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ABSTRACT 

This research aims to investigate the vortex breakdown zone, the stability margin, and the fluid layers of the 
rotating flow between two vertical coaxial cylinders under the effect of thermal gradient and an axial 
magnetic field. The governing Navier-Stokes, temperature, and potential equations are solved using the finite-
volume method. Three combinations of aspect ratios (γ) and Reynolds numbers (Re) are compared. The 
pumping action sets up a secondary circulation along the meridional plane of the annular gap. For certain 
combinations, the vortex breakdown bubble occurred near the inner wall. Bifurcation in form of multiple fluid 
layers becomes apparent when the temperature difference exceeds a critical value. These fluid layers play the 
role of thermal insulation and limit the heat transfer between the hot top and cold bottom of the coaxial 
cylinders. Both the vortex breakdown and fluid layers could be suppressed by the magnetic field; the 
increasing of Hartmann number (Ha) would reduce the number of fluid layers. Diagrams represent the effect 
of increasing Richardson number (Ri) on fluid layers are established. Then stability diagrams corresponding 
to the transition from the multiple fluid layers zone to the one fluid layer zone for increasing Prandtl number 
(Pr) are obtained. 

Keywords: Coaxial cylinders; Fluid layers; Heat transfer; Magnetic field; Vortex breakdown. 

NOMENCLATURE 

B        magnitude of the external magnetic field, 
Tesla 

E electric charges 
FL Lorentz force 
H height of the  cylinder, m 
Ha Hartmann number  
J dimensionless current density 
Nu Nusselt number 
 തതതത average Nusselt numberݑܰ
P dimensionless pressure 
Pr Prandtl number  
Re        Reynolds number 
Rem magnetic Reynolds number 
Ri         Richardson number   
R annular gap, m 
 

Rin  radius of the inner cylinder, m 
Ro radius of the outer cylinder, m 
V velocity vector  
α thermal diffusivity of the fluid, m2/s 
 thermal expansion coefficient, 1/K 
 dimensionless temperature 
 aspect ratio (H/Ro) 
ν kinematic viscosity of the fluid, m2/s 
μ0  magnetic permeability, H/ m 
 density of the fluid, kg/m3 
 electric conductivity,  /m 
 dimensionless electric potential 
Ω angular velocity, rad/s 
Ψ non-dimensional stream function 
 dimensionless time 

 

1. INTRODUCTION 

Nuclear fusion reactors remain a good applicant for 
future power renewable sources. A liquid metal at a 
high temperature like the lead-lithium alloy (PbLi) 

is used by magnetic confinement fusion (MCF) 
blankets, as a coolant/tritium breeder. The 
advancement of research in the domain of the LM-
MCF blankets requires the existence of knowledge 
that develops parallel to understanding the high-
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temperature liquid metals flows under the control of 
the plasma-confining magnetic field. Blankets with 
liquid walls should be of an elongated type. The 
coaxial configuration can be used by magnetic 
confinement fusion (MCF) blankets. This geometry 
has become interesting for experimental electrically 
conducting fluid studies with rotating motion. This 
geometry is particularly interesting to the 
researchers that adjust with precision the Reynolds 
number conducted on small annular gaps. 
Moreover, the flow pattern and the vortex 
breakdown can be observed by flow visualization 
techniques over a glass sidewall of the outer 
cylinder. The first visualization experiment exposed 
that this vortex undergoes breakdown which is 
presented by Vogel (1968) and draws also a curve 
showing the limits within each occurred vortex 
breakdown. Next, Escudier (1984) elaborates an 
experimental investigation using the technique of 
Laser-induced fluorescence to describe the internal 
flow structure. It is worth mentioning that several 
studies exist in the literature focusing on the 
examination of various methods used for 
controlling the vortex breakdown, such as the 
application of a temperature difference between two 
walls in a precise direction (Ismadi et al. 2011; 
Herrada and Shtern 2003). Crystal growth 
processing is one of many practical applications, 
which combines the rotating flow with heat transfer. 
The thermal gradient direction may be the cause of 
the increase or decrease of a layering flow (Omi and 
Iwatsu 2005; Mahfoud and Bessaїh 2012a) and a 
reduction in the Nusselt number (Turan et al. 2018; 
Quaresma et al. 2020). One of the implemented 
methods by researchers to control or suppress the 
breakdown is the use of magnetohydrodynamics. 
The literature review on convection problems 
confirmed that a magnetic field is used to stabilize 
the perturbation in the fluid motion and control the 
velocity field (Mahfoud and Bessaїh 2012b; 2016; 
Mahfoud et al.2016, 2019, 2020). After that, 
Bendjaghlouli et al. (2019a,b) have discussed the 
influence of the geometry and the thermal gradient 
to generated small vortices with and without an 
applied magnetic field. Other parameters such as 
the annular gaps effect and the electrical 
conductivity walls' effect on the structure of the 
flow have been studied by Kharicha et al. (2005). 
Some researchers have followed the position of the 
center and length of a vortex under a magnetic field, 
as revealed in the studies of (Yu et al. 2013; Dash 
and Singh 2019). Laouari et al. (2021) have 
recently studied the central position of the vortex 
and the limits of appearance and disappearance of 
the vortex breakdown in the different conductivity 
regimes. Mahfoud (2021a,b) confirmed that the 
vortex breakdown can be suppressed beyond the 
magnitude of the magnetic field to exceed a critical 
value. 

In this paper, various numerical simulations are 
used to clarify the effects of the aspect ratio and 
rotation rate on vortex breakdown (apparition, and 
suppression).    The second objective is to clarify 
the temperature gradient role on the appearance of 
the bifurcation in form of fluid layers between two 
coaxial vertical cylinders in which three viscous 

conducting fluids are compared. Finally, the aim is 
to specify the critical Hartmann numbers, Hacr 
corresponding to removing the fluid layers. 
Therefore, we present the stability limits correspond 
to the domain where the layering does not occur. 
The flow is generated by the combined forces of 
buoyancy and the rotation of the bottom disk and is 
studied in the range of 0 ≤ Ri ≤ 2, and for three 
combinations (case A: Re=1500, γ=1.5); (case B: 
Re=1855, γ =2.0) and (case C: Re=2400, γ =2.5  and 
for only one annular gap (R = 0.9). 

