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ABSTRACT 

An optimal Kriging surrogate model based on a 5-fold cross-validation method and improved artificial fish 
swarm optimization is developed for improving the aerodynamic optimization efficiency of a high-speed train 
running in the open air. The developed optimal Kriging model is compared with the original Kriging model in 
two test sample points, and the prediction errors are all reduced to within 5%. Thus, the optimal Kriging 
model is selected for use in each iteration to approximate the CFD simulation model of a high-speed train in 
subsequent optimization. After that, the strong Pareto evolutionary algorithm II (SPEA2) is adopted to obtain 
a series of Pareto-optimal solutions. Based on the above work, a multi-objective aerodynamic optimization 
design for the head shape of a high-speed train is performed using a free-form deformation (FFD) 
parameterization approach. After optimization, the aerodynamic drag coefficient of the head car and the 
aerodynamic lift coefficient of the tail car are reduced by 5.2% and 32.6%, respectively. The results 
demonstrate that the optimization framework developed in this paper can effectively improve optimization 
efficiency. 

Keywords: High-speed train; Multi-objective aerodynamic optimization; FFD method; Improved artificial 
fish swarm algorithm; Optimal Kriging model; SPEA2 algorithm. 

NOMENCLATURE 

Cd drag coefficient 
Cl lift coefficient 
D(i) density information of the individuals 
H1   nose height 
H2  window height 
L nose length 
nf number of fish swarm in visual 
P0 origin point of the coordinate system 
Pi,j,k new  positions of the control points 
S(i) number of individuals dominated by  
            individual i 

 β weight coefficient 
δ crowding factor  
θk correlation parameter 
Xi current position of the i-th artificial fish 
Xc central position of the fish swarm 

iy  true values of sample points 

ˆiy  predicted values of sample points 

Yi objective function of artificial fish Xi 
Yj random state in the range of vision 
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1. INTRODUCTION 

In recent years, with the rapid development of 
various computer simulation technologies such as 
finite element simulation, dynamic simulation, and 
fluid dynamics simulation, the reliability and 
accuracy of simulation experiments have also been 
greatly improved, and computer simulation 
technology has been widely used as a design aid. 
However, computer simulation technology still has 
some limitations. That is, the computational cost of 
computational simulation experiments is often too 
expensive and the cycle is too long (Yang et al. 
2016). To solve the problem of high computational 
cost in computational simulation experiments 
(Venkataraman and Haftka 2004), the design 
method of using surrogate models to replace 
expensive computational simulation models came 
into being (Ong et al. 2005). The surrogate model is 
a mathematical modeling method that belongs to a 
branch of supervised machine learning. It can 
quickly and effectively realize the approximate 
fitting of multidimensional variables based on 
limited data information. It has been widely 
discussed and studied in many fields, such as 
optimization design, ecological modeling, 
geological statistics, artificial intelligence, and so 
on. Compared with the expensive computational 
simulation model, the surrogate model is a purely 
mathematical model, which can effectively reduce 
the calculation time and shorten the design cycle. 

With the increasing speed of high-speed trains, 
aerodynamic drag and aerodynamic noise increase 
obviously, which affects the safety and stability of 
high-speed trains. The best way to reduce 
aerodynamic drag is to perform the aerodynamic 
optimization design of high-speed train head shapes 
(Tian 2019). Aerodynamic optimization design 
belongs to the category of multidisciplinary 
optimization design, which is widely used in the 
field of aerospace (Wang et al. 2014; Shen et al. 
2020). In recent years, some scholars have applied 
the multidisciplinary optimization design method to 
the design of high-speed train heads to improve 
their aerodynamic performance. (Yao et al. 2014, 
2016) used the NSGA-II algorithm to carry out 
aerodynamic optimization design for a simplified 
CRH380A model and improved the optimization 
efficiency by constructing a Kriging surrogate 
model. (Yu et al. 2019) proposed an efficient multi-
objective aerodynamic optimization method based 
on a Kriging approximate model to improve the 
aerodynamic optimization efficiency of the high-
speed train. (Zhang et al. 2016) proposed a multi-
objective optimization design method for high-
speed train head shape based on a Kriging surrogate 
model and a non-dominated sorting PSO algorithm 
combined with the proposed parameterization 
technique. (Li et al. 2016) optimized the 
aerodynamic performance of a high-speed train 
head shape by using a Kriging model and NSGA-II 
based on the FFD method, and obtained a set of 
Pareto-optimal solutions. (Sun et al. 2017) 
constructed a Kriging model that focused on the far- 
 

