
 
  
Journal of Applied Fluid Mechanics, Vol. 15, No. 3, pp. 843-855, 2022.  
Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. 
https://doi.org/10.47176/jafm.15.03.33280   

  

843 

Modeling of Bubbly Flow using a Combined Volume of 
Fluid and Discrete Bubble Model: Investigation on 

Interphase Forces 

H. Yang, J. Xue, L. Li, X. Li†, P. Lin and Z. Zhu 

National-Provincial Joint Engineering Laboratory for Fluid Transmission System Technology, Zhejiang Sci-
Tech University, Hangzhou, Zhejiang, 310018, China 

†Corresponding Author Email: lixiaojun530@163.com 

(Received August 13, 2021; accepted December 18, 2021) 

ABSTRACT 

The gas-liquid two-phase flow with interfacial behaviors and bubble-liquid interactions is widely encountered 
in industrial processes such as that in gas-liquid reactors. The complicated phase structure makes it difficult to 
be modeled. The present work proposes a multi-scale mathematical model to simulate the bubbly flow in a 
square column. The volume of fluid (VOF) method is applied to treat the separated interface, and the discrete 
bubble model (DBM) is incorporated to handle the dynamics of dispersed bubbles. The hybrid model is 
validated against the benchmark experimental data to study the accuracy and suitability of the modeling 
framework for bubbly flows. And the influence of interphase forces on bubbly flow patterns and velocity 
profiles is investigated. It is found that the employment of both pressure gradient force and Ishii-Zuber drag 
model provides fairly good agreements with experimental data for velocity profiles.  

Keywords: Gas-liquid two-phase flow; Multi-scale model; Volume of fluid; Discrete bubble model. 

NOMENCLATURE 

a       amplitude 
A       area 
b       value of the actual collision parameter 
bcri    criteria impact parameter  
CD     drag force coefficient  
CVM   virtual mass force coefficient  
D      diameter 
d       distance  
FG     gravity 
FL     lift force  
FP     bubble force acting on liquids  
Fb     surface tension  
FPG   pressure gradient force  
Fs     Saffman lift force  
FVM   virtual mass force  
g       gravitational acceleration  
k        kinetic energy 
K       ratio of the total energy in distortion 
m      mass of individual bubble  
n       number of collisions  
p       pressure  

P      probability of collision 
Q     gas flow rate  
r       bubble radii  
Re    Reynolds number 
S      rate-of-strain tensor  
T      integral time scale  
t       time 
u      liquid velocity  
v      bubble velocity  
vT    terminal bubble velocity  
Vcell  cell volume   
Wec collisional Weber number 
α     volume fraction  
ρ     density  
σ     surface-tension coefficient  
μ     viscosity  
μt    turbulent viscosity  
κ     curvature of free surface 
δij    dirac function 
λ     expected number of collisions 
ω    specific dissipation rate  

  

 

1. INTRODUCTION 

In many industrial processes, the gas-liquid two-
phase flow is widely found, such as bubble 
column reactor, chemical material synthesis, 

waste water treatment and fuel synthesis (Liu and 
Hu 2004). The process is accompanied by 
complex flow patterns and phase interactions, 
which is necessary to obtain detailed parameters to 
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reveal the characteristics of the flow field inside 
the reactor and the motion of bubbles. For large-
scale chemical reactors, there are great limitations 
to obtain operating parameters through 
experiments. Computational fluid dynamics 
(CFD) (Jiang et al. 2016; Wang and Wang 2007) 
is proven to be able to simulate and analyze fluid 
dynamics problems, and to provide data that 
cannot be obtained by traditional experiments, 
both in time and space. Therefore, CFD is 
increasingly used in the research of industrial gas-
liquid reactors. However, due to the poor 
versatility of mathematical closures in CFD and 
the limits in model capabilities, the simulation of 
bubble column reactors still needs a lot of 
research. Only through experimental data to verify 
the mathematical closure in CFD can make it 
clearer about the scope of application of 
mathematical closures. In addition, due to the 
complicated interactions, it is very difficult to 
predict bubble behaviors and mixed flow 
phenomena in the bubble column reactor. 