2. FLOW CONFIGURATION AND MODEL 

A viscous conducting fluid rotates in the annular 
gap (R) between two coaxial vertical cylinders with 
height (H). The combined stabilizing action of the 
external magnetic field and thermal gradient are 
imposed in the vertical direction which is 
schematically plotted in Fig. 1. One annular gap (R 
= 0.9) and three aspect ratio, γ (H/Ro)= 1.5 , 2.0 and 
2.5 are examined. The annular gap is defined as (R 
= ܴ௢−ܴ௜௡), where ܴ௜௡ , ܴ௢	are the radius of the 
internal and outer cylinders, respectively and 
ܴ௢=1.0 in all cases. A temperature difference (∆T) 
is axially imposed (the top disk is hotter than the 
bottom). The fluid and solid walls system are 
subjected to an external axial magnetic field, B 
(B0ez),ez is the unit vector in the z-direction. The 
lower disk rotates about the z-axis at an angular 
velocity Ω, which is supposed constant, while the 
upper disk is fixed. The magnetic Reynolds number 
ܴ݁௠ ൌ Ωܴ௢ߪ଴ߤ

ଶ ≪ 1, that measure the ratio of 
induction to magnetic diffusion. In this problem, 
when the fluid is characterized by a small Prandtl 
number, we can neglect the magnetic field 
induction by comparing it with the B0. Also, the 
only effective force that remains is the 
electromagnetic force of Lorentz.  

 

 
Fig. 1. Flow geometry.  
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fluids are constants and appraised at the reference 
temperature; except the density, which is treated 
according to Boussinesq’s approximation,  (iii) 
Joule heating,  and viscous dissipation terms are 
neglected. Similarly, (iv) the container walls are 
electrically insulated, and (v) radiative heat transfer 
is also ignored in this calculation. 

By scaling length with the the radius ܴ௢	of the outer 
cylinder, time with 1/Ω, velocities with  Ωܴ௢,  
pressure with ρ(Ωܴ௢)2, electric potential with 
଴Ωܴ௢ܤ

ଶ,and by introducing the dimensionless 
temperature as Θ ൌ ሺT െ ଴ܶሻ/∆T, the equations can 
be written in their dimensionless form as :  

.׏ ܸ ൌ 0     (1) 

డࢂ

డఛ
൅ ሺࢂ. ࢂሻߘ ൌ െܲߘ ൅ ଵ

ோ௘
ࢂଶߘ ൅ ௭ࢋ߆ܴ݅ ൅

ு௔మ

ோ௘
ሺ࡮ܺࢂሻx(2)     ࡮ 

డ௵

డఛ
൅ ሺࢂ. ߆ሻߘ ൌ

ଵ

ோ௘.௉௥
 (3)   ߆ଶߘ

The induced electric current is given by the 
interaction of convective flow with the magnetic 
field, ࡶ ൌ ࡱሺߪ ൅  ሻ hence, the electric charges࡮xࢂ
become ࡱ ൌ െ׏Φ. Where vector  velocity  V (v௥, 
vఏ, v௭), have the components in the radial ሺv௥ሻ, 
azimuthal (vఏ) and axial ሺv௭ሻ  direction, 
respectively. The conservation of the induced 
electric current	ࡶ׏ ൌ 0 gives the electric potential. 

ଶΦ׏ ൌ .׏ ሺ܄x࡮ሻ    (4) 

P, Θ, and  are the dimensionless pressure, 
temperature, and electric potential, respectively. 
Non-dimensional parameters are Reynolds 
number(ܴ݁ ൌ Ωܴ଴

ଶ/ν); the Hartmann number 
ܽܪ) ൌ   ሻ; the Richardson number	ߥߩ/ߪ଴ܴ଴ඥܤ
(ܴ݅ ൌ  Ωଶܴ଴ሻ.  Two other non-dimensional/ܶ∆݃ߚ
parameters control the comportment of the flow:  
the aspect ratio (γ =H/Ro) and the Prandtl number 
(Pr=ν/α).  The symbols ߥ ,ߩ, β,α, andߪ denote, 
respectively, the density, the kinematic viscosity, 
the thermal expansion, the thermal diffusivity, and 
electric conductivity.  The Lorentz force is given by  
ࡸࡲ ൌ  ,directions ߠ which are in the r, z, and , ࡮ܺࡶ
respectively:  

൝
௅௥ܨ ൌ െ1/ݎ. ߲Φ/߲ߠ െ v௥

௅௭ܨ ൌ 0
௅ఏܨ ൌ ߲Φ/߲ݎ െ vఏ

   (5) 

With the current density	ܬ  is: 

൝
௥ܬ ൌ െ߲Φ/߲ݎ ൅ vఏ
௭ܬ ൌ െ߲Φ/߲ݖ

ఏܬ ൌ െ1/ݎ. ߲Φ/߲ߠ െ v௥
   (6) 

All simulations were performed starting from τ=0. 
The bottom disk starts its rotation with angular 
velocity Ω, while the top and side walls are 
stationary, respectively. The velocity field must 
satisfy the non-slip condition at the walls.  All walls 
are electrically insulated (∂Φ/∂n = 0). 

The boundary conditions are at a rotating cold 
bottom disk. 

 Vఏ= r;    ߆ ൌ െ
ଵ

ଶ
   (7) 

At a stationary hot top disk. 

	vఏ= 0,  and ߆ ൌ
ଵ

ଶ
    (8) 

 Owing to the geometrical symmetry, the 
periodicity conditions are 
 ܸሺݎ, ,ߠ ሻݖ ൌ ܸሺݎ, ߠ ൅ ,ߨ2  ሻ.    (9)ݖ
The velocity field is plotted in function of the non-
dimensional stream function ψ,  which is : 
v୰ ൌ ,ሻݖ߲/ߖሺ߲ݎ/1 v୸ ൌ െ1/ݎሺ߲ݎ߲/ߖሻ (10) 

The heat transfer and  convection mode are 
concluded from the average Nusselt number which 
is calculated at the bottom disk as:  

തതതതݑܰ ൌ ቀ
ଵ

గ
ቁ ׬ ׬ ݑܰ

ଶగ
଴

ଵ
଴

ሺݎ,  (11)   ݎ݀ߠ݀ݎሻߠ

Where, 

,ݎሺݑܰ  ሻߠ ൌ ቀ
డΘ

డ௭
ቁቚ
௭ୀ଴௢௥	௭ୀு

   (12) 

3. NUMERICAL TECHNIQUE AND GRID 

EMPLOYED 

The governing equations and boundary conditions 
of the system mentioned above are discretized by 
the finite volume method and solved by the 
tridiagonal matrix algorithm (TDMA).  SIMPLER 
scheme Patankar (1980) was selected to solve the 
coupling between velocity and pressure. The 
central-difference approximation scheme is used for 
the diffusion and convective terms. 

