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ABSTRACT 

Flow optimization and drag reduction are of great importance in industrial applications. However, most of the 
structural optimization and drag reduction in pipe flows are based on industrial experience or a large number 
of experiments, and there is a lack of general theoretical guidance. In the present work, a general approach for 
flow optimization and drag reduction in turbulent pipe flows is developed based on the irreversibility of flow 
process and the principle of minimum mechanical energy dissipation. Considering that the effective viscosity 
coefficient is related to the space coordinates, the field synergy equation of turbulent flow is derived. The 
reliability and performance of the field synergy principle of turbulent flow as well as the general approach are 
then evaluated and validated in a turbulent parallel flow conduit, and finally applied to industrial pipe flows. It 
demonstrates that the present approach is able to optimize flow field for different purposes by adding speed 
splitter or deflector as an interface at proper locations to alter the interactions between fluid and wall. It is robust 
and easy to implement, which provides general theoretical guidance for flow optimization and drag reduction 
in turbulent pipe flows. 

Keywords: Field Synergy Principle; Minimum mechanical energy dissipation principle; Effective viscosity 
coefficient; Pipe flow; Drag reduction; Flow optimization. 
 
 

1. INTRODUCTION 

Pipeline network is very common in industries, in 
which fluids are transported from one location to 
another. However, due to unreasonable design of 
pipeline and the viscous dissipation characteristics of 
the fluid, the energy waste cannot be avoided. 
Therefore, it is of great importance to optimize fluid 
flow in the pipeline. 

Recently, computational fluid dynamics (CFD) has 
been utilized to study the flow field optimization in 
tube pipeline. By analyzing the results of the velocity 
stream distribution and pressure distribution obtained 
from CFD, the design of the internal structure of the 
tube is improved and the flow field is optimized 
(Marjavaara and Lundström 2006). Jia et al. (2011) 
used the RNG k-ɛ model to simulate the flow field in 
the elbow pipes, and found that installing deflectors 
at certain locations inside the elbow can significantly 
reduce the generation of vortices and improve the 
distributions of both speed and pressure in the fluid. 
Khanorkar and Thombre (2013) studied natural 
convection flow of water through vertical pipe, and 
analyzed the effect of the physical parameters such as 
diameter, length, and heat flux on the outlet flow 

parameters. Many other researchers had used CFD 
methods to simulate the flow fields in different pipes, 
analyzed the flow resistance and proposed 
corresponding improvement solutions (Addy et al. 
1985; Yue 2011; Hu et al. 2012; Yang et al. 2013; 
Kim et al. 2014; Zhao et al. 2015; Wu 2013; Hui 
2014; Rao et al. 2016; Dutta et al. 2016; Rao 2018; 
Okafor et al. 2020). 

However, the optimization of pipelines in the above-
mentioned studies has lacked a unified and reliable 
theoretical basis. Guo et al. (1998) proposed field 
synergy principle (FSP), which indicates that the heat 
transfer performance depends not only on the 
velocity field and the temperature field, but also on 
their synergy. Tao et al. (2019) pointed out that the 
heat-line visualized the heat transfer path and studied 
the heat transfer mechanism with FSP. Considering 
the similarity between momentum transfer and heat 
transfer, Chen et al. (2007) proposed the principle of 
minimum mechanical energy dissipation. Combined 
with this principle, Chen et al. (2008) proposed the 
FSP of fluid flow which is suitable for steady-state, 
incompressible laminar flow. They reasoned that the 
lower the degree of synergy between the velocity and 
velocity gradient, the smaller the mechanical energy  
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dissipation and the lower the flow resistance. On this 
basis, Zuo (2012) and Lv (2014) further derived a 
collaborative mathematical model for compressible 
laminar flow, and successfully applied the model to 
reduce the drag of flow field. Lu et al. (2014) further 
collated and deduced the equations, and established 
an incompressible turbulence field synergy model. 
The model was validated and the concept of fully 
coordinated flow field was proposed for flow 
optimization. Zhang et al. (2014) presented the 
compressible fluid flow field synergy principle, 
which presented as an effective theoretical guide to 
reduce the drag during compressible flow. 