In recent years, Euler-Euler (E-E) and Euler-
Lagrange (E-L) methods are usually applied in 
simulation of bubble column reactors. The E-E 
method treats each phase as a continuum, and the 
equations of mass and momentum of each phase is 
solved to describe the macroscopic distribution of 
the phase in space. This method does not require 
high computational capability and is unable to 
obtain the information of a single bubble, so it is 
difficult to simulate the coalescence or break-up 
of bubbles in the actual process (Chahed et al. 
2003; Passalacqua and Fox 2011; Pfleger et al. 
1999; Zhou 2010). Matiazzo et al. (2020) used the 
Euler-Euler method to simulate the gas-liquid 
flow in the bubble column, and investigated the 
influence of different drag closures, breakup and 
coalescence models on the model prediction. As 
an alternative, in the E-L method, the discrete 
phase can be directly tracked by the Lagrangian 
method, so the size and distribution of bubbles 
can be accurately simulated. In this method, both 
the bubble-liquid interaction and bubble-bubble 
interaction are considered, so that the motion of 
discrete phase can be understood more deeply. In 
the 1990s, Hoomans et al. (1996) established a 
discrete particle model to investigate gas-fluidized 
beds, using a hard sphere collision model to 
explain the movement of bubbles. Delnoij et al. 
(1997) proposed a gas-liquid two-phase flow 
model based on E-L model which described the 
two-dimensional movement of bubbles in the 
bubble column. The effect of aggregation and 
breakage of bubbles on bubbly flow may be 
significant. Therefore, more and more researches 
have been done to study the coalescence and 
break-up model in the E-L method. van den 
Hengel et al. (2005) added a bubble coalescence 
and break-up model on basis of the DBM 
established by Delnoij et al. (1997). Bourloutski 
and Sommerfeld (2004) introduced a random 
Lagrangian bubble collision model without 
considering bubble break-up. Darmana et al. 
(2006) reported a parallel algorithm considering 
four-way coupling, the coalescence and collision 

between bubbles were accounted. Bokkers et al. 
(2006) adopted the pseudo-fluid algorithm for 
emulsion phase, and the bubbles were calculated 
by Lagrangian method to explore the influence of 
DBM and closure relations on bubble coalescence 
and break-up in fluidized beds. 

DBM provides a feasible solution for the simulation 
of small-scale bubbles, but when there are large-
scale continuous interfaces in the system, a single 
DBM is not applicable. In response to this problem, 
a hybrid model is proposed, that applies the volume 
of fluid (VOF) method to capture the large-scale 
interface while using DBM to simulate bubbles at a 
small scale without considering the boundary (Li 
and Li 2018; Li et al. 2017; Liu et al. 2014; Ma et al. 
2012; Xu et al. 2013). The VOF method first 
proposed by Hirt and Nichols (1981) is one of the 
most commonly used methods for interface 
capturing. It has good mass conservation 
characteristics and can calculate the geometric 
properties of the interface accurately (Zhang et al. 
2012). Cloete et al. (2013) coupled the VOF and 
DPM to evaluate the influence of various design and 
operating variables on the gas-liquid flow in the 
ladle. Jain et al. (2014) proposed a VOF-DBM 
method to simulate the rise of bubbles in water and 
the wave behavior of free surface. Olsen and 
Skjetne (2016) combined the VOF and DBM 
methods to solve the underwater bubble motion 
considering the dissolution. Li et al. (2020) 
proposed a VOF-DBM model with considering the 
bubble aggregation and the discrete-continuum 
transition to predict the multiphase flow in a gas-
stirred ladle. 

In summary, various multi-scale models are utilized 
to simulate phenomena that occur at different scales. 
In order to better predict the bubble flow 
characteristics in bubble column reactors, it is still 
necessary to investigate the interaction between 
bubble and liquid. The objective of this work is to 
propose a multi-scale model to capture the large-
scale continuous interface while simulating the 
behavior of small-scale bubbles and investigate the 
effect of different interphase forces.  

2. MATHEMATICAL MODEL 

In this work, VOF is utilized to deal with the free 
surface of liquid which is regarded as a continuous 
phase, and DBM is proposed to investigate the 
motion of discrete bubbles. 

2.1  Volume of Fluid Method 

The continuous interface tracking in VOF method is 
based on the solution of one momentum equation 
for the gas and liquid phases, and an equation is 
used for the volume fraction of one phase. Gas and 
liquid phases are considered as incompressible 
fluids. The equation of volume fraction is given by  

0
t

 
  


u                                                      (1) 

where  , u respectively represent the volume 
fraction and velocity. The primary phase is not 
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solved by the volume equation, but is instead 
calculated from the relation: 

1p                                                                 (2) 

The momentum equation for the gas-liquid 
mixture is based on the following equation: 

       b p
Tp

t
  

 
              

u
uu u u g F F

                                                                              (3) 

where Fp represents bubble-liquid interface 
coupling relations, ρ and μ represent the density 
and viscosity of the mixture that are written as:  