field noise level and the overall drag of a high-
speed train, and the optimization design of the 
streamlined high-speed train head shape was 
performed. (Muñoz-Paniagua and García 2020) 
constructed a radial basis function (RBF) model for 
optimal candidates evaluation and accurate flow 
simulations using computational fluid dynamics 
(CFD), which largely speeds up the GA process. 
(Zhang et al. 2017a, b) proposed a multi-objective 
aerodynamic optimization method of the high-speed 
train head shape based on a kriging model and the 
NSGA-II algorithm, and obtained a series of Pareto-
optimal solutions. After optimization, the 
aerodynamic drag of the whole train and the 
aerodynamic lift of the tail car were reduced by 
2.61% and 9.9%, respectively. 

The accuracy of surrogate models has an important 
impact on the results, and some scholars have made 
some efforts to improve the accuracy of surrogate 
models. (Xu et al. 2017) constructed a Kriging 
model by using a cross-validation method, and the 
optimization results showed that the Kriging model 
could effectively improve the optimization 
efficiency. (Zhang et al. 2019a) developed an 
optimal support vector regression model based on a 
radial basis kernel function for the small sample 
size and nonlinear characteristics of streamlined 
head optimization. (He et al. 2020) proposed a 
global optimization strategy based on the hybrid 
surrogate model and the CMOPSO algorithm to 
improve the accuracy of the aerodynamic 
performance optimization of a high-speed train 
head shape. 

The surrogate models mentioned above mostly 
adopt original hyperparameters, and the prediction 
accuracy is difficult to guarantee. A surrogate 
model with original hyperparameters may cause 
poor prediction accuracy, which will directly affect 
the subsequent modeling process. Therefore, it is 
necessary to optimize the hyperparameters of the 
surrogate model. Moreover, an efficient 
optimization algorithm also has an important 
influence on optimization results. The artificial fish 
swarm algorithm (AFSA) is a new swarm 
intelligence algorithm that can solve some complex 
optimization problems. However, AFSA has a slow 
search speed, and it is easy to fall into a local 
optimum. In this paper, an optimal Kriging 
surrogate model is constructed based on a 5-fold 
cross-validation method and an improved AFSA. 
The minimizing mean square error (MSE) is 
considered as the optimization object, and an 
improved AFSA is then used to optimize the 
hyperparameters of the Kriging model to improve 
the prediction accuracy. Finally, a global 
optimization strategy based on the optimal Kriging 
surrogate model and the strong Pareto evolutionary 
algorithm 2 (SPEA2) is developed for the 
aerodynamic optimization design of a high-speed 
train head shape. After optimization, a set of Pareto 
optimal solutions are obtained, and the aerodynamic 
performance of the optimized high-speed train is 
compared with the original shape. 
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2. OPTIMAL KRIGING MODEL 

2.1 Kriging model 

The Kriging model is an unbiased estimation 
model with minimum estimation variance, which 
has the characteristics of local estimation. It was 
first proposed by Danie Krige, a geologist in 
South Africa, in 1951. Kriging is an optimized 
interpolation algorithm, which simulates 
interpolation through a Gaussian process 
controlled by covariance to generate continuous 
functions. This method not only considers the 
influence of the distance relationship between 
sample points on output variation but also 
considers the influence of the location relationship 
and spatial distribution of sample points on the 
overall output (Li 2017). The expression consists 
of two parts, as in Eq. (1). 