In this simulation, three staggered nonuniform 
meshes were applied to get better convergence and 
are listed in  Table.1. Taking into account that the 
thickness of the Hartmann layer (~ Ha-1), and the 
aspect ratios(γ),  a careful choice of the grid is 
needed to ensure good accuracy. Moreover, the 
validity of the grid selections is confirmed via grid 
independence tests for three cases (A, B, C), using 
the average Nusselt number for comparison (see 
Table 2). 
 

Table 1 Grid sizes used in the numerical 

Aspect   
ratios 

Case A 
Re=1500, 
γ=1.5 

Case B 
Re=1855, 
γ=2.0 

Case C 
Re=2400, 
γ=2.5 

Grid 
(r, θ, z) 85x85x130 85x85x170 85x85x190 

 

Table 2 Grid independence test for the case (Pr = 
0.032, Ri = 0.1, and Ha=5). 

Grid (r, θ, z) 

Case A 80x80x120 85x85x130 90x90X140 

 തതതത 0.691 0.695 0.695ݑܰ

Case B 80x80x160 85x85x170 90x90x180 

 തതതത 0.519 0.522 0.522ݑܰ

Case C 80x80x180 85x85x190 90x90x200 

 തതതത 0.420 0.423 0.423ݑܰ
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4.  RESULTS AND DISCUSSION  

First, the used numerical model has been validated 
by comparing the present numerical results with the 
numerical results of Mahfoud et al. (2020) and 
Kakarantzas et al. (2017) who investigated the flow 
and heat transfer of liquid metal, which rotates in 
the annular of concentric cylinders under a 
magnetic field effect. Figure 2 shows the 
reproduction of the radial distribution of axial 
velocity in the middle of the domain (z=1 plane), 
for Ha= 100 and the aspect ratio H⁄Ro= 2.0 when 
the annular gap is R=0.4 and the Rayleigh number 
Ra=105. Although, there is a good agreement 
between the compared numerical results. 

 

 
Fig. 2. Comparison with Mahfoud et al. (2020) 

and Kakarantzas et al. (2017). 
 
The computations were performed for one annular 
gap (R=0.9), and for three combinations of aspect 
ratios and Reynolds numbers (case A: Re=1500, 
γ=1.5); (case B: Re=1855, γ=2.0) and (case C: 
Re=2400, γ=2.5).  Three electrically conducting 
fluids are compared, the first one is characterized by 
Prandtl number, Pr=0.015 corresponding to the 
molten Aluminum, where the Aluminum casting 
process still playing an important role in the modern 
industry. The second is the saturated liquid Mercury 
at 293K, corresponding to Pr=0.025. Third, 
Pr=0.032, corresponding to the PbLi 17 alloy, 
which is in the most appropriate position to ensure 
the fusion blankets. The Richardson number 
analyzed here covers the range of 0 ≤Ri ≤2.0. 

For the problem considered here, it is shown that at 
relatively big values of Re the steady flow tends to 
be oscillatory unstable. The following section 
shows the transition from steady to unsteady 
oscillatory flow. It is known that the typical 
sequence of evolution of a dynamic system towards 
chaos for increasing values of the control parameter 
consists of the following stages: transition to an 
oscillatory or periodic state; a quasi-periodic 
regime, and finally chaos (or turbulence). To detect 
the regime of flow, i.e. transient or steady-state, a 
series of numerical calculations are performed for 
each case. Figure 3 shows the temporal evolutions 
of axial velocity, vz at the monitoring point (r = 
0.493, z= 0.975). These simulations presented 
steady-state solutions obtained for the various cases 
(A, B, and C) and the ranges of controlling 

parameters:  the Richardson number (Ri =0 and 
Ri=2.0), Prandtl number (Pr=0.015, 0.025, and 
0.032), as shown in Fig 3(a, b, c). The oscillatory 
aspect of the temporal evolutions of the axial 
velocity, vz at the same monitoring point (r = 0.493, 
z= 0.975) is shown in Fig. 3d for Re=2760, Ri =0 
and three aspect ratios γ=1.5, 2.0, 2.5. It is seen that 
the increase of Re enhances the fluid motion while 
for all aspect ratios (γ=1.5, 2.0, 2.5) the evolutions 
become time-dependent (oscillatory), a behavior 
that is more intense for γ=2.5. Therefore, as 
Reynolds number is increased, swirl strength 
increases, and hence the ability of waves to 
propagate against the flow increases Benjamin 
(1962). The swirling flows in the hydrodynamic 
case and for R=0.9 will be steady and axisymmetric 
till the critical Reynolds numbers Recr≈ 2605, 2620, 
and 2755 when the oscillatory instability begins to 
set in, for γ = 1.5, 2.0, and γ=2.5, respectively (see 
Fig 7). It should be noted that the motivation for the 
three-dimensional study since the flow can become 
asymmetric (non-axisymmetric) for certain 
Reynolds numbers which exceed the transition 
threshold see (Mahfoud et al. 2016). 

The rotating flow developed in the annulus 
configuration when compared with the flow in a 
cylindrical container can give a supplementary view 
into the behavior of the rotating flow near to the 
inner cylinder, as the conditions at the rotating 
bottom are different in this case. The inner radii in 
the annulus configuration have an important role in 
the capacity of flow absorption. The flow in an 
annulus can be explained as follows. In the 
proximity of the rotating bottom disk, the fluid has 
aspired from the central region near the inner 
cylinder. Then this fluid is driving in the direction 
of the outer wall and spirals upwards to the 
stationary-top disk. Finally, a central core flow 
swirling in direction of the rotating disk is 
produced.  In the case when the upstream flow is 
supercritical, while the downstream flow is 
subcritical, the interaction between these flow 
regimes is small and they both are completely 
controlled by appropriate flow conditions. If the 
interaction between the upstream flow and the 
downstream flow is small, so the upstream flow 
completely depends, for a given geometry, on the 
Reynolds number. The subcritical flow is controlled 
by the boundary layer at the rotating disk absorbs 
the fluid driven by the central core. The separation 
bubble in an annulus is intensified strongly by 
viscous effects caused by the difference between the 
flow structures in the central core. Benjamin (1962), 
suppose the development of standing waves can 
lead to the appearance of an adverse pressure 
gradient and, consequently, to the appearance of a 
stagnation point progressing into a separation 
bubble. 
 