 1l b                                                      (4) 

 1l b                                                     (5) 

The continuum-surface-force model is utilized to 
evaluate the surface tension (Brackbill et al. 1992) 
as: 

b   F                                                            (6) 

where σ represents the surface-tension coefficient 
and κ represents the surface curvature which 
calculated as follows: 

                                                          (7) 

2.2  Turbulence Model 

Shear stress transfer (SST) k-ω model is a 
turbulence model proposed by the Menter (1994) 
on the basis of k-ε model and k-ω model. The 
model uses the k-ε model in the fully developed 
area and k-ω model near the wall to improve the 
prediction accuracy and reliability of the free flow 
near wall. The equations of turbulent kinetic energy 
k and specific dissipation rate ω are given by: 

 
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





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




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(8) 
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          (9) 

where production term 
j

ij x

ui
P




 , turbulent stress 

and rate-of-strain tensor are given by: 

2 2
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3 3
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ij t ij ij ij
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 
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                          (10) 
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The eddy viscosity is calculated as follows: 

 2,
l

t
l

k

max SF


 

                                             (12) 

where S represents a modulus of the rate-of-strain 
tensor which is written as

ijijSS2 .  

2.3 Discrete Bubble Model (DBM) 

The motion of each individual bubble is obtained by 
solving Newton's second law. A two-way coupling 
method is applied between continuous phase and 
bubbles. All the forces exerted on a bubble is 
summed up. Then the equations for an 
incompressible bubble are described as follows: 

b b

d
V

dt
  

v
F                                                       (13) 

VMSDPGG FFFFFF                          (14) 

where b , bV , and v  represent the bubble density, 

bubble volume and bubble velocity respectively. 
The net force F is the resultant force on bubbles, 
and the terms on the right-hand side of Eq. (14) 
represent the gravity, pressure gradient force, drag 
force, Saffman lift force and virtual mass force, 
respectively. 

The term of FD describes drag force acting on 
bubbles, which is written as: 

 3

4
D

D l
b

C

D
   F v u v u                            (15) 

Ishii and Zuber (1979) gave the following 
expression for the drag coefficient CD: 

D

2
=

3
C Eo                                                         (16) 

The drag model plays a significant role in the phase 
interaction, so it is selected to investigate the 
interphase interaction in the bubble square column 
after comparing other drag models proposed by 
Morsi and Alexander (1972) and Grace and Weber 
(1978).  

The drag coefficient CD proposed by Morsi and 
Alexander (1972) can be expressed as： 

2
32

1 Re

C

Re

C
CCD                                               (17) 

Grace and Weber (1978) gave the following 
expression for the drag coefficient CD: 

 



















 


lT

b.
D

gd
,min,Re.

Re
maxC




2
6870

3

4

3

8
1501

24

v
    (18) 

The reason for selecting the drag model proposed by 
Ishii and Zuber is discussed in section 4.1.  

Note that the Saffman lift force investigated in this 
work can be obtained from Li and Ahmadi (1992). 
The expression of the Saffman lift force can be 
written as the following, which is provided by 
Saffman (1965): 
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 
 

1/2

1/4
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-l ij
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K d

D d d
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
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v
F u v                                       (19) 

The rest relevant forces include the gravity, virtual 
mass force and pressure gradient force, which can 
be expressed by the following equations: 

G b bVF g                                                           (20) 

    





  uu-v

u-v
F blVMblVMVM VC

D

D
VC 

t
      (21) 

PG bV p  F                                                         (22) 

where CVM is the virtual mass coefficient and is 
equal to 0.5. 

In the actual process, when the bubble reaches the 
liquid level, it will leave the gas-liquid interface to 
become part of the continuous gas phase. 
Therefore, when bubbles reach the gas-liquid 
interface ( 0.5  ), the bubble tracking stops. Gas 
volume fraction equation and current cell velocity 
equation can be described as： 

b cellV V                                                        (23) 

b cellV V u u v                                                  (24) 

2.3.1 Discrete Random Walk Model  

The bubble diffusion caused by turbulence in the 
flow field can be predicted by a random walk 
model. This random tracking method can not only 
calculate the trajectory of particles effectively, but 
also consider the influence of turbulence on particle 
dispersion. 

The concept of the integral time scale T is used to 
make a prediction of the particle dispersion, which 
is given by： 

   



d

'u

t'u t'u

p

pp
 


0

2
T                                    (25) 

The integration time is directly proportional to the 
diffusion rate of particle, and a smaller value 
indicates less turbulent motion. The particle 
diffusivity is described as T'uj'ui . 

