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ABSTRACT 

Three-dimensional numerical simulations are performed to examine the effects of dynamic wing morphing of 
a hummingbird-inspired flexible flapping wing on its aerodynamic performance in hovering flight. The range 
analysis and variation analysis in the orthogonal experiment are conducted to assess the significance level of 
various deformations observed in the hummingbird wings on wing aerodynamic performance. It has been 
found that both camber and twist significantly can affect lift, and twist has an even higher significant impact 
on lift efficiency. Spanwise bending, whether out-of-stroke-plane or in-stroke-plane, has a negligible impact 
on lift and efficiency, and the in-stroke-plane bending can cause lift to decrease to an extent. Optimal 
parameters for determining the wing deformations are selected and tested to validate the conclusions drawn in 
the analysis for the results in orthogonal experiment. Through a comparison study between the optimized 
wings and the rigid wing, it is found that although the wing flexibility can cause the net force to decrease, the 
flexible wing used less energy to bring the net force closer to the vertical direction, thereby improving the lift 
efficiency. This study provides an aerodynamics understanding of the efficiency improvement of the 
hummingbird-inspired flexible flapping wing. 

Keywords: Flapping wing in hover; Time-varying deformation; Aerodynamic performance; Flexible wing. 

NOMENCLATURE 

𝑨  area vector 
𝐶஽  drag coefficient 
𝐶஽
തതതത  time-averaged drag coefficient 
𝐶ி  net force 
𝐶௅  lift coefficient 
𝐶௅
തതത  time-averaged lift coefficient 
𝐶௉  power coefficient 
𝐶௉
തതത  time-averaged power coefficient 
𝐶఍  control parameter of pitching angle 
  waveform 
𝑐  semi-minor axis 
𝑐ோ            wing root chord 
𝑐̅  mean chord 
𝑐(𝑟̅)  local chord at any normalized radial 
  position 
𝐷  drag 
𝐷𝐹  degree of freedom 
𝑑𝑓  degree of freedom of the 𝑖th factor 
𝐹  𝐹 statistic 
𝐹௑  horizontal force 
𝐹௓  vertical force 
𝑓  frequency 
ℎ(𝑟̅, 𝑥̅, 𝑡) cross-section height function 
ℎ௠(𝑟̅, 𝑡)  maximum cross-section height at a 
  given normalized radial position 
ℎ௠(𝑟, 𝑡)  maximum cross-section height 

𝑝௡  static pressure 
𝑅  semimajor axis 
𝑅𝑒  Reynolds number 
𝑅ଶ  radius of second moment of area 
𝑅௩  range 
𝑟  any radial position 
𝑟̅  normalized radial position 
𝑆  area of plane 
𝑆𝑆  sum of squares of deviations 
𝑇  period 
𝑻𝒓  successive rotation matrix 
𝒕𝟏; 𝒕𝟐; 𝒕𝟑 column vector 
𝑡  time instant 
𝑈  average wingtip speed 
𝑽  velocity vector 
𝑥; 𝑦; 𝑧  coordinate axis 
𝑥(𝑟̅)  local chordwise position at a given  
  normalized radial position 
𝑥̅(𝑟̅)  normalized local chordwise position at 
  a given normalized radial position 
𝑌  sample average 
𝑦௡  test result of the 𝑛th sample 
𝛼ி  vector angle of net force 
𝜁  pitching angle 
𝜁௠,௧௜௣  amplitude in pitching angle at the tip 
𝜁௠,௥௢௢௧ amplitude in pitching angle at the root 
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  at a given radial position 
ℎ௠଴,௧௜௣ amplitude in maximum cross-section 
 height at the tip 
ℎ௠଴,௥௢௢௧ amplitude in maximum cross-section 
 height at the tip 
𝑖; 𝑗; 𝑛  index 
𝐾௜  sum of test results at 𝑖th level of a 
  factor 
𝑘௜  average effect of a factor at 𝑖th level 
𝐿  lift 
𝑙  distance traveled by a point at the 
  wingtip per flapping cycle 
𝑀𝑆  mean deviation 
𝑀𝑆௘  mean deviation corresponding to error 
𝑁  constant 
𝑁𝑚  number of samples in the orthogonal 
  Experiment 
𝑂𝑥𝑦𝑧  global coordinate system 
𝑃  aerodynamic power 
𝑝  control parameter of chordwise camber 