1

(x) (x) (x)
k

i i
i

y f z


                                         (1) 

where (x)y  denotes known approximate function, 

i  denotes unknown weight coefficient, and (x)z  

represents random process, which is usually a 
standard Gaussian random distribution equation 
with a mean value of 0 . The variance is 

2[z(x ), z(x )] R[ (x , x )]i j i jcon R                     (2) 

where 2  is the process variance, R  is the matrix of 
covariance, and (x ,x )i jR  is the relationship 

function of the input variables x i  and x j . In this 

paper, a Gaussian correlation function was used, 
and its expression can be expressed by the 
following equation. 

2

1

( , , ) exp[ ],  ( , 1, , )
m

i j i j
k k k

k

R x x x x i j n 


    

                                                                                (3) 

where m  represents the number of design variables, 

k  is the unknown correlation parameter. i
kx  and 

j
kx  represent the k-th components of sample points 
ix  and jx , respectively. 

k  has an important influence on the prediction 

accuracy of Kriging model. The essence of 
constructing Kriging model is to determine the 
optimal 

k  value. If k  was considered as the 

independent variable, and the mean square error 
(MSE) was considered as the optimization objective. 
The optimal 

k  of the correlation function can be 

obtained by solving the following equation. 

2 1
    ( )= ln( ) ln( )

2 2
 to:  >0 

k

k

n
Minimise R

Subject

  



 




          (4) 

In the above equation, both 2  and R  are 

functions of 
k . The artificial fish swarm 

optimization algorithm (AFSA) will be used to find 

the optimal k . The relevant theory will be 

introduced in the next section. 

2.2 Artificial fish swarm optimization 

The artificial fish swarm algorithm (AFSA) is a 
new swarm intelligence algorithm that can solve 
some complex model optimization problems. The 
algorithm has the advantages of strong adaptive 
ability, fast convergence speed, and strong 
robustness, and has become an important swarm 
intelligence algorithm (Liu and Yuan 2020). AFSA 
can search for global optimization through 
simulating the foraging, tailing, clustering, and 
random behaviors of the fish swarm. The behaviors 
are as follows: 
 

2.2.1 Foraging behavior 

Foraging behavior indicates the aggregation 
behavior of artificial fish in places with a high food 
concentration. The fish in location ix  performs 

updating the next new state jx  within the visual 

range, and its behavior formula is as follows. 

j ix x visual rand                                         (5) 

1
k

j ik k
i i k

j i

X X
X X rand step

X X
 

   


                (6)
 

where 
iX  is the current position of the i-th artificial 

fish, and 
jX  represents the random state in the 

range of vision. rand  represents the random 
number between 0 and 1. step  represents the 

moving step size, and k  denotes the time. If in the 
maximum problem, namely 

i jY Y , the artificial fish 

will move one step toward this direction, otherwise 
the random behavior will be executed. 

2.2.2 Clustering behavior 

If the fish swarm is dense, it means that the 
probability of the optimal solutions is the largest, 
but at the same time, excessive aggregation should 
be avoided. The central position of the fish swarm 
is defined as 

cX , and the objective function of 

artificial fish 
iX  is 

iY . The number of fish swarm 

in vision is fn , and the central position of visual 

field can be expressed as 
1

= /
fn

c j f
j

X x n

 . if 

c iY Y  

and /fn N  , which means that there are many 

excellent individuals in the center of visual range, 
and artificial fish can move toward the central 
position because there are not overcrowding. 
Otherwise, the foraging behavior will perform (Luo 
et al. 2020). The formula can be expressed as 

( ) ( )
( 1) ( )  , 

( ) ( )
c i

i i c j
c i

X t X t
X t X t rand step Y Y

X t X t


     


  

                                                                                (7) 
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2.2.3 Tailing behavior 

1 m ax

m ax

k
k k i
i i k

i

X X
X X rand step

X X
 

   


                  (8) 

where k
iX  is the current position of artificial fish. If 

max / f iY n Y , it will move one step to 
maxX

.
 

Otherwise, the foraging behavior will be executed. 
 