4.1 Aspect Ratios  and Rotation Rate Effects 

To investigate the effects of the aspect ratios (γ) on 
the behavior of the vortex breakdown, i.e. 
apparition, location, or suppression of the 
isothermal cases of  Re=2000, with increasing the 
aspect ratios (γ=1.5, 2.0 and 2.5) are considered. 
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(a) 
 

(b) 
 

(c) 
 

(d) 

Fig. 3. Evolution of the velocity, v at the 
monitoring point (r = 0.493, z= 0.975). 

 

It is observed, in all cases, that the increase of 
rotation rate accelerates the fluid and leads to the 
creation of a vortex breakdown bubble that occurred 
on the wall of the inner cylinder. The streamlines 
confirm that only one vortex breakdown exists for 
γ=1.5 and 2.0 as shown in Fig.4. However, at γ=2.5, 
no vortex breakdown appears, this is observed from 
the plots of the isolines in Fig. 4. So, a decrease in 
the size of the vortices is shown, and their position 
is stuck to the inner cylindrical wall. The central 
positions of the vortex on the z-axis are at z = 1.101 
and 1.395 for γ= 1.5 and  2.0, respectively.On r-
axis, the central positions  are at r = 0.167 and  
0.191 for γ= 1.5 and 2.0,  respectively. 

The spatial structure of the zero value of the axial 
velocity is plotted in the lower of Fig.4. It can 
shows be observed in the cases of γ= 1.5 and 2.0, 
that the recirculating bubble plays the role of a solid 
body and becomes an obstacle to axial flow. The 
deflected axial flow around the bubble gives a wake 
region with a low velocity that is formed 
downstream of the bubble. The viscous and inertia 
are negligible in the vortex breakdown bubble 
where the axial velocity is zero. No bubble formed 
because of no vortex breakdown when γ=2.5 as 
shown in Fig. 4. The diameters of the bubbles are 0. 
44  and 0.35  for γ= 1.5 and 2.5, respectively. 

 

 

Fig. 4. Iisothermal case (Ri =0) of Re=2000 with 
R=0.9 at different aspect ratios H/Ro= 1.5, 2.0 

and 2.5. 
 
The influence of the intensified rotation rate on the 
flow pattern, the apparition, and suppression of 
vortex breakdown is also depicted in Fig.5 where 
six Reynolds numbers, Re=1250, 1500, 1750, 2000, 
2250, and 2500, respectively) are compared for one 
aspect ratio γ =1.5. When the Reynolds number is 
increased with an increment of Re=250, the vortex 
breakdown appears at  Re=1250 in which, the 
central position of the vortex on the z-axis is at z = 
0,84 and on the r-axis is 0.16. Then the size of the 
vortex grows with the increasing Reynolds number 
to Re=1750. The central positions of the vortex on 
the r-axis are |r|  =0,192 and |r| = 0.201 for Re=1750 
and Re=2000, respectively. As clearly shown by the 
streamlines on the cases of Re=2250 and Re=2500  
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Fig. 5. Iso-contours of the stream function in 
case of =1.5 for R= 0.9 at different Reynolds 

numbers,  Re. 
 

that a small vortex appears in these two cases, and 
disappears for Re ≥2510.   

Figure 6 shows the effects of increasing Reynolds 
numbers on the central position of the vortex on the 
z-axis and r-axis, respectively in the case of  =1.5. 
Here, the central position is presented at different 
Reynolds numbers, which is in the range of 1100 ≤ 
Re ≤ 2500. First, a vortex appears at Re = 1170 and 
disappears at Re ≈ 2510. The central position on the 
z-axis is at z = 0.780 when the small vortex appears 
at Re = 1175 and rise to z = 1.157 until Re = 2500. 
The central positions on the z-axis of the vortex 
increase gradually with the increasing Reynolds 
number.  The red curve with circle symbols shows 
the central position of the vortex on the r-axis 
which is different from those in the central position 
on the z-axis. In this case, the distribution of the 
central position on the r-axis represents the shape of 
a semicircle. The central positions on the r-axis are 
divided into two parts, when Re ≤1800, the r-central 
position of vortex increase with the increasing Re, 
contrarily when Re ≥ 1800, they decrease with the 
increasing Re. Finally, for the case of =1.5, the 
present results show that the increase of the Re 
causes the increase of the z-central position of the 
vortex, but contrarily causes the decrease of the r-
central position after it passes a peak. The situation 
can be interpreted as follows, the peak occurred in 
the region where the viscous and inertial forces are 
of the same magnitude. Moreover, Based upon 
experiments of Escudier (1984), the breakdown 
region is characterized by a radius r, the 
corresponding Reynolds number is then ሺݎ/
ܴ଴ሻܴ݁ଵ/ଶ. The largest value of this quantity for the 
case =1.5 is for Re=1800 at r/Ro~0.202 and 
ሺݎ/ܴ௢ሻܴ݁ଵ/ଶ	~	8.57.  

For R=0.9, the boundaries (limits zones) of the 
vortex breakdown of the present results are 
compared with the results from Escudier’s stability 
diagram for a cylindrical container (R=1.0), see 
Fig. 7.  Escudier (1984) performed an experimental 
study using a laser-induced fluorescence technique 
to visualize the flow structure in cylindrical 
geometry generated by the rotating bottom disk. 
They have proposed a stability diagram describing 
the vortex breakdown regime which corresponds to 
the black curve in Fig. 7. The aspect ratios effect on 

the vortex breakdown zones in the (Re, γ) plane 
shows how the boundaries of the vortex breakdown 
shift towards the left, i.e. the vortex breakdown 
zone are moved to the weak values of aspect ratios 
for the annular gap (R=0.9) which correspond to red 
curve wit stars symbols in Fig. 7. The intersection 
point between these two curves becomes at the 
aspect ratio (γ) = 1.2 close to Re ≈1015. On the 
other hand,  the increasing effects of the Reynolds 
number rises also the transition to an unsteady 
regime for R=0.9.  