𝜁௠(𝑟)  amplitude in pitching angle at any  
  radial position 
𝜂  lift efficiency 
𝜐  kinematic viscosity 
𝜌  density 
𝝉  shear stress vector 
𝛷  flapping angle 
𝛷௠,௥௢௢௧ amplitude in flapping angle at the root 
𝛷௠,௧௜௣  amplitude in flapping angle at the tip 
𝛷௠(𝑟)   amplitude in flapping angle at any 
  radial position 
𝛷఍  phase offset of the pitching angle 
  relative to the flapping angle 
𝛹  elevation angle 
𝛹௠,௧௜௣  amplitude in elevation angle at the tip 
𝛹௠,௥௢௢௧ amplitude in elevation angle at the root 
𝛹௠(𝑟)  amplitude in elevation angle at any  
  radial position 
𝜔  spanwise vorticity 
𝜔ഥ  normalized spanwise vorticity 

 

 

1. INTRODUCTION 

Hummingbird-inspired flapping wing has attracted 
widespread attention because of its successful 
application in micro air vehicle (MAV) over the 
past decade. The Nano Hummingbird (Keennon et 
al. 2012), the robotic hummingbird (Coleman et al. 
2015), and the ASL robot (Nan et al. 2017) are the 
most representative hummingbird-inspired flapping 
wing micro air vehicles (FW-MAVs). Phan and 
Park (2019) reviewed the design, fabrication, and 
testing of some bionic flapping wing robots. 
However, some of them could not fly freely using 
the control equipment and power onboard. In order 
to achieve high performance, FW-MAV need both a 
high aerodynamic force and high efficiency, which 
allow it to adjust the flight strategies to meet 
requirements for flexible maneuverability and long 
cruise duration in various applications. 
Aerodynamics and aeroelasticity represent the 
tough challenges faced by scientists and engineers 
in optimal design (Shyy et al. 2010). 

Nowadays, hummingbird-inspired FW-MAVs 
exploit the unsteady aerodynamic mechanisms 
found in insect flight to enhance flight 
performances. Some researchers (Chin and Lentink 
2016; Sane 2003) described those mechanisms in 
detail, including the stable attached leading-edge 
vortex (LEV), added mass, wake capture, rotational 
circulation, and clap-and-fling effects. Each 
mechanism is directly related to a specific wing 
motion. However, the anatomical differences 
between hummingbird wing and insect wing mean 
that hummingbird doesn’t use the identical 
aerodynamic mechanisms as insect (Tobalske et al. 
2007). So there have been plenty of studies on 
aerodynamic mechanisms in the flight of 
hummingbird so that the findings can become 
instructive for designing artificial flapping wing. In 
earlier studies (Wolf et al. 2013; Altshuler et al. 
2009), Particle image velocimetry (PIV) 
experiments were adopted to characterize the 

evolution of vortices in the flow field. Three-
dimensional high-frequency vision measurement 
technology has been introduced to capture vital 
features of hummingbird flight recently (Masateru 
et al. 2017). Technologies like those make it 
feasible to combine the unsteady aerodynamic 
theory, computational fluid dynamics (CFD), and 
experimental measurement to accurately predict 
aerodynamic forces and power consumption during 
hummingbird flight. In spite of the fact that 
hummingbirds of different species may have 
distinct wakes in hovering flight, researchers (Yang 
and Zhang 2015; Song et al. 2014) have agreed that 
LEV plays a crucial role in the flight of hovering 
hummingbird. Even so, hummingbird aerodynamics 
remains not fully understood due to the highly 
complex morphology of vertebrate wings. 
Similarly, it is not simple for a designer to make an 
artificial flapping wing that mimics the mechanical 
behavior of hummingbird wings and follows an 
identical motion (Reid et al. 2021). Besides, there 
exist generally multiple primary factors involved in 
the effects on aerodynamic performance. The 
influence of a single variable is difficult to assess 
because of the interplay of various factors. As a 
result, the study on the aerodynamics of 
hummingbird flight can only provide limited help 
for designing the artificial hummingbird-inspired 
flapping wing. 