2.2.4 Random behavior 

1k k
i iX X rand visual                                       (9) 

Random behavior is the default behavior of 
foraging behavior. In foraging behavior, artificial 
fish will randomly select a position and move to this 
position after a certain number of exploratory times. 
 
2.3 Improved artificial fish swarm 
algorithm 

In the AFSA algorithm, if the visual range is set to 
be larger, the fish detection range will be wider, 
which is beneficial to tailing and clustering 
behavior. On the contrary, if the range is smaller, 
the search will be more detailed, which is beneficial 
to the convergence speed, but it is easy to fall into 
the local optimum (Zhang et al. 2019; Chen 2019; 
Yu and Jin 2018). Therefore, a polynomial function 
is proposed to adaptively adjust the visual field. The 
fish swarm searches over a large range in the early 
stages and a small range in the latter stages, which 
can improve the search accuracy and convergence 
speed. The formula is in Eq. (10). 

 

min max min

max

( )

1

visual visual visual visual

t
T





  
  

  
                                                                              (10)

 
where minvisual  and maxvisual  represent the 

minimum and maximum values of the visual range. 
t  represents the current number of iteration, and 

maxT  represents the maximum number of iteration. 

The crowding factor   represents the number of 
artificial fish that can be accommodated in a unit 
volume, and the range is between 0 and 1. This 
value in most of the literature is set to 0.618. In 
order to prevent the AFSA algorithm from falling 
into a local optimum, a smaller   in the early 
stages can enhance the global search ability of the 
AFSA, and a larger   in the latter stages can make 
the fish swarm gather in an optimal area, which 
considers the search ability and convergence speed 
of the algorithm simultaneously. The improved 
crowding factor is in Eq. (11). 

m ax1

m in min=
T

te                                              (11) 

where
 min  is the minimum crowding factor, which 

is set to 0.382 here. t  represents the current 
iteration, and 

maxT  represents the maximum iteration 

number. 

2.4 Evaluation method of surrogate model 

When using the surrogate model to predict 
unknown data points, only reasonable parameter 
values and training methods can obtain ideal 
prediction accuracy. To avoid overfitting and 
underfitting in the process of constructing a 
surrogate model, on the one hand, the k-fold cross-
validation (CV) method was used to train the 
sample points. That is, divide the sample points into 
k groups and select one group as the test set, while 
the remaining k-1 groups are selected as the training 
set. After iterations, a total of k models and k 
prediction errors are obtained. The final evaluation 
index is calculated by averaging the k errors, where 
k = 5. On the other hand, the optimization algorithm 
is used to optimize the parameters. In the 
optimization process, the error obtained each time is 
evaluated by the mean square error (MSE), and the 
expression is presented in Eq. (12). 

2

1

1
ˆ(y y )

n

i i
i

MSE
n 

                                            (12) 

where n  denotes the number of sample points. 
iy  

and ˆiy  represent the true value and predicted value, 

respectively. MSE is a commonly used method that 
can evaluate the error between the predicted value 
and the true value on the entire design interval. For 
a model with higher prediction accuracy, the MSE 
should be as small as possible. The value of the 
MSE should be positive, and its magnitude is 
affected by the output magnitude of the original 
problem. 

3. AERODYNAMIC OPTIMIZATION 

DESIGN 

3.1 The total optimization framework 

The aerodynamic optimization framework proposed 
in this paper uses a global optimization method 
based on an optimal Kriging model and the strong 
Pareto evolutionary algorithm 2 (SPEA2), as shown 
in Fig. 1. The steps are as follows: 

(1) The optimal Latin hypercube sampling (Opt. 
LHS) is used, and the results are saved in the 
sample database. 

(2) After the mesh is deformed by the FFD 
method, a high-precision computational fluid 
dynamics (CFD) simulation is carried out to 
obtain the corresponding response values for 
each sample, which are stored in a sample 
database. Then the data are normalized.  

(3) The Kriging model with an initial parameter is 
constructed based on k-fold cross validation, 
and MSE is used to evaluate the error.  