However, the above studies did not consider the 
effect of the effective viscous coefficient in the field 
synergy model. This work rederives the turbulent 
field synergy principle by volume integration of the 
governing equations of turbulent flow based on the 
irreversibility of flow process and the principle of 
minimum mechanical energy dissipation. It is 
demonstrated that the flow resistance is not only 
related to the field synergy number, but also related 
to the effective viscosity coefficient. A general 
approach for flow optimization and drag reduction in 
turbulent pipe flows is then developed and validated 
in a turbulent parallel flow conduit, and finally 
applied to industrial pipe flows. 

2. MATHEMATICAL MODELS 

2.1 Turbulence field synergy principle 

Applying the field synergy principle to turbulent 
flow, the momentum equation of the incompressible 
turbulent flow with steady state and without volume 
force can be obtained as follows (Tao 2001): 
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(1) 

Where  is the density of the fluid medium, P  is 

the pressure, ,i ju u  is the component of the velocity 

vector in the ,i j direction respectively, k is the 

kinetic energy coefficient; ij is the unit second 

order tensor; eff is the effective viscosity 

coefficient including laminar viscosity coefficient 
  and the turbulent viscosity coefficient t .  

Integrate Eq. (1) over the entire flow area , one 
has: 
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Where V is the volume of the flow field. The second 
item on the right side of Eq. (2) can be split into:  
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The first term of Eq. (3) can be converted to an area 
integral by Green's formula: 
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Where is the outer boundary of the flow area, S is 
the outside surface area of the boundary, n is the 
outward unit normal vector of the outer boundary. 

For the incompressible fluid, 
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the right side of Eq. (3) could be converted to: 
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Substitute Eq. (4) and Eq. (5) into Eq. (2): 
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V
D

S
=  is defined as the characteristic length and the 

following dimensionless variables can be introduced 
(represented by the superscript "—"): 

, ,

, ,

i i in j j in

i
i

in

u u u u u u

u dV dS
u dV d S

u D V S

 


   

 (7) 

Then Eq. (6) could be converted to (Chen et al. 
2008): 
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U  is the dimensionless velocity vector. V is the 

volume of the flow field, dV is the dimensionless 

variable introduced by Eq. (7) . 

The left side of Eq. (8) is defined as the 

dimensionless pressure gradient iDC : 
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Equation (9) shows that the dimensionless pressure 
gradient is related to the inlet parameters of the flow 
field and is inversely proportional to the kinetic 
energy at the inlet in the direction opposite to that of 
the pressure change. 

The second term on the right side of Eq. (8) is the 
integral of the dot product between the 
dimensionless velocity vector and the dimensionless 
velocity gradient over the entire flow region: 

cosm i i mFS U u dV U u dV
 

      (10) 

Where m is the angle between the velocity vector 

and the velocity gradient vector which is between 0-
π/2, mFS is the turbulence field synergy number, 

which indicates the degree of synergy between the 
velocity field and the velocity gradient field. The 
value of mFS is related to m . The bigger m ,the 

smaller cos m , the smaller mFS . 

Equation (8) demonstrates the field synergy principle 
of turbulent flow. The dimensionless pressure 
gradient characterizes the change in pressure drop 
during fluid flow, i.e., the magnitude of the flow 
resistance. As seen in Eq. (8), when the inlet flow 
rate or inlet velocity is given, the lower the field 
synergy, i.e., the smaller the field synergy number, 
the smaller the dimensionless pressure gradient, and 
the smaller the resistance of the fluid (Chen et al. 
2008). 

 In addition, Eq. (8) can also explain that the 
dimensionless pressure gradient is also related to 
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the smaller the flow resistance. From the perspective 
of mechanical energy dissipation, the relationship 
between the effective viscosity coefficient and the 
flow resistance will be discussed in the next section. 

