplet 

breakup (Fig. 22), the vorticity in different sections 

of the droplet is between 20000s-1 and 136000s-1. 

Therefore, the vorticity increases after breakup. The 

reason is that after the breakup, the initial shape of 

the generated droplets is stretched; in a short time, 

the droplet is deformed, taking a circular shape 

(similar to Fig. 10-A). Therefore, this rapid 

deformation of droplet increases the flows of droplet 

inside, causing the increase of the velocity gradient 

and vorticity. In addition, according to Fig. 22, the 

vorticity of the regions near the droplet surface is 

approximately 3-7 times higher than that the droplet. 

Figure 23 shows the effect of non-Newtonian power-

law index (n) on the fluid pressure. The location of 

the droplet is shown in Fig. 10-A. The fluid pressure 

is reported in section y=49µm. As can be seen, the 

fluid pressure is constant along the channel width 

due to the absence of the flow along the channel 

width. Also, the effect of the T-junction with the 

unequal length is investigated and compared with the 

T-junction with unequal width branches. The 

geometry of the T-junction with unequal length 

branches is as shown in Fig. 1, but the widths of the 

two branches are equal and the length of the right and 

left branches are 100µm and 80µm, respectively. 

Figure 23 compares the fluid pressure in the T-

junction with unequal width branches and T-junction  
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Fig. 22. Vorticity in six different sections from 

the beginning to the end of the droplet after the 

breakup. 

 

 

Fig. 23. Effect of the behavior index of 

non-Newtonian power-law fluid (n) and unequal 

length of T-junction branches on fluid pressure. 

 

with unequal length branches. As can be seen, the 

fluid pressure in the T-junction with unequal length 

branches is less, which is because the left branch of 

the unequal length T-junction is smaller than that of 

the unequal width one. Therefore, the hydrodynamic 

resistance and pressure drop of the unequal length T-

junction are less than those of the unequal width one. 

So, the fluid pressure in a specific section of the 

unequal length T-junction is less than that of the 

unequal width one. 

Figure 24 illustrates the effect of non-Newtonian 

power-law index (n) and different geometries 

(unequal length T-junction and unequal width T-

junction) on vorticity. The location of the droplet is 

shown in Fig. 10-A and vorticity is reported in 

section y=49µm. As can be seen, the vorticity of 

n=1.1 is more than that of n=0.9. Therefore, vorticity 

increases with n. So, to increase mixing inside the 

droplet, the non-Newtonian power-law index should 

be increased. Also, this figure illustrates that 

vorticity is minimum in the center of the channel in 

both unequal length and unequal width T-junctions. 

It is since the velocity gradient near the wall is high; 

so, the vorticity magnitude in these regions has its 

maximum value. 

1. CONCLUSION 

In this paper, an analytical investigation and 3D 

numerical simulation were presented for the breakup  

 

Fig. 24. Effect of the behavior index of 

non-Newtonian power-law fluid (n) and unequal 

length of T-junction branches on vorticity. 

 

of floating non-Newtonian droplets in a non-

Newtonian fluid. The considered geometry was a T-

junction with unequal-width branches that could 

generate droplets with an unequal size. In the 

previous researches, neither analytical nor numerical 

solutions had been considered for the asymmetric 

breakup of non-Newtonian droplets; so, for the first 

time, these two cases were performed in this paper. 

As the geometric advantages of this study, after the 

generation of new droplets, small and large 

generated droplets were not mixed; so, there was no 

need for another process to separate droplets. Grid 

independency was performed for the 3D numerical 

simulation. The analytical and 3D numerical 

simulation results of this research had a very good 

agreement. In addition, numerical simulation results 

were compared with the analytical solution of a 

benchmark problem, observing a good agreement. 

Numerous quantities such as branch flow rate ratio, 

branch velocity ratio, the droplet length in each 

branch, whole length of the droplet, vorticity and 

pressure during breakup process were investigated. 

The analytical solution of this research resulted in the 

values of branch flow rate ratio, branch velocity 

ratio, droplet length in each branch and whole length 

of the droplet during the breakup process. The results 

also showed that the branches flow rate ratio and the 

fluid velocity ratio of the branches did not change 

during the breakup process. In addition, it was 

observed that the length of the droplet in each of the 

branches and the whole length of the droplet 

increased linearly during the breakup process. The 

results of 3D numerical simulation also showed that 

during the breakup process, the fluid pressure was 

constant along the channel width. It was also 

observed that the pressure of the fluid near the 

droplet surface was lower than that in the middle 

regions of the droplet. The results also indicated that 

the velocity distribution of the fluid was parabolic 

before the droplet reached the junction center. It was 

also revealed that vorticity values in the regions near 

the droplet surface were 3 to 7 times higher than 

those in the middle regions of the droplet, which 

increased the mixing of the material inside the 

droplet. Additionally, the maximum vorticity values 

(during the droplet deformation process) were 

related to the moment when the droplet was broken 

and the two new droplets were separated. 
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