(4) If the error satisfies the requirement, then the 
optimal Kriging model is obtained. Otherwise, 
the improved artificial fish swarm algorithm 
is used to search for the optimal parameter, 
and the algorithm then returns to step (3). 
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Fig. 1. Flowchart of a global optimization method based on the optimal Kriging model and the strong 

Pareto evolutionary algorithm 2. 
 

(5) The strong Pareto evolutionary algorithm 2 
(SPEA2) is used to obtain the initial 
optimal solution set. If the initial optimal 
solution set satisfies the requirement, then 
the final Pareto front is obtained. 
Otherwise, the new sample points are added 
to the sample database, and the algorithm 
then returns to step (4). 

3.2 FFD method 

This FFD method was first proposed by 
Sederberg and Parry in 1986 (Thomas and Parry 
1986), and can be expressed in terms of 
mathematical relations as follows: By moving the 
control points, the grid nodes are moved along 
with the control points in accordance with a 
certain functional relationship, and the new 
global coordinates of the control points are 
obtained. Thus, the deformation of the grid is 
realized. In a Cartesian coordinate system, the 
target entity is constrained in an l m n   
parallel hexahedral lattice, and a control vertex 

 , ,P x y z  satisfies the following formula (He et al. 

2020). 

, , 0i j k

i j k
P P X Y Z

l m n
                                  (13) 

where P0 is the origin point of the coordinate 
system; i=0, 1, 2,…,l; j=0,1,2,…,m and 
k=0,1,2,…,n. For any point Q, when the mesh is 
deformed by moving the control points, the 
deformation function is defined by a trivariate 
tensor product of Bernstein polynomials. The 
new coordinate position of Q is 

, , , , ,
0 0 0

( ) ( ) ( )
l m n

ffd i l j m k n i j k
i j k

Q B x B y B z P
  

                    (14) 

where Pi,j,k are the new coordinate positions of the 
control points after deformation. Bi,l(x), Bj,m(y) 
and Bk,n(z) are the Bernstein basis functions, 
which are expressed as follows: 

 ,

!
( ) (1 )

! !
i l i

i l

l
B x x x

i l i
 


                          (15) 

 ,

!
(y) (1 y)

! !
j m j

j m

m
B y

j m j
 


                     (16) 

 ,

!
( ) (1 z)

! !
k n k

k n

n
B z z

k n k
 


         

 (17)

 

The mesh deformation can maintain C1 
continuity. In this paper, the deformation region 
mainly lies in the nose height, window height, 
and the nose length, which are expressed as H1, 
H2, and L, respectively. The deformation of the 
mesh was controlled by a series of control points. 
The ranges of the design variables and the 
corresponding coordinates of control points are 
shown in Table 1. An arbitrary shape deformation 
(ASD) control body was established, as shown in 
Fig. 2. The control points of each part are marked 
in yellow, and mesh deformation was realized by 
moving the control points. 

3.3 CFD simulation 

The study aims to optimize a simplified 1:1 
model of high-speed train head with a three-car 
configuration. The influence of the bogies and the 
windshield on the aerodynamic force of the high- 
speed train are considered. The total length of the 
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Table 1 Ranges of the three design variables and the corresponding coordinates of control points 

Design 
variable 
(mm) 

Initial value Lower bound Upper bound coordinates of control point 

H1 0 -150 100 
(-38278.7,10000,1947.86)、

(38282.2,10000,1947.86) 

H2 0 -100 100 

(-35085.1,10740.6,5193.64)、 
 (-35085.1,9259.38,5193.64)、 
(-34286.7,10740.6,5193.64)、 
(-34286.7,9259.38,5193.64)、 
(35088.7,9259.38,5193.64)、
(35088.7,10740.6,5193.64)、
(34290.3,9259.38,5193.64)、
(34290.3,10740.6,5193.64) 

L 0 -50 150 

(-38278.7,10740.6,1947.86)、 
(-38278.7,9259.38,1947.86)、

(38282,10740.6,1947.86)、
(38282,9259.38,1947.86) 

 
 

 

Fig. 2. ASD volume for the high-speed train and 
the deformation of the three parts of the train 

head. 