2.2 Minimum mechanical energy dissipation 

Flow resistance is the reaction force caused by the 
fluid viscosity that hinders the flow, and leads to the 
mechanical energy dissipation of the fluid. Fluid 
flow is an irreversible process. The amount of 
mechanical energy dissipation reflects the degree of 
irreversibility of fluid flow.  

When the mechanical energy dissipation is minimal, 
the flow resistance of the flow field is minimum. The 
flow field with the least resistance can be obtained 
by minimizing the dissipation function under given 
constraints. This is the principle of minimum 
mechanical energy dissipation. 

i jdu dx    (11) 

Equation (11) reflects the relationship between the 
shearing stress and the rate of shearing strain of 
Newtonian fluid, or the relationship between 
momentum transport and velocity gradient.  is the 

viscosity, which is an important physical parameter 
of the liquid. 

Due to the velocity gradient caused by the 
deformation of the fluid flow, momentum diffuses 
within the fluid. According to the energy 
conservation equation, the mechanical energy 
dissipation of the fluid can be expressed as 
(Rodriguez 2019; Chen et al. 2008): 
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(12) 

Where eff is the effective viscosity coefficient of 

the fluid, teff    ， and t is the turbulent 

viscosity, or eddy viscosity, which is a function of 
spatial coordinates and depends on the flow state, not 
a physical parameter. It’s an improvement compared 
with the study of Lv (2014).   is the thermal 

conductivity of the fluid. U is the velocity field. 

2.3 Turbulence Field synergy equations 

In order to reduce the flow resistance as much as 
possible, the total amount of mechanical energy 
dissipation in the whole flow field is minimized, 
which is the goal of flow field optimization. 

According to the principle of minimum mechanical 
energy dissipation, the equation satisfied by the 
optimal velocity field can be obtained by the 
variation principle. Its optimization model can 
include optimized objects, optimization goals, 
constraints, and boundary conditions. 

1. The optimization object: the velocity field U . 

2. The optimization goal is to take the extreme 
value of the total amount of mechanical energy 
dissipation in the entire basin, which can be 
expressed as: 

0dV

   (13) 

3. Constraint condition is mass conservation: 

  0  U  (14) 

4. The velocity boundary condition is a constant 
boundary speed, which is described by a 
variation symbol: 

0in U   (15) 

The process of solving the optimal velocity field is 
to find the function solution satisfying the above 
optimization model in the function space of the 
velocity vector field U , which belongs to the 
variational problem. First of all, the Lagrangian 
function by variational method is constructed: 

 J dV


     U   (16) 



J. Guo et al. / JAFM, Vol. 15, No. 3, pp. 815-829, 2022.  
 

818 

Where  is the Lagrange multiplier, which is a 

function of U and spatial position. Then, taking the 
variation for velocity u to get: 
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Equation (17) can be transformed as follows: 
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Combining similar terms leads to:  
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The left terms in Eq. (19) are transformed by the 
Green's formula as follows: 
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Equations (20)-(22) are substituted into Eq. (19): 
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Because of the arbitrariness of U , the governing 
equations and boundary conditions are: 
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(24) 

Similarly, take variation for the speed v , w  to get: 
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 (26) 

Equations (24)-(26) are the field synergy equations 
for turbulent flow which form a closed equation 
group with the continuity equation and the energy 
conservation equation. With some boundary 
conditions and constraints, the relevant physical 
quantities can be solved numerically to get the 
optimal velocity field with the smallest mechanical 
energy dissipation. 

  in Eqs. (24)-(26) can be formulated as: 

 2 2 2 3effp p k       (27) 

Here effp is the effective pressure under turbulent 

flow. 

Substituting Eq. (27) into Eqs. (24)-(26), it can be 
found that they are very similar to momentum 
equation Eq. (1), yet they have a few more terms than 
Eq. (1). The extra terms in the x, y, and z directions 
are expressed as Eqs. (28)-(30): 
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2 2 2

2

2
eff

y
eff

eff eff eff

eff

v v v
F u v w

x y z v

u v w

x y y y z y

u v w

x y y zy






  



    
        
    

  
     

   
       

 (29) 

2 2 2

2

2
eff

z
eff

eff eff eff

eff

w w w
F u v w

x y z w

u v w

x z y z z z

u v w

x z y z z






  



    
        
    

  
     

   
        

 (30) 

Equations (28)-(30) are obtained when the ideal flow 
field is solved according to the principle of minimum 
mechanical energy dissipation. It is an additional 
volume force in the original flow field, so this force 
is called the additional volume force. 