 

 
Fig. 6.  Central position of the vortex on the z-

axis and r-axis vs Re  
 

 

Fig. 7. Boundaries of the vortex breakdown zone 
of the present results (R=0.9)  compared to the 
limits taken from Escudier (1984)  for R=1.0. 

 

4.2 Buoyancy Effect on Vortex Breakdown 
and the Fluid Layers 

4.2.1 Case of Pr=0.015 

To investigate the effects of thermal gradients on 
the fluid layers and the control of the vortex 
breakdown (i.e. location, or suppression of vortex 
breakdown), taking the case of liquid aluminum, 
corresponding to Pr=0.015. One axisymmetric 
bubble is attached to the inner cylinder as shown in 
Fig. 8 for case A at Ri =0.01 corresponding to Re 
=1500 and γ= 1.5. The almost isothermal case, in 
which forced convection takes place. The rotation 
of the bottom gives a centrifugal force to the fluid, 
and this force drives the fluid radially outward. The 
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upward jets and downward flow result in the 
centrifugal flow structure, with an axial vortex near 
the inner cylinder axis. The central position on the 
z-axis of the vortex breakdown is at z = 0.91, and 
on the r-axis is at |r| = 0.19, respectively. It is 
observed for Ri = 0.01 the domination of the 
convection mode of heat transfer, where a 
remarkable deviation is shown in contour plots of 
isotherms(Fig.8). However, the buoyancy forces 
adverse pressure gradient, which tends to suppress 
the non-homogeneities, and then it can be expected 
disappearance of the vortex breakdown when 
Ri=0.1. In this case, the core rotates at an exact 
average velocity between that the two end disks, 
which requires that the core will be in azimuthal 
equilibrium between the viscous stress from the 
rotating bottom disk and the viscous decelerating at 
the stationary top disk. When the Ri is increased 
further to Ri =1.0, the buoyancy forces reacting on 
the fluid near the top hot disk are very intense that 
the inertia forces result from the rotation of the 
bottom disk cannot tend the fluid downward and the 
flow is structured now with two-cell, which has a 
smaller size  (Fig. 8c). As the Richardson number is 
increased from Ri =1.5 to 2, the buoyancy force 
acting on the hot fluid near the top disk, which 
produces another region (counter-rotating flow).  
This region grows in size as the Ri is increased 
more until it takes the entire top section of the 
annular gap (Ri = 2, Fig. 8e).  So the increase of Ri 
results in a damping of the fluid motion, and thus 
heat conduction progressively dominates over 
convection heat transfer when z>1.  

In the second line of Fig.8 the effect of Ri is 
investigated for the case of Re=1855 and γ=2.0 
(case B). For Ri=0.0,1 a small breakdown  bubble 

compared to case (A) can be seen in Fig. 8a, 
centered on the z-axis at z=1.34 and r-axis at |r| 
=0.71, respectively. As is clearly shown in contour 
plots of isotherms when Ri=0.01, convective heat 
transfer dominates the temperature distribution. A 
short increase in the Richardson number to Ri =0.1 
(Fig. 8b) causes the disappearance of the vortex 
breakdown bubble. Another cell becomes apparent 
when Ri = 1.0, due to the counter-rotating flow. 
This is depicted in Fig. 8c, where the streamlines 
show that a double-layer flow structure occurs. 
When Ri is increased further (Ri=1.5 to 2), causes 
the growth of regions of counter-rotating flow near 
the hot disk. 

In the third line of Fig.8, we also give the effect of 
Richardson's number for the case of Re=2400 and γ 
= 2.5 (case C). In Ri=0.01 case, a one-bubble vortex 
breakdown appears and is centered at z = 1.81, and 
|r| = 0.14. The observation is almost the same as the 
previous case when Ri = 0.1 (Fig 8b), the vortex 
breakdown is suppressed, and the fluid in the bulk 
of the annular gap exhibits quasi-rigid rotation.  A 
counter-rotating flow zone becomes apparent when 
Ri=1.0 near the hot top disk.  Increasing the 
Richardson number to Ri=1.5 leads to the 
appearance of a stratified structure with three fluid 
layers.  Also, one clockwise recirculation region 
appears between two counterclockwise recirculation 
regions when Ri = 2, which has a double lobe 
structure. As is clearly shown by the isotherms in 
Fig.8e, the vertical temperature gradient is 
concentrated in the vicinity of the top boundaries 
where the conduction dominates the thermal 
transport. This is a consequence of the thermal 
insulation by the stratified layers. 

 

 

 
 

Fig. 8. Superposed streamlines and isotherms in meridional planes for increasing Ri when Pr=0.015. 
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4.2.2 Case of Pr=0.025 

Figure 9 presents the isolines of stream function for 
progressively increasing Richardson numbers when 
Pr=0.025.  The structure of the flow in Case A is 
almost the same as case A when Pr=0.015 as 
mentioned above. Similar to what was observed in 
the previous section, a further increase in Ri causes 
the vortex breakdown bubble to disappear at Ri= 
0.1, see case A (Fig. 9-b). When the Richardson 
number is increased to Ri=1.0, the buoyancy forces 
induce a clockwise recirculation region that appears 
in the upper annular gap (Fig. 9-c). As in the 
previous case, further increases in Ri cause this new 
fluid region to occupy almost the upper half-annular 
gap; however, in this case, the fluid recirculation is 
highest and then decreases quickly with the 
increasing Ri.  

In the second line of Fig. 9, the case of Ri=0.1 is 
almost similar to what was observed in the previous 
section, we also noticed here when Ri = 0.1 the 
vortex breakdown bubble has disappeared (Fig. 9-
c). The transition to a double layer flow structure is 
observed at Ri =1.0, in which a new clockwise 
region has formed near the stationary top disk.  
There are further transitions that occur, when Ri 
further increases beyond 2.0, leading to the 
formation of three fluid layers. Therefore, more 
increases in the Ri lead to a gradual reduction in the 
stream function. 

As to case C, the effects of the buoyancy forces on 
the transition to a multi-layered flow pattern are the 
strongest among these cases. The one-bubble vortex 
breakdown centered near to inner cylinder wall (Ri 
=0.01) disappears in the interior of the container at 
Ri=0.1 (plots in (C) of Fig. 9b). When the 
temperature stratification is important (Ri=1.0), 
while the Ekmàn suction disappears in the interior 
of the gap and leads to the formation of additional 
layers (plot in (C) of Fig. 9c). Then the number of 
layers grows with the increasing Richardson 
number, and it is four layers when Ri = 1.5.  When 
Ri=2.0 it reaches the peak, which is five layers, but 
not all of the formed layers occupied all the distance 
from the sidewall to the inner cylinder wall. 