 

 
Fig. 3. Train model. 

 

train is about 76.5 m, in which the lengths of the 
head car and the tail car are each 25.68 m, and the 
length of the middle car is 24.78 m. The height of 
the high-speed train is 3.89 m, and the width is 2.95 
m. The geometric model is shown in Fig. 3. 

In this paper, the octree algorithm in the ICEM 
CFD software was used to discretize the domain. 
The space was divided into tetrahedral grid cells. 
The surfaces of the train were divided into 
triangular grid cells, and fine prism grid cells were 
used around the train body. Take the total length of 
the train, L, as the characteristic length, and the 
computational domain extends L ahead of the train 
nose and 2L from the train tail to the exit of the 
computational domain. The top of the 
computational domain is at a distance of 0.5L from 

the bottom of the rail, and the sides are at a distance 
of 0.5L from the center axis of the train. The outline 
of the computational domain and the model are 
shown in Fig. 4. 

The running speed of this train in the open air 
without a crosswind is 300 km/h. The Mach number 
is 0.245, which is less than 0.3, thus, the air 
compressibility is not considered. Therefore, the 
three-dimensional steady incompressible Navier-
Stokes (N-S) equation was used to simulate the 
flow field around the train based on the finite 
volume method. The Reynolds averaged N-S 
equations (RANS) method was used to solve this 
equation (Blazek 2005). The reference area is 11.2 
m2. The k-w SST model was selected as the 
turbulence model. The standard wall boundary 
functions were used near the walls to ensure the 
accuracy of the CFD results with a limited amount 
of mesh. The entrance of the domain was set to the 
velocity-inlet boundary conditions and the exit of 
the domain was set to the pressure-outlet boundary 
conditions. The two sides and the top of the 
computational domain were all set to symmetrical 
boundary conditions, and the train body is a nonslip 
solid wall boundary condition. The ground is 
treated as a moving wall to simulate the ground 
effect, and the moving speed is equal to the train 
speed. The CFD simulation was performed in 
starCCM software. The residual of continuity is set 
to 0.0001, which is considered as the convergence 
criterion. 

4. RESULTS AND DISCUSSION 

4.1 Sample points and prediction accuracy 

The design of experiment (DOE) is to generate 
some sample points in the design space to 
approximately represent the whole design space and 
to reduce the computational complexity of the 
optimization algorithm by constructing an 
approximate   model.  Common  DOE  methods  
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Fig. 4. Computational domain. 
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Fig. 5. Plane distributions of the training samples. 

 

 
 (a) (b) 

Fig. 6. Hyperparameter optimization curves conducted by AFSA. (a) Kriging model constructed by 
drag coefficient of the head car (b) Kriging model constructed by lift coefficient of the tail car. 

 

 
include full factor design, orthogonal experimental 
design, and optimal Latin hypercube experimental 
design (Opt. LHS). The head shape of a high-speed 
train is a complex streamlined shape. In this paper, 
three main design variables were selected to 
generate 25 training sample points in the design 
space using an Opt. LHS, and two random sample 
points (-100, 0, 100; 100, 50, -50) were generated in 
the design space for prediction accuracy testing (He 
et al. 2020). The plane distributions of the training 
samples are plotted in Fig. 5. 

This paper constructed the Kriging surrogate model 
based on a k-fold cross-validation method, where k 
is set to 5. That is, we divided the sample points 
into k groups and selected one group as the test set, 
and the remaining k-1 groups were selected as the 
training set. After iterations, a total of k models and 
k mean square errors (MSE) are obtained, and the 
average of these k mean square errors is used as the 
final error output. The Gaussian function was 
selected as the correlation function. The improved 