For hummingbird with vertebrate wings, it can use 
muscles and skeletal joints to modulate the 
aerodynamic and inertial forces required for aerial 
maneuvers and perturbation recovery. Masateru et 
al. (2017) reconstructed the right wing of a 
hummingbird from the profile and the feather 
shafts. The time-varying wing deformations, such 
as spanwise in-stroke-plane bending, out-of-stroke-
plan bending, twist, and the camber in cross 
sections, were quantified, and the possible causes of 
those remarkable dynamic deformations were 
briefly analyzed. Nowadays, almost all 
hummingbird-inspired flapping wings made with 
light and soft materials have the feature of passive 
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elastic deformations. Some of them have been able 
to achieve positive camber and linear twists during 
the flapping flight. Such new intelligent actuators as 
artificial muscle, shape memory alloy, piezoelectric 
and electromagnetic actuators have great potential 
applications on wing shape active control for the 
future bionic flapping systems, and the availability 
of the wings with autonomic deformability will 
revolutionize the development of FW-MAVs. 
Therefore, it is of practical significance to figure out 
how dynamic wing morphing affect wing 
performance. 

The efficiency of flapping wing depends strongly 
on the kinematics and morphology of wing. Wing 
twist can compensate for the spanwise increase in 
the geometric angle of attack because of flapping 
during flight and cause a decrease in only the 
required aerodynamic power (Walker et al. 2009). 
Camber can improve flow attachment to the wing, 
enhance lift by accelerating more of the flow at the 
suction side of the wing, and delay flow separation 
(Shyy et al. 2016). A combination of camber and 
twist had similar results to a single influence of 
camber. That increased lift by 10%, reduced the 
aerodynamic power consumption by 5% and 
increased the overall efficiency by 17% (Noyon et 
al. 2014). However, the above studies focus on the 
effects of the chordwise deformations at low 
Reynold numbers (~102). And the aerodynamic 
performance is dominated by the flow field around 
the insect-like flapping wings. Therefore, extra 
effort is required to analyze their effects at 
relatively higher Reynolds numbers (103~104). 
Roccia et al. (2017) numerically studied the effect 
of spanwise bending on lift generation in flapping 
wings, and their results implied that the in-plane 
bending affected the lift force in specific zones of 
the stroke cycle, and the out-of-plane bending 
affected the lift throughout the stroke cycle. 
Flexible flapping wings can form spanwise and 
chordwise deformations and reduce inertial forces 
harmful to their aerodynamic performance during 
the high-frequency flapping (Phan et al. 2016b). As 
a result, more and more researchers (Bhattacharjee 
et al. 2019; Phan et al. 2016b, 2017; Gehrke et al. 
2021, 2018) are paying attention to aerodynamic 
optimization to minimize the energy cost of 
hovering flight. Various theoretical models (Xuan et 

al. 2020) were adopted to estimate the performance 
of twist wings without expensive computational 
cost expended. To our knowledge, for 
hummingbird-inspired flapping wing at a higher 
Reynolds number, the effect of wing flexibility on 
aerodynamic performance has not been studied. 

In the present work, we built a hummingbird-
inspired wing model, in which the various 
deformations mentioned above were all 
incorporated to evaluate the key parameters for 
determining wing aerodynamic performance in 
hover. The deformations were prescribed directly in 
a more controlled way, which allowed us to 
investigate their effects by solving the Navier-
Strokes equations without considering complex 
fluid and structure interaction modeling. Numerical 
simulations were planned through orthogonal 
design, from which the locally optimal solutions 
were available. A comparative study for the 
optimized wings and the rigid wing was performed 
to evaluate the gain due to wing flexibility. We also 
explored further and discussed the reasons behind 
the differences in aerodynamic performance from 
the perspective of the flow field visualization and 
net forces. The results can provide helpful 
instruction for the design in FW-MAVs and lay the 
foundation for future optimization research. 