By adding the additional volume force as the source 
term to the momentum equation, an additional 
velocity is generated in the original velocity field, 
and an ideal flow field with minimum mechanical 
energy dissipation and minimum flow resistance can 
be obtained.  

Although the ideal flow field is not possible to obtain 
in actual applications, it can provide guidance for 
optimizing the flow field and making the actual flow 
field as close as possible to the ideal flow field. This 
is a general approach that can be used for various 
industrial flow optimizations. 

3. NUMERICAL VALIDATION 

Before application to practical engineering, it is 
important to validate the field synergy principle for 
turbulent flow and evaluate its performance for flow 
optimization in pipeline. The parallel flow conduit is 
a relatively simple conduit which includes the 
process of fluid splitting and confluence as well as 
the process of changing the direction of fluid flow 
velocity. It is used as a benchmark case to validate 
and evaluate the turbulence field synergy principle in 
this section. The structure of parallel flow conduit is 
shown in Fig. 1, and the unit of length is mm. 

 

 

Fig. 1. Structure of parallel flow conduit. 
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3.1 The original turbulent parallel flow 
conduit 

The turbulent flow of air with an inlet speed of 10 
m/s in a parallel flow conduit is simulated using the 
ANSYS Fluent software. The standard k-ɛ 
turbulence model is utilized. The pressure and 
velocity are solved by using the SIMPLE algorithm. 
The discretization of the original governing 
equations is conducted by using the second order 
upwind-differencing scheme. The density of air is 
1.225kg/m3. The dynamic viscosity of air is 
1.7894×10-5kg/(m·s). 

Figure 2 shows the distribution of pressure, velocity 
and streamline in the original parallel flow conduit. 
It is clear there is a vortex in the first bifurcation area 
where the flow is split. As the initial flow direction 
is horizontal, most of the fluid flows to the right 
branch under the influence of inertia, and only a 
small part flows to the below branch. At the same 
time, the fluid flowing to the below branch tends to 
be distributed on the right side, which drives the 
originally still air on the left side to move downward 
and form a backflow, that is, a counterclockwise 
vortex. This non-uniform distribution of the flow 
results in a high flow velocity near the wall surface 
and a higher viscous resistance as well higher 
viscous dissipation in the region of the vortex. As a 
consequence, the pressure drop across the inlet and 
outlet of the parallel flow pipe is 163.73pa, and the 
total amount of mechanical energy consumption is 
0.68W. 

3.2 The optimized turbulent parallel flow 
conduit 

According to the turbulence field synergy principle, 
adding the additional volume force as the source 
term to the momentum equation, the ideal flow field 
can be obtained, as shown in Fig. 3.  

Compared with the pressure field in the original 
condition, the pressure change is relatively small in 
the flow process. However, the velocity and 
streamline distribution becomes quite uniform. The 
flow along the branches in the horizontal and the 
vertical directions is roughly the same amount 
without the vortex. It indicates that the additional 
volume force counteracts the effect of fluid inertia in 
the flow field, thereby changes the velocity and 
streamline distribution so that the mechanical energy 
dissipation is minimum. As a result, the pressure 
drop becomes 74.72Pa, which is 54.63% lower than 
the original flow field. The energy dissipation is 
0.48W, which is 29.37% lower than the original flow 
field. 

Inspired by the flow field distribution characteristics 
under ideal condition, the original flow field can be 
optimized by adding a speed splitter or a baffle.  

The ideal flow field calculated from the field synergy 
equations can be used as the theoretical guidance 
basis for adding the speed distributor to optimize the 
flow field. 

 

 
 

Fig. 2. Original parallel flow conduit. 