As for small “tracer” bubbles which move with the 
fluid, the integral time becomes the fluid 
Lagrangian integral time. For the k-ω model and its 
variants, the time scale TL is expressed by the 
following equation: 

0.30L

k
T


                                                          (26) 

The random walk model considers the interaction 
between bubbles and discrete vortices of fluid 
(Gosman and Ioannides 1983). Each eddy is 
characterized by a random velocity fluctuation 

which follows a Gaussian distributed 'u , 'v , 'w  
and a time scale τ.

 
For the k-ω model and its variants. When using the 
Reynolds stress model, the non-isotropy of the 
stress is included in the derivation of the velocity 
fluctuation: 

2'u'u  , 2'v'v  , 2'w'w                     (27) 

where   represents a random number that is 
distributed normally, the characteristic lifetime of 
the eddy can be given by:  

Le T2                                                                (28) 

where LT  can be obtained from Eq. (26).  

2.3.2 Coalescence Model 

In the collision algorithm, there are 21 2N  possible 
collision time to be calculated at each time step. 
Taking the bubble column reactor in this paper as an 
example, the simulation will produce innumerable 
bubbles, which will cause huge consumption of 
computing resources. Thus, the concept of parcels is 
proposed, which is a statistical representation of 
multiple individual bubbles. 

Once the collision between two bubbles is 
determined, the algorithm will further determine the 
type of collision. The probability of results are 
calculated from a fit to experimental observations 
and the collisional Weber number (

cWe ). 


 D

We rel
c

2u
                                                          (29) 

where relu , D  represent the relative velocity 
between two parcels and the arithmetic mean 
diameter of two parcels, respectively.  

The probability of collision of two bubbles is 
derived from the point of view of the larger bubble, 
which identified with the number 1. The smaller 
bubble is identified with number 2. A collision will 
occur, if the center of the smaller bubble passes 
through a flat circle centered around the collector of 
area  221 rr   perpendicular to the trajectory of the 

smaller bubble. The collision probability between 
the smaller bubble and collector is defined as: 

 
cell

rel

V

trr
P




v221
1


                                             (30) 

where relv
 
represents the relative velocity between 

two bubbles. It can be obtained from Eq. (31) that 

there are 1i  bubbles in the collector and 2i  bubbles 

in the smaller bubble parcels. The mean expected 
collision number of collectors is defined as follows: 

 
cell

rel

V

trrn
n




v2212
                                       (31) 
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The probability distribution of the actual number of 
collisions underwent by the collector follows the 
Poisson distribution, which can be defined as: 

  n!

n
eP

n
n

n
                                                        (32) 

where n  represents the collision number between 
bubbles and a collector. In this present work, the 
probability of bubble coalescence may be caused by 
the offset of the collector bubble center. According 
to O'Rourke (1981), the critical offset is given by: 

  









c
crit We

2.4f
1.0,minrrb 21                                   (33) 

where f  
represents a function of bubble size ratio, 

which is defined as      21
2

21
3

21 7242 rrrrrr /././  . 

b  is a value of the actual parameter of collision, 
which can be defined as: 

  Yrrb 21                                                      (34) 

where Y  represents a random number range in [0, 
1). If 

critb b , bubbles will coalescence. The 

properties of the coalesced bubbles can be obtained 
from the following equations： 

211 mmm '                                                        (35) 

221111 vvv mmm ''                                             (36) 

Otherwise, a grazing collision takes place. The new 
bubble velocity is determined according to the 
conservation of momentum, which is given by: 

 



















crit

crit

brr

bb

mm

m

mm

mm

2121

212

21

2211
1

vvvv
v'          (37) 

 



















crit

crit

brr

bb

mm

m

mm

mm

2121

212

21

2211
2

vvvv
v'         (38) 

where 
1m  and 

2m  are the masses of bubble 1 and 

bubble 2, respectively. 

2.3.3 Break Up Model 

In this study, we utilize a break-up model suitable 
for the condition with low Weber number. And 
bubbles will break only if the following equation is 
valid: 

1cWe a                                                            (39) 

where a  represents the amplitude of an undamped 
oscillation ( dt ) for each bubble at time step n, 

which is defined as     2
2















n

c
n dtdy

Wey
/ . The 

breakup time is obtained under the assumption that 
the bubble oscillation is undamped for its first 
period. Thus, the breakup time is the smallest root 

greater than nt  of an undamped version: 

   1cos   n
c ttaWe                                 (40) 

where cos
n

cy We

a



  and  

sin
n

dy dt

a



  . 