2. MODEL AND METHOD 

2.1 Wing model 

The model has a quarter-elliptical plane (Fig. 1) 
with semimajor and semi-minor axes of 𝑅 =
70𝑚𝑚and 𝑐 = 24.8𝑚𝑚, respectively. No offset is 
present between the root and the center of the 
flapping axis. As a result, the wing has a mean 
chord 𝑐 = 19.5𝑚𝑚 , an area of plane 𝑆 =
0.00136𝑚ଶ, and a radius of second moment of area 

𝑅ଶ = ට1/𝑆 ∫ 𝑟ଶ𝑐(𝑟) = 𝑑𝑟
ோ

଴
= 35𝑚𝑚 , where 𝑐(𝑟) 

is the chord at any radial position 𝑟. In addition, the 
model thickness is 0.4𝑚𝑚 (2%𝑐), and it is so thin 
that the thickness effect is negligible. This wing 
resembles the right wing of a realistic hummingbird 
(Tanaka et al. 2013) in terms of morphology. The  

 
Fig. 1. Schematic of the wing geometry, the global coordinate system, and the angle definitions  

of wing motion. 
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air used for numerical simulations has a density 𝜌 of 
1.205𝑘𝑔/𝑚ିଷ and a kinematic viscosity 𝜐 =
15.02𝑚𝑚ଶ/𝑠. We imposed a flapping frequency 
𝑓 = 28.7𝐻𝑧 to yield the Reynolds number (𝑅𝑒), and 
the definition of 𝑅𝑒 = 𝑈𝑐/𝜐 with 𝑈 = 𝑓𝑙, in which 𝑙 
is the distance traveled by a point at the wingtip per 
flapping cycle, was adopted here. Three-dimensional 
numerical simulations were performed at a relatively 
higher Reynolds number (𝑅𝑒 = 10ସ), which is within 
the Reynolds number of the hummingbird hovering 
flight (Nan et al. 2017). The maximum cross-section 
amplitude in flapping angle was confined to 𝟓𝟓°, so 
wings in current studies were guaranteed to have a 
same Reynolds number. 

2.2 Wing kinematics and dynamic 
morphing 

𝑂𝑥𝑦𝑧 is a fixed global coordinate system (see Fig. 
1), where the origin is at the wing base, 𝑥  and 𝑦 
form the horizontal plane (𝑥 points backward), and 
the 𝑧 -direction is vertical. The stroke plane angle is 
the angle between the stroke plane and the 
horizontal plane. There exists usually a slight stroke 
plane angle of about 12.5°  observed in hovering 
hummingbirds. But given no incoming flow speed 
in quiescent air, we confined the stroke plane to a 
horizontal plane, ignoring the effect of the stroke 
plane angle. 

Here a rigid wing model was presented to illustrate 
the three Euler angles at a cross section. As shown 
in Fig. 1, the flapping angle 𝛷  and the elevation 
angle Ψ describe the in-stroke-plane and the out-of-
stroke-plane motions, respectively. The flapping 
angle is the angle between the 𝑦  -axis and the 
projection of the leading edge to the stroke plane. 
The elevation angle is the dihedral angle between 
the stroke plane and the leading edge. The pitching 
angle is the rotation angle around the pitching axis, 
which is the leading edge of the middle wing 
surface. The schematic has marked the positive 
directions of the three angles with the arrows. Both 
the flapping angle and the elevation angle are 
defined in the inertial system, while the pitching 
angle is the rotation angle around the moving axis 
that rotates back and forth around the 𝑧 -axis in the 
global coordinate system. We write the successive 
rotation matrix to specify the coordinate 
transformation of a point on the wing as 