artificial fish swarm algorithm is used to optimize 
the hyperparameters of the Kriging model. In the 
optimization process, the hyperparameters of the 
Kriging model were used as the input variables, and 
their dimension is the same as the design variable 
dimension of the high-speed train in this paper. The 
mean square error (MSE) is considered as the 
output variable. The number of artificial fish is set 
to 50, and the search range is (0.001, 20). The 
minimum and maximum vision are set to 0.5 and 5, 
respectively. The maximum number of attempts is 
set to 20, the step is set to 0.5, and the maximum 
number of iterations is set to 300. The 
hyperparameter optimization curves of the Kriging 
model for drag coefficient and lift coefficient is 
shown in Fig. 6. The optimal Kriging model is 
compared with the original Kriging model. The 
initial hyperparameters are all set to 0.1, while after 
optimization, the hyperparameters are changed to 
0.0026, 20, and 0.2032 for the aerodynamic drag 
coefficient, and 0.1626, 10.2485, and 0.2773 for the 
lift  coefficient  of  the  tail  car,  respectively. The  
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Table 2 Prediction error comparison 

Objective Points Actual value 
Original Kriging 

model 
Error 

  Optimal Kriging 
model 

Error 

Cd-head Test1 0.1513 0.1458 3.6% 0.1541 1.9% 
 Test2 0.1693 0.1470 13.2% 0.1625 4% 

Cl-tail Test1 0.0906 0.0980 8.2% 0.0878 3.1% 
 Test2 0.0735 0.1244 69.3% 0.0702 4.5% 

 

 
Fig. 7.  Flowchart of SPEA2. 

 
 
prediction error of the original Kriging model for 
the aerodynamic drag coefficient is about 3%~14%, 
while the error of the optimal Kriging model is 
reduced to within 5%. For the aerodynamic lift of 
the tail car, the original Kriging performed poorly, 
and the prediction errors were reduced to within 5% 
after optimization. It can be observed that the 
aerodynamic lift coefficient of the tail car is more 
sensitive to the input parameters of the Kriging 
model. The details are shown in Table 2. Hence, the 
optimal Kriging models can meet the accuracy 
requirement. 

4.2 Multi-objective optimization 

4.2.1 Introduction of SPEA2 

SPEA2 (Zitzler et al. 2002) is an adaptation of the 
original strong Pareto evolutionary algorithm (SPEA) 
proposed by (Zitzler and Thiele 1999). Compared 
with the SPEA algorithm, the SPEA2 algorithm has 
made improvements in the individual evaluation and 
the environmental selection  mechanism. To avoid 
that evolutionary population individuals dominated 
by the same external population individuals have the 
same fitness value, the SPEA2 algorithm considers 
the dominance and dominated information of the 
individual when calculating the fitness value of the 
individual. The fitness function (Zhu et al. 2019) is 
defined as follows. 
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                         (18) 

where ( )S i  represents the number of individuals 

dominated by individual i . ( )R i  represents the sum 

of the number of other individuals dominated by all 
individuals j  dominating i  in the evolutionary 

population 
tP  and the external population *

tP . ( )D i  

is the density information of the individuals, and 
k
i  represents the Euclidean distance from 

individual i  to k-th individual, where 

k N M  ,  N  denotes the capacity of the 
evolutionary population, and M is the capacity of 
the external population. By defining the fitness 
function in the above formula, we can get not only 
the dominance and non-dominated information of 
individuals, but also the distribution of individuals 
in the population. In addition, in the environmental 
selection mechanism, the capacity of the external 
population set by the SPEA2 algorithm is 
unchanged. When the selected non-dominated 
individuals exceed the capacity of the external 
population, they need to be cut. The SPEA2 
algorithm can obtain a better distributed external 
population through this cut strategy. The whole 
process is shown in Fig. 7. 

4.2.2 Analysis of optimization results 

In this paper, SPEA2 was used for multi-objective 
aerodynamic optimization of a high-speed train 
head shape, and an optimal Kriging model obtained 
in the previous section was used as the surrogate 
model. The population size is set to 50, and the 
maximum number of iterations is 500. Finally, the 
Pareto front for the aerodynamic drag coefficient 
and the lift coefficient is obtained, as shown in Fig. 
8. It can be seen from the figure that there is a non- 
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Fig. 8.  Pareto front obtained by SPEA2. 