If 1n
but t  , breakup can’t take place. Then the 

next bubble will be calculated. On the contrary, 

if 1n n
but t t   , the breakup will take place and 

the child bubble radius is expressed by the 
following equation: 
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 




120

56

20

8
1

23232
KdtdyrKy

r
r

l


 /                     (41) 

where K represents the ratio of the total energy in 
distortion. 

3. NUMERICAL DETAILS 

The geometry and mesh of computational domain of 
the square column are shown in Fig. 1. The cross 
section of the square column (W*D) is 
0.15m*0.15m, and the height (H) is 0.5m (water 
level is at 0.45m). The black line in Fig. 1 indicates 
the measurement position which along the y 
direction at a height of 0.25m. More relevant 
simulation settings and detailed parameters can be 
found in Table 1. A gas distributor which has 49 
pores with diameter of 1 mm is placed in the center 
of the bottom plane, and air is injected into the 
system at a superficial gas velocity of 4.9 mm/s. 
According to Deen’s case (Deen et al. 2001), the 
initial bubble diameter is 4 mm. 

 

 

 

Fig. 1. (a) Geometry of the numerical domain, (b) 
Mesh of computational domain of the square 

column. 

 

The number of cells in x, y and z directions for 
bubble column is 28, 28 and 100 respectively, 
which gives a total of 78400 cells. The boundary 
condition is defined at the inlet consists of 7×7 
grids as follows: 
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Table 1. Simulation parameters. 
Parameter Value  
Width (W) 150mm 
Depth (D) 150mm 
Height (H) 500mm 
Water level (L) 450mm 
Water density  998.2kg·m-3 
Water viscosity 1.0×10-3kg·m-1·s-1 
Superficial gas velocity 4.9mm·s-1 
Bubble density 1.2kg·m-3 
Initial bubble diameter  4mm 

 

 ,
s

y in
in

W D

A




v
v                                              (42) 

where sv
 
represents the superficial gas velocity. 

In the case, W×D equals to 0.0375 m×0.0375 m. 
The value of inlet velocity is 0.0784 m/s which is 
normal to the inlet. Pressure boundary is modelled 
at the outlet, while other boundaries are set as no-
slip walls. 

The Pressure-Implicit with Splitting of Operators 
(PISO) method is used for the pressure-velocity 
coupling while k-ω SST model is used for 
turbulence. For the discretization of the partial 
differential equations system, the least square cell 
based method is utilized. Second-order upwind is 
applied to the spatial discretization for momentum 
and geo-reconstruct schemes are adopted for the 
volume fraction. The total simulation time is 300s 
with a time step of 0.01s, and the first 20s is 
discarded due to unsteady flow filed. The numerical 
simulation is performed using the Fluent software. 
To simulate the behaviors of bubbles coming 
through the gas-liquid interface and transforming to 
the continuous gas. A user defined function (UDF) 
is implemented in the present work. 

4. RESULTS AND DISCUSSION  

Three stages of simulations are carried out in the 
present work. First, the performance of three 
different drag models, which are proposed by Ishii 
and Zuber (1979), Morsi and Alexander (1972) and 
Grace and Weber (1978), are evaluated to 
determine the appropriate one used for all further 
simulations. In section 4.2, the various single 
additional interphase forces including pressure 
gradient force, virtual mass force and Saffman lift 
force are considered. In section 4.3, the effect of 
two interphase forces based on the drag model is 
discussed, which indicates that another different 
single additional interphase force is added to the 
chosen model. The most suitable drag model and 
interphase force closures are used for simulation 
and the transient bubble flow characteristics are 
provided in section 4.4. 

4.1 Effect of different drag closures 

The drag force is a key factor that determines the 
interaction between phases and the velocity of 
bubbles. It can be decomposed into form drag and  

 

Fig. 2. Effect of different drag closures: (a) time-
averaged axial liquid velocity at the height of 

0.25m. (b) time-averaged axial gas velocity at the 
height of 0.25 m. 

 

viscous resistance. The form drag is generated by 
the pressure difference around the moving bubbles 
in the liquid, and the viscous resistance is caused by 
the velocity gradient and viscous stress in the 
boundary layer. Three different drag closures 
including spherical, Grace and Ishii-Zuber models 
are chosen to investigate their applicability for drag 
closures. All numerical simulation parameters are 
the same except for the drag closure. 