𝑻𝒓 = [𝒕𝟏 𝒕𝟐 𝒕𝟑] , 

𝒕𝟏 = ൥

𝑐𝑜𝑠 𝛷 𝑐𝑜𝑠 𝜁 − 𝑠𝑖𝑛 𝛷 𝑠𝑖𝑛 𝛹 𝑠𝑖𝑛 𝜁
− 𝑠𝑖𝑛 𝛷 𝑐𝑜𝑠 𝜁 − 𝑐𝑜𝑠 𝛷 𝑠𝑖𝑛 𝛹 𝑠𝑖𝑛 𝜁

𝑐𝑜𝑠 𝛹 𝑠𝑖𝑛 𝜁
൩ , 

𝒕𝟐 = ൥
𝑐𝑜𝑠 𝛹 𝑠𝑖𝑛 𝛷
𝑐𝑜𝑠 𝛷 𝑐𝑜𝑠 𝛹

𝑠𝑖𝑛 𝛹
൩ , 

𝒕𝟑 = ൥

− 𝑐𝑜𝑠 𝛷 𝑠𝑖𝑛 𝜁 − 𝑠𝑖𝑛 𝛷 𝑠𝑖𝑛 𝛹 𝑐𝑜𝑠 𝜁
𝑠𝑖𝑛 𝛷 𝑠𝑖𝑛 𝜁 − 𝑐𝑜𝑠 𝛷 𝑠𝑖𝑛 𝛹 𝑐𝑜𝑠 𝜁

𝑐𝑜𝑠 𝛹 𝑐𝑜𝑠 𝜁
൩.           (1) 

Multiplying the initial coordinate of each node by 
the transformation matrix will give the three-
dimensional coordinate at any time instant. The 
camber in cross sections, defined as the ratio of the 

maximum cross-section height to the chord, will be 
specified as a positive value if the chord arches 
upward in the direction perpendicular to the wing 
surface. 

Several approximations and assumptions were made 
to simplify the modeling. The spanwise distribution 
of each angle was assumed to be linear and 
independent of time. The time courses of 
normalized angles were identical across all sections. 
We multiplied the shape function (the spatial 
distribution of an angle) by the normalized time 
courses to determine the variation of an angle in 
time and space. Those distributions have been 
found to be approximately linear in the hovering 
FW-MAV, so it made sense to do this. To model 
the hummingbird-inspired flapping wing, we 
attempted to extract as many features from the 
hovering hummingbird as possible instead of 
replicating the actual flapping completely, which 
allowed us to distinguish effect of each 
deformation. 

The flapping angle 𝛷(𝑟, 𝑡) at any radial position is 
described by a cosinoidal oscillation, 

𝛷௠(𝑟) = 𝛷௠,௥௢௢௧ + (𝛷௠,௧௜௣ − 𝛷௠,௥௢௢௧)𝑟/𝑅, 
𝛷௠(𝑟, 𝑡) = 𝛷௠(𝑟) 𝑐𝑜𝑠( 2𝜋𝑓𝑡),                            (2) 

where 𝛷௠,௥௢௢௧ , 𝛷௠,௧௜௣ , and 𝛷௠(𝑟)  are the 
amplitudes of the flapping angles at the root, the tip 
and any radial position, respectively, and 𝑡  is a 
given time instant. Note that the other two angles 
follow the same naming rules. The functional form 
was inspired by the flapping motions of the robotic 
wing experiments. The elevation angle 𝛹(𝑟, 𝑡) , 
appears as a sinusoidal oscillation, 

𝛹௠(𝑟) = 𝛹௠,௥௢௢௧ + (𝛹௠,௧௜௣ − 𝛹௠,௥௢௢௧)𝑟/𝑅, 
𝛹௠(𝑟, 𝑡) = 𝛹௠(𝑟)sin(2𝜋𝑁𝑓𝑡),                              (3) 

where 𝑁 is either 1 or 2: 𝑁 = 1 corresponds to one 
vertical oscillation per stroke period, and 𝑁 = 2 
corresponds to a figure-of-8 motion. The elevation 
angle is absent in most insect-like robotic wing 
experiments, but the elliptical wingtip trajectory can 
describe the hovering flight of hummingbird more 
realistically. Next, the pitching angle 𝜁(𝑟, 𝑡)  is 
described by a periodic hyperbolic function, 

𝜁௠(𝑟) = 𝜁௠,௥௢௢௧ +
൫఍೘,೟೔೛ି఍೘,ೝ೚೚೟൯௥

ோ
, 

𝜁௠(𝑟, 𝑡) = −
఍೘(௥)

௧௔௡௛ ஼അ
𝑡𝑎𝑛ℎ[ 𝐶఍sin(2𝜋𝑁𝑓𝑡 + 𝛷఍),  (4) 

where 𝛷఍  is the phase offset of the pitching angle 

relative to the flapping angle, and 𝐶఍  is a parameter 
that controls the waveform and determines the 
rotation duration during the stroke transition. 