(a) pressure distribution (b) velocity distribution 

(c)streamline distribution (d) local streamline distribution 
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Fig. 3. Ideal flow in the parallel conduit. 

 
 

 

Fig. 4. Principle of designing the baffle. 
 
 
The starting point should be at the point where the 
fluid begins to bifurcate. It’s easy to understand that 
the end of the baffle should be at the midpoint of the 
branch of the pipeline. To make the actual flow field 
as close to the ideal flow field as possible, the shape 
of the baffle should be in line of the middle streamline 
of the conduit, as shown in Fig. 4. 

The speed splitter acts as an internal interface and 
changes the local flow through wall-fluid 
interaction. Although a vortex is generated, the 
pressure of the entire flow field is reduced, and the 
position with the highest flow rate appears in the 
middle of the pipeline, instead of being distributed 
near the wall, as shown in Fig. 5. As a result, the 

pressure drop of the flow field after adding the 
speed distributor is 149.045pa, which is 8.97% less 
than that of the original flow field. The total 
mechanical energy dissipation is 0.64pa, which is 
5.88% less than that of the original flow field. 
Compared with the results under laminar flow 
conditions (Chen et al. 2008), the percentage of the 
pressure drop and mechanical energy dissipation is 
larger in the present turbulent flow condition, 
indicating that it has a more significant effect on 
drag reduction in turbulence. These results 
demonstrate that the ideal flow field from the 
turbulence field synergy equations can serve as a 
general guide for flow optimization in pipeline. 

(a) pressure distribution (b) velocity distribution 

(c) streamline distribution (d) local streamline distribution 
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3.3 Analysis of the field synergy angle 

In order to further understand the physical meaning 
of the field synergy principle and the relationship 
between the flow field synergy angle and the flow 
resistance, the cosine value of the field synergy angle 
in the original flow field is calculated and shown in 
Fig. 6. In the upper and lower horizontal branches, 
the cosine value of the synergy angle is very small, 
indicating that the flow resistance and pressure drop 
are relatively small. But in the left and right vertical 
branches, the cosine value of the synergy angle is 
quite large, which suggests that the flow resistance 
and pressure drop are relatively large. 

The cosine of the field synergy angle in different 
directions can only reflect the field synergy in a 
certain direction. In order to comprehensively 
compare the common effect of the field synergy in 
the two directions on the entire flow field, the average 

of the squares of values in the two directions is 
calculated, and its distribution in the flow field is 
shown in Fig.7. 

It is observed that the cosine value of the field 
synergy is relatively large at the corners, indicating 
that large flow resistance appears there. From the 
perspective of drag reduction, the flow near these 
corners should be optimized, namely, the speed 
distributor should be added there, which is consistent 
with the result of Fig. 4.  

Indeed, compared to the original flow field, the flow 
resistance is significantly reduced in the optimized 
flow field after adding the speed distributor. 

It can be used as a general guide for finding the target 
location for optimization according to the place 
where the cosine of the field synergy angle in the 
actual flow field is greater than 0.7. 

 

 
Fig. 5. Optimized flow in the parallel conduit after adding the speed distributor. 

 
 

 
Fig. 6. Cosine value distribution of the synergy angle in the original parallel flow. 

 

(a) pressure distribution 

(d) local streamline distribution 

(b) velocity distribution 

(c) streamline distribution 

(a) Cosine-value in the x direction. (b) Cosine-value in the y direction. 
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Fig. 7. Contour of the cosine squared average in the optimized parallel flow field. 