 

dominant relationship between the aerodynamic 
drag coefficient of the head car and the lift 
coefficient of the tail car. A suitable solution 
marked with an asterisk in the figure is selected as 
the final optimal design point under consideration. 
The original aerodynamic force coefficients 
obtained by CFD simulation were verified by 
(Liang et al. 2020), and the errors are 0.4% and 
4.5%, respectively. Besides, the results are also 
compared with the wind tunnel tests, and the 
maximum error is less than 10% for aerodynamic 
drag coefficient, and no more than 5% for 
aerodynamic lift coefficient (Li et al. 2019; Xia et 
al. 2017c). After optimization, The drag coefficient 
of the head car and lift coefficient of the tail car are 
0.1514 and 0.06. The errors are 0.79% and 20%, 
 

respectively. Compared with the original head 
shape, it reduced by 5.2% and 32.6%, respectively, 
as shown in Table 3. The optimal values of the 
design variables are 34.258 mm (H1), -25.756 mm 
(H2), 145.633 mm (L), where positive values mean 
that a certain part of the high-speed train becomes 
 

 longer or higher, and negative values mean shorter 
or lower. The change of each design variable will 
produce a certain degree of deformation on the 
specific position of the shape, and the final shape 
after optimization is coupled by all design variables, 
which is the result of the comprehensive action of 
all variables. 

 
Table 3 Aerodynamic forces reduction after 

SPEA2 optimization 
Model Cd-head Cl-tail 

Original 0.1597 0.089 
Liang et al. 2020 0.1590 0.093 

Error (%) 0.4 4.5 
Optimal 0.1514 0.060 

CFD simulation 0.1526 0.072 
Error (%) 0.79 20 

Reduction (%) 5.2 32.6 
 

The head shapes of the high-speed train before and 
after optimization is shown in Fig. 9. We can see 
from the deformation figure that the optimal head 
shape is coupled by all design variables, and the 
deformation mainly occurred in the nose length. To 
better understand the influence of the changing head 
shape on the aerodynamic performance of high-
speed trains before and after optimization, the flow 
field of the high-speed train before and after 
optimization was analyzed. The pressure 
distribution diagram of the head car is shown in Fig. 
10. It can be seen from the figure that the red color 
at the nose cone is obviously weakened, which 
proves that the optimized high-speed train reduces 
the pressure to a certain extent, and it also shows 
the effectiveness of the multi-objective optimization 
framework developed in this paper. 

 

 
Fig. 9. Comparison of the original high-speed train head shape with an optimal head shape. (a) The 

original train and (b) the optimal train. 
 

 
Fig. 10. Comparison of the pressure distributions of the original train and an optimal train: (a) the 

original train and (b) the optimal train. 
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5. CONCLUSION 

In the present paper, with limited sample points, a 
hyperparameter optimization strategy based on a 
Kriging surrogate model and artificial fish swarm 
algorithm (AFSA) was developed. An improved 
AFSA using an adaptive method was proposed to 
improve the optimization efficiency. The test results 
of two sample points proved that the optimal 
Kriging model can meet the accuracy requirement. 

After that, a global aerodynamic optimization 
framework for a high-speed train head shape was 
built based on the optimal Kriging surrogate model. 
The FFD method was adapted for deforming the 
mesh, which avoided the remodeling of the grids 
and geometric models, greatly reducing the 
modeling time and improving the parameterization 
efficiency. A high-precision CFD simulation model 
was employed to obtain good aerodynamic 
performance. A strong Pareto evolutionary 
algorithm 2 (SPEA2) was used to obtain a set of 
Pareto-optimal solutions. The results showed that 
the Pareto front obtained by the drag coefficient and 
lift coefficient was well distributed. The drag 
coefficient of the head car is reduced by 5.2%, and 
the lift coefficient of the tail car is reduced by 
32.6% after optimization, which proves the 
effectiveness of the global optimization framework 
developed in this paper. 
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