In the present study, only the symmetry of the wing 
rotation was considered, which caused the pitching 
angle phase offset to have a value of 0. As 𝐶఍ 
approaches 0, 𝜁(𝑟, 𝑡)  becomes sinusoidal, and as 
𝐶఍ → 0 , 𝜁(𝑟, 𝑡)  tends toward a step function (see 
Fig. 2). The upper bound of 𝐶఍ = 5 was adopted in 
a study on bionic kinematics by Kim and Han 
(2014), so we also set this value to 5. The time 
course of the non-dimensional pitching angle was  
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Fig. 2. Normalized pitching angle changed with 𝐂𝛇, and the profiles of the normalized flapping angle, 

elevation angle, and pitching angle during a stroke period in the present study. 
 

 
Fig. 3. Mean lines of NACA four-digit wing sections that are regulated by the different values of 𝒑, and 

the case corresponding to 𝒑 = 𝟎. 𝟓. 

 

plotted in Fig. 2, along with the profiles of the non-
dimensional flapping angle and elevation angle. 

For the camber in cross sections as seen in Fig. 3, 
we used the equation of the mean lines of NACA 
four-digit wing sections: 

𝑟 = 𝑟/𝑅, 

𝑐(𝑟) = 𝑐ඥ1 − 𝑟
ଶ
, 

𝑥(𝑟) = 𝑥(𝑟)/𝑐(𝑟), 
ℎ(𝑟, 𝑥, 𝑡) =

⎩
⎪
⎨

⎪
⎧

(0 ≤ 𝑥 ≤ 𝑝)

ℎ௠(𝑟, 𝑡)/𝑝ଶ(2𝑝𝑥 − 𝑥
ଶ

)

(𝑝 < 𝑥 ≤ 1)

ℎ௠(𝑟, 𝑡)/(1 − 𝑝ଶ)[(1 − 2𝑝) + 2𝑝𝑥 − 𝑥
ଶ

]

,        
(5) 

where 𝑥(𝑟)  is the chordwise position, x(r)  is its 
normalized value by the local chord 𝑐(𝑟), ℎ௠(𝑟̅, 𝑡) 
is the maximum cross-section height relative to the 
undeformed flat wing at the given radial position 𝑟̅, 
p is the normalized chordwise position where the 
maximum wing height occurs, and ℎ(𝑟, 𝑥, 𝑡) is the 
cross-section height at the given position (𝑟, 𝑥). We 
assumed that the maximum height of the mean line 
was in the mid-chord, i.e. p = 0.5 , and thus the 
camber ℎ(𝑟, 𝑥, 𝑡)/𝑐(𝑟) was determined by ℎ௠(𝑟, 𝑡). 
The camber and pitching angle were believed to 
follow a similar profile that was expressed as 
follows: 

ℎ௠(𝑟) = ℎ௠଴,௥௢௢௧ + (ℎ௠଴,௧௜௣ − ℎ௠଴,௥௢௢௧)𝑟, 

ℎ௠(𝑟, 𝑡) =
௛೘బ(௥)

௧௔௡௛ ஼അ
𝑡𝑎𝑛ℎ[ 𝐶఍sin(2𝜋𝑁𝑓𝑡 + 𝛷఍)],   (6) 

where ℎ௠଴,௥௢௢௧ , ℎ௠଴,௧௜௣  and ℎ௠଴(𝑟)  are the 
maximum  height  at  the  root,  the  tip  and  any 
normalized radial position, respectively. The 
camber and twist have a strong coupling interaction, 
and similar treatments were found in another study 
by Du and Sun (2008). 