The effect of various drag models on mean axial 
liquid velocity and gas velocity are shown in Fig. 2 
and the bubble distributions are shown in Fig. 3. 
The predicted results are compared with the 
experiment data from Deen et al. (2000). Both mean 
axial velocity profiles for liquid and gas at the 
positions of black line show that the maximum 
velocity is in the central part and the velocity 
decreases from center outwards. The circulation of 
the liquid phase drives the liquid upward in the 
central position and downward close to the walls. 
Therefore, the mean axial liquid velocity is the 
maximum near the center, and negative values 
appear near the wall. As for the mean axial liquid 
velocity, it is evident that three drag models exhibit 
a relative flat profile, which under-estimates the 
experimental data. The velocity profiles predicted 
by Ishii-Zuber model and spherical model 
are more accurate compared with the experimental 
value. On the contrary, there is an over-prediction 
of the mean axial gas velocity. Since the spherical  
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Fig. 3. Instant snapshots of the bubble plume and gas–liquid interface for the tested drag models: (a) 

Ishii-Zuber drag model (b) Grace drag model (c) spherical drag model. 

 

 
Fig. 4. Overall bubble size distribution for tested 

drag models. 

 

drag model does not consider the energy dissipation 
of the discrete phase, thus it substantially over-
estimates the gas velocity for all positions. It also 
can be seen from Fig. 3(c) that the bubble plume is 
more concentrated during the rising process due to 
the larger axial gas velocity. Drag models proposed 
by Ishii-Zuber and Grace predict the mean gas 
velocity profiles better compared to the spherical 
drag model.  

As illustrated in Fig. 4. the bubble diameter 
distribution under the Ishii-Zuber model is closer to 
the normal distribution, that is, the peak value of 
bubble diagram is in the middle, and the values on 
both sides are roughly symmetrical. The 
coalescence and the breakup of bubbles are more 
obvious using the Grace model, because of that the 
relative counts of small bubbles and large bubbles 
are increased compared with the results using the 
other two drag models. On the contrary, the rate of 
bubble coalescence and breakup is the least using 
the Spherical model. In conclusion, the Ishii-Zuber 
drag model will be used for all further simulations. 
However, it is impossible to predict the velocity 
profiles accurately only by considering the drag 
force. Thus, the effects of additional interphase  

 

Fig. 5. Effect of different additional interphase 
forces: (a) time-averaged axial liquid velocity at 
the height of 0.25m. (b) time-averaged axial gas 

velocity at the height of 0.25 m. 

 

forces based on the Ishii-Zuber drag model are 
discussed in the next section.  

4.2 Effect of additional force 

Based on the results reported in the above sections, 
the pressure gradient force, virtual mass force and 
Saffman lift force are introduced to investigate the 
effect of the different single additional interphase 
forces. Figure 5(a) compares the mean axial liquid  
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Fig. 6. Instant snapshots of the bubble plume and gas–liquid interface for tested additional interphase 
forces: (a) pressure gradient force (b) virtual mass force (c) Saffman lift force. 

 

velocity profiles among different single additional 
interphase forces and the experimental data. The 
liquid velocity simulated with the pressure gradient 
force satisfactorily agrees with that of the 
experiment result, while other additional interphase 
forces under-estimate the velocity. Comparison of 
the mean axial gas velocity profiles among different 
additional interphase forces and the experimental 
data is shown in Fig. 5(b). Compared with the  
results that only consider Ishii-Zuber drag model, 
the introduction of pressure gradient force reduces 
the mean velocity of the gas and is closer to 
experiment result. There is a bottom-up pressure 
gradient in the flow field, and the direction of the 
pressure gradient force acting on bubbles is 
opposite to the pressure gradient. Therefore, the 
pressure gradient force hinders the rise of the 
bubble, which leads to the decrease of gas velocity. 
The virtual mass force decelerates the discrete 
phase, which is responsible for the lower gas 
velocity compared with that of the experimental 
data. The simulation result of virtual mass force has 
a wider diameter distribution compared to other two 
simulation results in terms of the bubble diameter 
distribution, as shown in Fig. 7. The maximum 
diameter of bubble is 13 mm and the peak 
percentage of bubble diameter is observed at 4mm. 
The number of bubbles with diameter less than 
2mm is greatly reduced, which indicates that the 
bubbles are more difficult to break up when 
considering the virtual mass force. On the contrary, 
under Saffman lift force, the distribution of bubble 
plume is more homogeneous since Saffman lift is 
proportional to the velocity gradient. In general, the 
velocity gradient in the mainstream region is much 
smaller than the boundary region, thus the force is 
more remarkable than the boundary region. The 
direction of Saffman lift force acting on the bubble 
points at the wall. Due to the velocity gradient 
between mainstream region and boundary region, 
the distribution of bubble is more homogeneous 
which can be found from the Fig. 7. Meanwhile, 
there are more small bubbles visible as illustrated in 
Fig. 6(c), the maximum diameter of bubble is 11.5 
mm, and the number of 2mm bubble diameter  

 

Fig. 7. Overall bubble size distribution for tested 
additional interphase forces. 