A remarkable deviation is shown in contour plots of 
isotherms when Ri≤0.1 in the all annular gap area, 
where convective heat transfer dominates the 
temperature distribution. This behavior is in 
contrast to Ri≥1 cases in which the domination of 
the conductive heat transfer can be observed a 
remarkable deviation is shown in contour plots of 
isotherms when Ri≤0.1 in the all annular gap area, 
where convective heat transfer dominates the 
temperature distribution. This behavior is in 
contrast to Ri≥1 cases in which the domination of 
the conductive heat transfer mode can be observed 
in the upper annular gap, due to the insulation 
created by the layers of which are developed.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
Fig. 9. Superposed streamlines and isotherms in meridional planes for progressively increasing 

Richardson numbers when Pr=0.025.  
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4.2.3 Case of Pr=0.032 

Figure 10 presents the superposed streamlines and 
isotherms in meridional planes for progressively 
increasing Richardson numbers when Pr=0.032.  
The results for case (A) show that, when the 
Richardson number increased to Ri=0.1, the vortex 
breakdown is suppressed. In this case, heat transfer 
convection is dominant. The maximum value of the 
stream function decrease with increasing Ri until  
0.0064 at  Ri=2.0. The streamlines when Ri=1.0 
show a new region of counter-flow which grows 
with increasing Ri and then dominate the entire top 
section of the annular gap (plot in A of Fig. 10).  
 
The plots in Fig. 10 for case (B) show the 
disappearance of the vortex at Ri=0.1 and then the 
decomposition in the counter-flow region, up to 
two-layered appear for Ri = 1.0 (plot in A of Fig. 
10c). The stratified structure with four fluid layers 
is observed when Ri = 2.0. Note that, the separated 
zone centered at z =0.90, and |r|=0.75 does not 
occupy the entire distance from the outer wall to the 

inner wall. The isotherms plot when Ri=2.0 shows 
that conduction mode dominated the heat transfer, 
especially in the top region. 
 
Similarly, the buoyancy acts for case C are stronger 
than those in cases A and B (plots in C of Fig.10).  
When the vertical temperature gradient is small 
(Ri=0.1), and the convection mode dominates heat 
flux, the vortex breakdown in the annular gap is 
suppressed. In the range of Ri≥1, there is no big 
difference about the isothermal line distribution, but 
the maximum value of non-dimensional streamlines  
 decreases as the increasing of Richardson (maxߖ)
number, and are 0.0065 and 0.0055 at Ri=0.1 and 
Ri=2, respectively, that indicates the flow is 
suppressed by the Buoyancy force. The process of 
increasing the Richardson number to Ri=1.0 induces 
three layers (plots in C of Fig. 10c). On the range of 
Ri considered in the case (C), up to five layered 
appear for Ri = 1.5( see, Fig.10d) and six such 
layers are observed for Ri= 2.0 (Fig.10e). 
  

 

 
 
 Fig. 10. Superposed streamlines and isotherms in meridional planes for progressively increasing 

Richardson numbers when Pr=0.032. 
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second layer to form beyond Ri > 0.3. As to case B, 
a second layer flow structure is observed when Ri ≥ 
0.5.  In case (C), up to three layers appear for Ri ≥ 
1.3. 

The evolution of the number of fluid layers for the 
case of Pr = 0.025 is summarized in Fig. 11b. 
Similar to the case of Pr = 0.015, the number of 
layers is computed by the number of recirculation 
zones occupying a distinct part of the meridian 
flow. It is clear that for case A, the flow contains a 
single layer, that occurs for Ri≤0.6. Then, more 
increases in the Richardson number beyond Ri≥0.7, 
can be expected to lead to a second layer to form. 
As to case B, the effects in the growth of 
Richardson's number on the evolution of stratified 
layers are stronger than in case A. Here (case B), a 
three-layer flow structure is observed when Ri≥1.6. 
On the range of Ri considered in the case (C), up to 
four layers appear for the range of 1.4 ≤ Ri <1.7 and 
five such layers are for Ri ≥ 1.7. 

The evolution of the number of fluid layers for the 
case of Pr = 0.032 is summarized in Fig. 8c. It is 
observed that the effect of vertical temperature 
difference on the flow pattern is to lead the 
meridional flow into layered structures. It is clear 
that for case A, the flow contains a single layer, that 
occurs for Ri ≤0.6. Then, more increases in the 
Richardson number beyond Ri ≥0.7, can be 
expected for a generation of a second layer to form. 
As for case B, a three-layers are observed for 
Ri≥1.3. Then four fluid layers are formed in the 
range of 1.8 ≤Ri ≤2. For case (C), up to four layers 
appear for  1.3≤ Ri ≤ 1.4, and then five layers 
appear for Ri = 1.5  to Ri=1.8 and six layers are 
observed for 1.9≤Ri≤2. 

Figure 11d compares the evolution of the number of 
fluid layers for the three Prandtl numbers 
(Pr=0.015, 0.025, and 0.032, respectively) when 
Re=2400 and γ=2.5 (case C). Figure 11d indicates 
that Prandtl number Pr has a major influence on the 
number of fluid layers formed. The concurrence 
between buoyancy and viscous forces is amplified 
with increasing Ri, therefore the number of fluid 
layers increases with increasing Ri in all 
investigated cases. Therefore, the number of formed 
layers in the case of Pr=0.032 is bigger than in 
other cases (Pr=0.015 and 0.025). 

4.3 Heat Transfer 

We believe that the relationship between the 
stratification of fluid and heat transfer must be 
clarified. However, the Nusselt number is analyzed 
in the remainder of this section for many 
parameters. The decreasing of the average Nusselt 
number with the Richardson number is presented in 
Fig. 12a, where three combinations (A, B, and C) 
are compared at Pr = 0.032. Figure 12a shows that 
 തതതത monotonically decreases with increasing Ri andݑܰ
approaches the reciprocal of the aspect ratio, i.e., 
1/H (=0.4 at γ= 1.5; 0.5 at γ=2.0 and 0.66 at γ=1.5) 
which means the value of the conduction limit. In 
Fig. 12a, it is noticed that the maximum value of 
 തതതത is attained when a single layer fluid isݑܰ

established in the meridian flow. For mixed 
convection, the influence of buoyancy. 