In Eqs. (1) - (6), there are a total of 13 parameters 
for defining a stroke cycle. The frequency, the 
amplitude of the flapping angle at the tip, the 
elliptical wingtip trajectory, the control parameter 
of the pitching angle waveform, the pitching phase 
offset, and the normalized chordwise position 
where the maximum camber occurs have been 
determinate previously. Generally speaking, there 
should be no elevation angle at the root 
(Ψ୫,୰୭୭୲ = 0) because the intersection of the root 
and the leading edge is the origin of the reference 
system for the motion description, and there 
should be no camber (h୫଴,୲୧୮ = 0) at the wingtip 
due to the lack of the chord. Considering that 
hummingbird wings are at a high attack of angle 
during the hovering flight, we set the amplitude of 
the pitching angle at the root at 25°  ( 𝜁௠,௥௢௢௧ =

25°). Wing morphing can be adjusted by changing 
the remaining four parameters (see Table 2). 
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2.3 Computational fluid dynamics 

2.3.1 Computational domain and 
boundary 

In Fig. 4, we depicted the wing planform as a three-
dimensional membrane. The pivot point is the 
intersection of the leading edge and the root. The 
numerical model was built for only the right wing. 
As shown in Fig. 5, a half-cylinder with a radius 
and height of 12R was used as the computational 
domain. The wing is located 6R  below the inlet. 
The symmetrical plane was imposed parallel to the 
𝑧𝑥  plane. The flapping axis and symmetric plane 
are 20𝑚𝑚 apart, a distance sufficient to eliminate 
clap-and-fling effect (Phan et al. 2016a). A mesh 
consists of two parts, the background mesh 
representing the wind tunnel and a separate 
component mesh covering the wing. Fluent allows 
us to build up the computation domain from 
overlapping meshes—also known as overset 
methodology. The case was created by specifying 

the outer boundary of the foreground mesh as 
overset (boundary type) and creating an overset 
interface containing the two cell zones. In addition, 
at the inlet, outlet, and far field, the velocity was set 
to be 0. 

2.3.2 Grid and solver 

The grid was generated by the commercial meshing 
software ANSYS Meshing, and it is the finest 
around the wing and becomes coarser toward the 
far-field region (see Fig. 6). The wing surface was 
meshed into triangles with element edge lengths of 
about 0.4mm (Fig. 4). A high-density region with a 
radius of 2R was built around the wing. Inside that, 
the minimum edge length is 0.4𝑚𝑚 at the cell layer 
around the walls, and the maximum is 24𝑚𝑚 
toward the boundary. The tetra growth rate away 
from the high-density region is 1.1. But the 
maximum edge length is 36𝑚𝑚 , and the tetra 
growth rate is 1.2 outside of that area. 

 
Fig. 4. Planform and the surface mesh of the wing. 

 

 
Fig. 5. Computational domain, overset component and background mesh. 

 

 
Fig. 6. Cross section of the computational domain. 
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Table 1 Sizes of three tested grids. 

Grid 𝑠ଵ (mm) 𝑠ଶ (mm) 𝑠ଷ (mm) 
No. cells of the 

component mesh 
No. cells of the 

background mesh 
Total no. cells 

(million) 
1 0.57 34 51 883,449 131,633 ~1.02 
2 0.40 24 36 1,476,569 221,584 ~1.70 
3 0.28 17 25 2,695,709 426,609 ~3.12 

 

Table 2 Choice of factors and levels in the orthogonal experiments. 

        Factor 
Level 

𝛷௠,௥௢௢௧  𝛹௠,௧௜௣ 𝜁௠,௧௜௣ ℎ௠଴,௥௢௢௧ (
R

c )  

1 47.5° 2.5° 37.5° 4% 

2 50.0° 5.0° 50.0° 8% 

3 52.5° 7.5° 62.5° 12% 

4 55.0° 10.0° 75.0° 16% 
 

 

 

Fig. 7. Lift, drag and aerodynamic power coefficients using three grids. 
 
 

We computed the flow using the commercial 
software ANSYS Fluent and simulated the wing 
motion using the dynamic mesh feature with a user-
defined function. A macro—DEFINE-GRIND-
MOTIO—was applied to update the positions of the 
nodes on the wing mesh. The tetrahedral cells were 
deformed or reconnected to a new overset interface 
at each time step to adapt to changes in the position 
of the wing. The flow surrounding the flapping 
wing in hover was assumed to be laminar without 
considering the effect of turbulence in this realm. 
Similar CFD with the laminar model was explored 
in previous studies. Second-order discretization in 
time and space was implemented, and the coupled 
algorithm was used to solve the problem. 