 

distribution is the peak value. Compared with other 
two simulation results in this section, it contains 
more bubbles whose diameter is less than 2 mm. 
With the increase of gas velocity, the turbulence 
level of liquid phase is more significant, which 
leads to the bubble break-up and the increase of 
small bubbles. In summary, the employment of both 
pressure gradient force and Ishii-Zuber drag model 
produces better agreement with experimental data 
for velocity profiles. 

The bubble plume oscillation period (POP) can be 
monitored by analyzing the period of the horizontal 
velocity. Figure 8 shows the horizontal velocity 
fluctuation of the bubble plume at point A under 
different interphase forces overtime. The horizontal 
fluctuation shows a little irregular. Velocity 
fluctuations may fluctuate with a large amplitude 
for a while and then continue to fluctuate at a 
relatively small amplitude for another while. 
Typical cycles and periods T are marked in Fig. 8 
Compared with the POP under different interphase 
forces, it can be found that pressure gradient force 
leads to a longer POP than other two forces, and the 
POP under the Saffman lift force is the shortest. 
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Fig. 8. Time history of the horizontal liquid 
velocity fluctuation for different additional 

forces at the height of 0.25 m in the center of the 
column: (a) pressure gradient force (b) virtual 

mass force (c) Saffman lift force. 

 
Fig. 9. Amplitude spectrum of horizontal liquid 

velocity fluctuation for different additional 
forces at the height of 0.25 m in the center of the 
column: (a) pressure gradient force (b) virtual 

mass force (c) Saffman lift force. 

 

A more detailed quantitative analysis of the POP 
can be investigated by the frequency spectrum of 
the horizontal velocity fluctuation. Figure 9 plots 
the horizontal velocity fluctuation, by applying a 
fast Fourier transformation to the to the simulation 
time series. The addition of different interphase 
forces leads to more complex interphase 
interactions, which makes the velocity fluctuation 
more irregular. As illustrated in Fig. 9, the 
frequency of the maximum amplitude of pressure 
gradient force is 0.05Hz; the frequency of the 
maximum amplitude of virtual mass force is 
0.067Hz; the frequency of the maximum amplitude 
of Saffman lift force is 0.08Hz. They are 
corresponding to the marked fluctuation whose 
periods are about 20s, 15s, 12.5s as seen in Fig. 8. 
As the Saffman lift force consider, it can be found 
that several large values of amplitude appear in the 
frequency spectrum, the fluctuation is much more 
irregular. 

4.3 Effect of multi-interphase forces 

As illustrated in Fig. 10., the liquid and gas 
velocities are under-estimated under the combined 
effect of pressure gradient force and virtual mass 
force. Compared with the results that consider only 
the drag model or pressure gradient force, the 
addition of virtual mass reduces the velocity of the 
gas further. It is indicated that the combined effect 
of pressure gradient force and virtual mass force 

imposes stronger resistance on the rising of bubble 
in the flow field. The combined effect of pressure 
gradient force and Saffman lift force results in an 
over-prediction of the gas velocity. The discrepancy 
from experimental data considering the pressure 
gradient force and the Saffman lift force is less than 
that only considers the Saffman lift force. Figure 11 
shows the flow pattern using different combinations 
of interphase forces, it is found that the 
consideration of pressure gradient force and virtual 
mass force predicts more large bubbles.  

Compared with Fig. 7, Fig. 12 shows that both the 
largest diameter of bubbles and the number of 
bubbles with diameters more than 4 mm decrease 
slightly. Furthermore, it is found that the number of 
bubbles with diameters less than 2 mm decreases 
due to the addition of the pressure gradient force. 

The effect of pressure gradient force and virtual 
mass force weakens the bubbles coalescence 
slightly. Similarly, the effect of pressure gradient 
force and Saffman lift force on bubbles reduces 
break-up frequency of bubbles than that only 
considers Saffman lift force. 

Figure 13 shows the horizontal velocity fluctuation 
under different combinations of multi-interphase 
forces over time. As we can see in the figure, the 
velocity fluctuations are disordered and periods are 
not obvious compared with the results in Fig. 8,  
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Fig. 10. Effect of different multi-interphase 

force: (a) time-averaged axial liquid velocity at 
the height of 0.25m. (b) time-averaged axial 

liquid velocity at the height of 0.25 m. 