 

 

 

 
 
 

 

 

 
 

 

 

 
 
 

 
 

Fig. 11 Effect of Richardson number on the 
number of flow stratification layers formed. 

 
For mixed convection, the influence of buoyancy 
force becomes stronger with the rising of the 
Richardson number, so the concurrence between 

-0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0

1

2

3

4

5

N
um

b
er

 o
f 
la

ye
rs

Ri

 Re=1500 ,H/Ro=1.5

 Re=1855 ,H/Ro=2.0

 Re=2400 ,H/Ro=2.5

Pr=0.015

(a)

-0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0

1

2

3

4

5

N
um

be
r 

of
 la

ye
rs

Ri

 Re=1500 ,H/Ro=1.5

 Re=1855 ,H/Ro=2.0

 Re=2400 ,H/Ro=2.5

Pr=0.025

(b)

-0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0

1

2

3

4

5

6

N
um

be
r 

of
 la

ye
rs

Ri

 Re=1500 ,H/Ro=1.5

 Re=1855 ,H/Ro=2.0

 Re=2400 ,H/Ro=2.5

Pr=0.032

(c)

-0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0

1

2

3

4

5

6

N
um

be
r 

of
 la

ye
rs

Ri

 Pr=0.015
 Pr=0.025
 Pr=0.032

Re=2400, H/R0=2.5

(d)



H. Benhacine et al. / JAFM, Vol. 15, No. 2, pp. 563-577, 2022.  

573 

viscous and buoyancy forces is increasingly 
important with increasing Ri. However, the lighter 
hot fluid close to the top hot disk sits on the top of 
the heavier cold fluid close to the bottom cold disk.  
The effects of natural convection continue to exist 
only near the heated top disk. In this case, the stable 
stratification of fluid opposes the flow produced by 
the bottom rotating disk, and so the net advective 
transport diminishes, and the value of ܰݑതതതതdecreases 
with increasing Ri. Also, these fluid layers play the 
role of thermal insulation, since the number of 
layers influences the heat transfer. We conclude that 
the combination of Re and γ control the heat transfer 
by the presence or absence of fluid layering. 

Figure 12b shows the decrease of  ܰݑതതതതwith 
progressively increasing Ri for different Pr at case 
A (Re=1500 and γ=1.5). For all values of the 
Prandtl number studied here, the average Nusselt 
becomes insensitive to the changes when the 
Richardson number goes beyond 1.2. For case (A) it 
appears that ܰݑതതതത reaches extreme value when Ri = 0 
and is 0.75, 0.78, and 0.86 for Pr=0.015, 0.025, and 
0.032, respectively (Fig.12b).  Furthermore, it is 
seen that at a constant value of Ri the average 
Nusselt values become progressively grow as the 
Prandtl number is increased indicating that 
advective transport reinforces with increasing Pr, as 
observed from Fig. 12b. Conscontely Prandtl 
number Pr has an important influence on ܰݑതതതതin this 
case. 

 

 
 

 
 
Fig. 12. Effect of the Richardson number on the 

average Nusselt number. 

4.4 Magnetic Effect on Fluid Layers 

Under magnetic effect, viscous forces can complete 
with magnetic forces in the Hartmann layer near to 
walls normal the applied magnetic field.  Thus, 
when the Hartmann number increases, the Ekman 
layer is progressively replaced by the Hartmann 
layer, which is near to walls normal to the magnetic 
field. These layers are perpendicular to the field, 
having a dimensionless thickness δ٣ ≈ 1/Ha. 
Therefore, the intensified magnetic field results in 
Hartmann layer thickness. Where the walls are 
electrically insulating, the Hartmann layer near the 
disk has a similar solution as in the case of the 
classical Ekman layer. The order of magnitude of 
the axial velocity is vz ~ Re/Ha3, which results in 
the weakness of the axial velocity.  

 To investigate the effects of the axial magnetic 
field on the vortex breakdown in hydrodynamic 
case taking, for example, the case of Re  = 1500  
and  =1.5  for progressively increasing  Hartmann 
numbers, Ha= 1, 5, 7, and  9, respectively. Figure 
13, shows that breakdown size diminishes with 
increasing Hartmann numbers and finally 
disappears at Ha=9.   

The magnetic effect on the layering (i.e., apparition 
or suppression) is shown in the case of Pr=0.032 
and Ri=1.0 in the three cases mentioned above. The 
streamlines plots in the case of Ri=1.0 at Ha=0 
show a double layer, in which the bottom layer is 
the biggest (Fig.14a). The magnetic field in the 
vertical direction has a good suppressive effect on 
both vortex breakdown and fluid layers which are 
shown in this case. As clearly shown by the 
streamlines on the first line of Fig. 14, the 
clockwise recirculation top region diminishes in 
size and moves toward the sidewall when Ha = 10. 
On the contrary, the counterclockwise recirculation 
zone grows in size until it takes the entire top gap of 
the cylinder. Also, the maximum streamfunction 
decreases with increasing Ha and is 0.0065 and  
0.0061 for Ha=0  and Ha = 10, respectively. The 
small toroidal vortex decreases in size and then 
disappears at Hacr= 20. The r-central position of the 
small toroidal region rises with increasing Ha and, 
on the contrary, the z-central diminishes slightly. 
The central positions are at z =1.08,0.99, and 0.97 
for Ha = 5, 10 and 15, respectively. 

As for case B shown in Fig 14, the streamline plots 
for Ha= 0, show a double layer, in which the top 
layer, has a double lobe structure. The length along 
the z-axis of the clockwise toroidal vortex above 
z=1 becomes narrow and is about 0.38 at Ha=10. 
The streamlines for Ha=15 and Ha=20  clearly 
show the small toroidal vortex centered at z=1.1and 
z=1.04, respectively that decreases in size further 
and disappear at Ha = 21. 

The effect of increasing Ha is distinctly seen in Fig. 
14 at case C. For Ha=0,  three layers are observed, 
but at Ha=10 the middle clockwise toroidal vortex 
divides into two cells and drives to the creation of 
three layers. For Ha=20 the streamlines show a  
small toroidal vortex centered at z=1, then 
decreases in size and disappears at Hacr= 26. For all 
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(a)  Ha= 0.0 (b)  Ha= 5 (c)  Ha= 10 (d)  Ha= 15 (e)  Ha= 20 
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cases the isotherms plots when Ri=1.0 show that 
conduction domine the heat transfer, especially in 
the top gap. 