 

Table 1 Comparison between numerical results and experimental data 

Working 
Condition 

Parameter 
Simulation 

results 
Monitored 

data 
Error 

50% load 

Cold primary air pressure (kPa) 9.813 9.800 0.134% 

Pressure difference between inlet and outlet (Pa) 1760.351 ---- ---- 

Air preheater pressure difference (Pa) 660.680 640.036 3.225% 
Hot air temperature ( C ) 293.154 292.055 0.376% 

Average temperature at the exit ( C ) 194.956 199.500 -2.278% 

100% load 

Pressure difference between inlet and outlet (Pa) 2546.462 ---- ---- 

Air preheater pressure difference (Pa) 1491.600 1427.739 4.473% 
Hot air temperature ( C ) 316.523 313.572 0.941% 

Average temperature at the exit ( C ) 196.588 199.500 -1.460% 
 

 

4. NUMERICAL APPLICATIONS 

For a general flow, the first step is to find the target 
location for optimization according to the place 
where the cosine of the field synergy angle in the 
actual flow field is greater than 0.7. Secondly, the 
starting and ending points of the baffle are 
determined based on the streamline differences 
between the ideal flow field and the original actual 
flow field. Thirdly, the shape of the baffle should be 
designed with reference to the streamline of the ideal 
flow field to make the optimized flow field as close 
as possible to the ideal flow field after adding the 
baffle. Finally, comparing the flow field before and 
after optimization to evaluate the performance. If the 
performance is satisfactory, the dimensions of the 
deflector can be determined, and even optimized for 
the next loop. 

4.1 Numerical optimization of a multi-pipe 
system 

The primary air duct system in thermal power plant 
is composed of multiple pipelines and belongs to a 
multi-pipe combination system with relatively simple 
internal structure, as shown in Fig. 8. It includes a 
cold primary air duct flow and a hot primary air duct 
flow, and an air preheater for heating the primary air. 
To reduce the flow resistance and save energy for the 
power plant, the flow field in the primary air duct 
system of a boiler will be simulated and optimized by 

using the above field synergy principle for turbulent 
flow and minimum mechanical energy dissipation 
principle in this section. 

4.1.1 Numerical simulation and validation 

The geometric model was unstructured meshed using 
the ANSYS ICEM, and 3 boundary layer meshes 
were added to the walls to improve the calculation 
accuracy. Under the condition that the mesh quality 
and calculation accuracy are ensured and the 
calculation time is reasonable, the maximum mesh 
size is set to 0.3m, the number of meshes of the model 
is 2.21 million, and the mesh quality is above 0.3201, 
which meets the calculation requirements. 

The simulation is carried out using the ANSYS 
FLUENT software in which, standard k-ɛ model with 
SIMPLEC algorithm and upwind-differencing 
scheme is utilized to solve the incompressible 
Reynolds mean equation. 

Firstly, the original flow field in the primary air duct 
system is numerical simulated with the standard k-ɛ 
model under 50% and 100% load conditions, 
respectively. The numerical results are compared 
with the monitored data to validate the model, as 
summarized in Table 1. It is interesting to find that 
the flow field in the system can be well captured. The 
maximum numerical error is less than 5%, which lays 
a solid foundation for further analysis and 
optimization. 

(a) The square mean of the cosine value of the field 
synergy angle. 

(b) The square mean of the cosine with the value 
larger than >0.7. 
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Fig. 8. Model of the primary air duct system in 

thermal power plant. 
 

Additionally, it is found that the flow resistance in 
the primary air system comes mainly from the air 
 

 preheater. For the 50% load condition, the pressure 
drop of the air preheater is 37.5% of the total pressure 
drop of the system, while for the 100% load 
condition, the pressure drop of the preheater 
increases to be 58.6% of the total pressure drop of 
the system. As the air preheater is fixed and could not 
be changed in the project, the drag reduction will 
come from the optimization of viscous resistance in 
other regions of the system. 

4.1.2 Numerical optimization 

To locate the internal structure of the system that 
needs to be optimized, field synergy analysis is 
performed on each pipe section to find the positions 
where the square mean of the cosine value of the field 
synergy angle is larger than 0.7. Three typical 
structures are shown in Fig. 9.

 
(a) Structure 1 

 
(b) Structure 2 

 
(c) Structure 3 

Fig. 9. Three typical structures in the primary air duct system. 
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(a) Structure 1 

 
(b) Structure 2 

 
(c) Structure 3 

Fig. 10. Velocity distribution before (left) and after (right) optimization. 