 

which considers the drag force and one additional 
force.  

Figure 14 plots the amplitude spectrums of the 
horizontal liquid velocity fluctuation. There are 
some dominant frequencies between 0 and 0.1 Hz 
with large amplitude as seen in the figure, which is 
more in Fig. 14(b). This is probably because of the 
bubbles oscillate in an irregular and chaotic 
manner. The results indicate that the combined 
action of the interphase forces leads to a more 
complicated interaction between bubble and liquid, 
which makes the periodic behavior of the bubble 
plume disappeared.  

4.4 Transient flow patterns 

In this section, the simulation with coupled pressure 
gradient force and Ishii-Zuber drag model is 
conducted to investigate the transient behaviors of 
gas-liquid flow. The bubble plume and the gas–
liquid interface at different times are shown in Fig. 
15. The bubble plume is found to oscillate 
periodically from left to right. The vector field of 
liquid  velocity  in  Fig. 15(b) shows  that  the 
circulation of the liquid phase occurs in the bubble 
column. Bubbles drive the liquid phase upward 
while rising, and the downward flow of the liquid 
phase occurs near the side wall. The surrounding  

 
Fig. 11. Instant snapshots of the bubble plume 

for multi-interphase forces: (a) pressure gradient 
force (b) pressure gradient force and virtual 
mass force (c) pressure gradient force and 

Saffman lift force. 

 

 

Fig. 12. Overall bubble size distribution for 
different combinations of multi-interphase 

forces. 

 

liquid is entrained into the bubble plume 
continuously and pushes the incoming gas to the 
center of the bubble column. Vortices formed 
around the two side walls push the gas along 
different radial directions to produce the bubble 
plume oscillation. The bubble plume deviates from 
the center of the bubble tower and begins to swing 
due to the asymmetry of the vortex. The plume 
section is expanding. A lateral flow layer with a 
velocity gradient appears as bubble plume reach the 
liquid surface. 

     5.    CONCLUSION 

A multi-scale mathematical model based on 
combined VOF and DBM has been proposed. An 
Euler-Lagrange method is used to simulate the gas-
liquid flow which is widely found in industrial 
processes. The bubble behavior and dynamics of the 
gas-liquid interface are well revealed. The dispersed 
bubble behaviors are investigated by tracking the 
trajectory of each bubble, and the effect of 
interphase forces on the gas-liquid flow pattern is  
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Fig. 13. Time history of the horizontal liquid 

velocity fluctuation for multi-interphase forces 
at the height of 0.25 m in the center of the 

column: (a) pressure gradient force and virtual 
mass force (b) pressure gradient force and 

Saffman lift force. 

 

 
Fig. 14. Amplitude spectrum of horizontal liquid 
velocity fluctuation for multi-interphase forces 

at the height of 0.25 m in the center of the 
column: (a) pressure gradient force and virtual 

mass force (b) pressure gradient force and 
Saffman lift force. 

 

Fig. 15. Instant snapshots on the mid-depth plane 
at t=255 s, 263 s and 272 s: (a) bubble plume and 

gas-liquid interface (b) liquid velocity vectors. 

 

evaluated. The hybrid model is verified by the PIV 
results of Deen et al. (2000). Conclusions can be 
drawn as follows: 

-The numerical results of bubble flow patterns and 
velocity profiles are in good agreement with the 
measured data, indicating that the application of 
this multi-scale mathematical model can 
reasonably predict the gas-liquid two-phase flow. 

-For drag closures, the Ishii-Zuber drag model is 
proven better than the spherical model and the 
Grace model. The bubble diameter distribution 
under the Ishii-Zuber model follows a normal 
distribution approximately. The Grace model 
promotes the coalescence and breakup of 
bubbles. On the contrary, the spherical model 
inhibits the coalescence and breakup of bubbles. 
It is found that considering both the Ishii-Zuber 
drag model and the pressure gradient force can 
predict the liquid and bubble velocity quite well. 

-The virtual mass force decelerates discrete phase 
and bubbles are more concentrated. In addition, 
weakens bubble breakup. The Saffman lift force 
increases the velocity of the discrete phase and 
the turbulence of liquid phase is more significant, 
which strengthens bubble breakup. 

-The pressure gradient force leads to a longer POP 
than the virtual mass force and the Saffman lift 
force, the POP under the Saffman lift force is the 
shortest. The combined action of the interphase 
forces makes the velocity fluctuations irregularly. 
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