Figure 15 shows the isocontours in the meridional 
planes of axial velocity, flowed by the spatial 
structure of the zero axial velocity plotted for 
increasing Hartmann numbers for case C when Pr = 
0.032 and Ri=1.0. This figure shows the connection 
between the zero value of axial velocity and the 
number of formed layers, on the one hand, the 

relationship between zero axial velocity and the 
increasing Hartmann number. Therefore, as the 
Hartmann number increases, the decrease in axial 
velocity accelerates and sequential flow axial 
stagnation could occur near the inner cylinder 
leading to the elimination of fluid stratification. The 
number of the fluid layers can be approximated 
from the zero axial velocity. For critical value 
Hacr=26, the deceleration in axial velocity causes 
the fluid to stagnated axially near the outer cylinder, 
and therefore there only one layer is formed. 

 
 
 
 
 
 
 
 
 
 
    
 

Fig. 13. streamlines in the meridional planes in case of  Re  = 1500  and  =1.5  for progressively 
increasing  Hartmann  numbers (Ha= 1, 5, 7, 9). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 

Fig. 14. Superposed streamlines and isotherms for increasing Ha when  
Pr = 0.032 and Ri =1.0. 
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Fig. 15. Iso-contours of axial velocity in the meridian plane ( top) flowed by  the spatial structure of  zero 
axial velocity(bottom) for increasing Ha  when  Pr = 0.032 and Ri = 1.0 at case C. 

 

 

 
Fig. 16. Reduction of the number of fluid layers 

VS Ha when Ri = 2.0 and Pr=0.032. 
 
Figure  16 compares the magnetic field effect on the 
number of fluid layers for three cases (A, B, and C) 
mentioned above when Pr=0.032 and Ri =2.0. The 
decrease in the curves as shown in Fig.13 indicates 
that increasing Ha has an important influence on the 
number of fluid layers formed. Therefore, the 
number of fluid layers decreases with increasing Ha 
for all three cases. For Ha=0 we have six layers for 
case C, five layers for case B, and three layers for 
case A. Over the range of 10 ≤ Ha ≤17, the decrease 
in the number of layers is the same for cases B and 
C.  The critical Hartmann numbers, Hacr = 20, 26, 
and 34 correspondings to a single layer for cases A, 
B, and C respectively. Consequently, the axial 
magnetic field affects a decrease in the number of 
resulting layers. 

The diagram in the (Hacr–Ri) plane for all three 
cases when Pr=0.032 presented in Fig. 16a gives 
the evolution of critical Hartmann number Hacr 
versus Ri, for which the stratification fluid layers 
are suppressed and replaced by one fluid layer. 
 

There are three separate curves, represent the limits 
of two-zone, i.e., the domains with and without 
stratification fluid layers. The blue curve with star 
symbols in Fig. 17a represents the boundary for 
case A. The red curve corresponding to case B. For 
case C, the threshold of transition is plotted by the 
black curve with square symbols. In all cases, we 
have seen that the increase of the Ri causes the 
increase of the Hacr. Also, increasing Ha removes 
the fluid layers at a constant value of Ri (the 
layering disappears after the amplitude of Ha goes 
beyond a critical value). The critical values (Hacr) 
for case C are greater than those obtained in cases A 
and B for a fixed Richardson number. 

Diagram, as shown in Fig. 17b, gives the evolution 
of transition from the multiple layers zone to the 
one layer zone for case C where Prandtl numbers 
are given by Pr=0.015, 0.025, and 0.032, 
respectively. The zone above the black curve with 
square symbols consisting of one layer appears at 
Pr=0.032 for the values of the critical Hartmann 
number Hacr = 19, 26, and 30.5 correspondings 
respectively to the values of the Ri = 0.5, 1.0, and 
2.0. We have seen that the critical Hartmann 
number evolves with increasing Ri. On the other 
hand, Hacr rises with increasing Pr for a fixed value 
of Ri. Therefore, the values of Hacr for case 
Pr=0.032 are greater than those obtained in the 
cases of Pr=0.015 and 0.025. It is observed that the 
divergence between the two curves (Pr=0.032 and 
Pr=0.025) increases with increasing Ri. By contrast, 
it can be seen from Fig. 17b that the divergence 
between curves Pr=0.015 and Pr=0.025 is constant. 

5. CONCLUSION  

The effects of both buoyancy force and magnetic 
field on laminar vortex breakdown and fluid layers 
development through vertical annuli filled with a 
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Fig. 17 (a-b) Curves of Hacr versus Ri show the 
limits of the transition from the multiple fluid 

layers to the single-layer. 
 
conducting viscous fluid with a bottom rotating disk 
have been numerically analyzed. The finite volume 
method has been used to capture the different 
vortex breakdowns in the hydrodynamic case and 
the stratified layers under the temperature 
stratification condition. Three configurations of 
Reynolds numbers and aspect ratios are compared, 
and three Prandtl numbers are analyzed. The main 
results obtained are as follows: 

 It is found that when the annular gap is R=0.9, 
stability limits are moved to the left compared to the 
stability limits of R=1.0 obtained by Escudier 
(1984). It is also found that only a single vortex 
breakdown exists.  

 In all cases A, B, and C investigated above, 
increasing Richardson number to 0.1 resulted in the 
suppression of vortex breakdown in which one layer 
occupied the annular gap. 

 The competition between buoyancy and viscous 
forces occurs with the emergence of a clockwise 
flow near the hot top disk, and at a sufficiently high 
Richardson number, the flow tends to develop a 
fluid layered structure. 

 The stratification layers increase with 
increasing Ri for all cases A, B, and C. 

 The average Nusselt number demonstrates a 
monotonically decreasing trend with increasing Ri 
in the onset of the layering, so the fluid layers act to 
insulate the hot annular gap. However, for the range 
of Ri considered the average Nusselt number 
increases with increasing Prandtl number. 

 The Prandtl number and combination of 
(Reynolds number/aspect ratio) play an important 
role in the formation of fluid layers. 

 With a magnetic field, the results showed that  
increasing Ha leads to suppress the vortex 
breakdown and to a decrease in the number of fluid 
layers 

 Finally, the transition from multiple fluid layers 
to one fluid layer (Hacr) evolves with increasing Ri. 
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