 

It can be found that in each structure, the square 
mean of the cosine value of the field synergy angle 
is larger than 0.7 at the splitting point and the right-
angle turning point, indicating that the flow 
resistance is large at these locations. At the same 
time, according to the streamline, the fluid velocity 
distribution is extremely non-uniform and the 
locations where the cosine value of the synergy angle 
is greater than 0.7 usually cause significant viscous 
dissipation. Therefore, it is necessary to optimize the 
structure here to reduce resistance. 

Following the procedure presented in Section 3, the 
ideal flow field can be then obtained by solving the 
field synergy equations. Based on the ideal flow 
field, the speed splitter can be introduced to optimize 
the flow and reduce the resistance. The speed splitter 

acts as an interface that changes the flow by wall-
fluid interactions, as shown in Fig. 10. 

For Structure 1, it can be found that the vortex at the 
right-angled corner disappears almost completely 
after optimization, indicating that the speed splitter 
here breaks the vortex, changes the degree of synergy 
between the velocity field and the velocity gradient 
field, and contributes to reduce energy dissipation. 
As a result, the flow velocity distribution becomes 
more uniform. Similar effects can be observed for 
Structures 2 and 3. 

For fluids, pressure is a measure of mechanical 
energy per unit volume. Quantitatively, the pressure 
drop before and after optimization for each structure 
is summarized in Table 2. The optimization for 
Structure 2 has the better effect, and the pressure 
drop decreases by about 40Pa, accounting for about  
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Table 2 Pressure drop before and after optimization 

Local structure 
Pressure drop before  

and after optimization (Pa) 
Pressure drop reduction 

 percentage (%) 
Structure 1 19.98 1.31 
Structure 2 41.15 2.69 
Structure 3 22.67 1.48 

 
Table 3 Comparison of the overall system before and after optimization 

Working condition 50% load 100% load 
Total pressure drop before optimization (Pa) 1760.35 2546.46 
Total pressure drop after optimization (Pa) 1640.08 2229.28 

Pressure drop difference (Pa) 120.28 178.88 
Optimization percentage (%) 6.74 7.02 
Optimization percentage (%) 

 (removal of air preheater pressure drop) 
10.94 16.96 

 

 
2.7% of the total pressure drop. Although this 
number is small considering the pressure drop of the 
air preheater, it will increase to 8.4% if the pressure 
drop of the air preheater is not included. In the actual 
project, the air preheater is fixed and this effect is 
considerable. To evaluate the overall effect of the 
above optimizations, the primary air duct system 
with added speed splitters is numerical simulated 
under the actual working conditions of 50% load and 
100% load respectively, and the statistics are 
summarized in Table 3. 

For the original actual flow field, the computation 
error of the simulation of the original structure is less 
than 5% compared with the actual measured 
experimental data. 

As mentioned above, the pressure drop formed by the 
internal resistance of the air preheater is about 40%-
70%. Since in the actual project, the geometry of the 
air preheater cannot be obtained and changed, it is 
impossible to optimize the air preheater. Compared 
with the original primary air duct system, the 
optimization effect of the total pressure drop reaches 
6.74% and 7.02% respectively. If the air preheater is 
not considered, the optimization effect of pressure 
drop changes to be 10.94%, 16.96% respectively 
under 50% and 100% load conditions. The effect is 
quite attractive in terms of saving energy.  

4.2 Numerical optimization of a 
desulfurization tower outlet 

Desulfurization tower has been widely used for 
pollutant control in power plant. As the outlet of the 
desulfurization tower is followed by a dust collector, 
there is a requirement for the flow field uniformity of 
the flue section to improve the performance of the 
system. In order to reflect the uniformity of the flow 
field, the flow field uniformity index γ is defined as 
(Tao et al. 2010): 

 
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Where 
1 1

n n

i i i
i i

A A 
 

   is the field-averaged 

variable, i represents the surface mesh index with n 

mesh faces, and iA  represents the area of the local 

mesh. In this work,   is the value of velocity in the 
flow field. From the definition, it can be deduced that 
the larger the   value, the better the flow field 
uniformity. 

Numerical simulation of a desulfurization tower 
outlet with the original geometric model is 
performed and the velocity distribution is shown in 
Fig. 10. It shows that when the flue gas flows out of 
the desulfurization tower, it is bounded by the wall, 
and the flow direction changes 90˚. Under the effect 
of inertia, most of the flue gas rushes to the upper 
part, resulting in a large-scale high-speed region 
there and a low-speed region at the bottom, which is 
likely to cause backflow and increase the flow 
resistance. Obviously, this kind of flow field is not 
uniform enough and needs to be optimized. 

 

 
(a) the outlet of the desulfurization tower 

 
(b) cross section 

Fig. 11. Velocity distribution at the outlet 
(case0). 
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(a) The position of the first deflector (case1) 

 
(b) The position of the second deflector (case2) 

Fig. 12. Position of the deflectors. 
 
 

  
(a) the outlet of the desulfurization tower 

 
(b) cross section 

Fig. 13. Velocity distribution at the outlet after 
the first optimization (case1). 

 

The field synergy equations are firstly solved to get 
the ideal “complete cooperative” flow field. Based 
on the ideal flow field, a deflector is then added as an 
internal interface to optimize the original flow field 
(Fig. 12(a)). Under this geometric model, the flow is 
simulated and the results are presented in Fig. 13. 
The backflow is depressed and the velocity 
distribution at the bottom region becomes relatively 
uniform due to the addition of the deflector. 
However, the velocity distribution is still not so 
uniform in the middle region and the uniformity 
index of the cross section is just 68.71%, which 
needs further optimization. 

 
(a) the outlet of the desulfurization tower 

 
(b) cross section 

Fig. 14. Velocity distribution at the outlet after 
second optimization (case2). 

 

According to the velocity distribution in Fig.13, 
another deflector is added to further optimize the 
flow field, as shown in Fig.12(b). Numerical 
simulation of fluid flow in this new geometric model 
is conducted and the results are shown in Fig.14. The 
first deflector weakens or even eliminates the vortex 
structure at the bottom which depresses the backflow 
of the flue gas and reduces the flow resistance, and 
the newly added deflector further split a large 
amount of high-speed flue gas originally distributed 
in the upper region so that the distribution of flue gas 
on the entire section is more uniform. 

To quantitatively assess the effect of the first and 
second optimization, the cross-sectional uniformity 
index for the cases without the deflector, with the 
addition of the first deflector, with the addition of the 
two deflectors is calculated and shown in Fig. 15. 
The corresponding pressure drop is also displayed. 
The uniformity of the flow field increases from the 
original 56% to 66% for the first optimization and 
81% for the second optimization, and the pressure 
drop decreases from the original 487.5Pa to 375Pa 
for the first optimization and 337.5Pa for the second 
optimization. After adding two deflectors, the 
velocity distribution becomes quite uniform which 
meets the requirements of the project. This indicates 
that the field synergy method can be iteratively used 
for flow field optimization until satisfactory effect is 
achieved. Furthermore, the velocity distribution in 
Fig.14 shows a small range of stagnation zone of 
flow and it has potential to be further improved.  

5. CONCLUSIONS 

In this study, the principle of field synergy is firstly 
extended from laminar flow to turbulent flow. 
Compared with laminar flow, the flow resistance in 
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Fig. 15. Velocity uniformity index and pressure 

drop for different cases. 
 

 turbulent flow is not only related to the field synergy 
number, but also has relationship with the effective 
viscosity coefficient. Based on the irreversibility of 
dissipation in the flow process and the principle of 
minimum mechanical energy dissipation, the field 
synergy equations are derived and a general 
theoretical approach for flow field optimization is 
then developed. This approach is implemented and 
validated in a turbulent parallel flow conduit, and 
finally applied to industrial pipe flows. It 
demonstrates that the present approach is able to 
optimize flow field for different purposes by adding 
speed splitter or deflector as an interface at proper 
locations to change the interactions between fluid 
and walls. This approach is robust and easy to 
implement, providing a general tool for flow 
optimization. 
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