2.3.3 Independence of grids and time 
steps 

The number of cells in a grid depends on three 
parameters: the maximum cell edge length on the 
wing surface, denoted by sଵ , the maximum cell 
edge length in the high-density region, denoted by 
𝑠ଶ, and the maximum cell edge on the boundary of 
the background mesh, denoted by 𝑠ଷ . Three girds 
were considered, and Table 1 displays their values. 
The results calculated for a case in the first two 
cycles using the three grids were plotted in Fig. 7. 
In this case,  𝛷௠,௥௢௢௧ = 47.5° , ζ୫,୲୧୮ = 62.5° , 
Ψ୫,୲୧୮ = 7.5°  and h୫଴,୰୭୭୲ = 12%c . And the 
motion of the wing during a stroke period was 
shown in Fig. 8. We defined the wing lift (L) as the  
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Fig. 8. Kinematics and dynamic morphing of the right wing during a stroke period. 

 

 
Fig. 9. Non-dimensional lift and power computed by Lua et al. (2017) and our simulation 

results. The results are taken from Figs. 5a, 5b in another paper (Lua et al. 2017). The present 
results are taken at the 5th flapping cycle when the flow becomes periodic. 

 
 
force component normal to the stroke plane, the 
wing drag (D) as the component in the stroke plane 
and normal to the wingspan. In other words: 

𝐿 = 𝐹௭, 𝐷 = 𝐹௫                                                      (7) 

where F୸ and 𝐹௫ are the vertical and horizontal forces, 
respectively. These forces were normalized as 𝐶௅ =
2𝐿/(𝜌𝑈ଶ𝑆) and 𝐶஽ = 2𝐷/(𝜌𝑈ଶ𝑆). The aerodynamic 
power P  was calculated by integrating the dot 
product between velocity vector and stress over the 
whole wing surface according to 

𝑃 = − ∫  (𝑝௡𝒏 + 𝝉)𝑽𝑑|𝑨|                                      (8) 

where 𝑝௡  is static pressure, τ  is wall shear stress 
vector, 𝑽  is velocity vector, A  is area vector, 𝒏  is 
unit vector normal to the surface outward, and |A| is 
the magnitude of area. The power coefficient 𝐶௉ 
was defined by normalizing the aerodynamic power 
𝑃 by 1/2𝜌𝑈ଷ . Except for slight differences in the 
lift coefficient, the time courses computed for the 
three grids are similar, so grid 2 with 1.7 million 
cells is appropriate for the present study. Next, grid 
2 was simulated with the time steps of T/125 , 
T/250, and T/500, respectively (T = 1/f), and the 
simulation results were shown in Fig. 7. The time 
step of 𝑇/250  is acceptable because the 
inconsistencies between the results of the three 
cases are negligible. 

2.3.4 Validation of solver 

Lua et al. (2017) studied the lift and aerodynamic 
power of a three-dimensional flapping wing. We 
reproduced the results in a series numbered 1 where 
the midstroke angle of attack and the non-

dimensional time of rotation duration corresponds 
to 45° and 0.3, respectively. The time courses of 
the lift and aerodynamic power were shown in Fig. 
9 for comparison. We used the same discrete 
schemes in time and space, boundary conditions,  

grid update strategy, and solving method as those 
used previously. The time histories of the lift and 
power coefficients in the present study match well 
those in the previous research. There are slight 
differences in the force peaks due to the difference 
in grid update strategy. The measuring error 
resulted in inconsistencies between the results in the 
numerical simulation and the experimental 
measurement. 

2.4 Orthogonal experiment 

2.4.1 Orthogonal design 
The key parameters for determining dynamic wing 
morphing were screen out from the model. 𝛷௠,௥௢௢௧, 
𝛹௠,௧௜௣ , and ℎ௠଴,௥௢௢௧  determine the degree of 
spanwise in-stroke-plane bending, out-of-stroke- 

plane bending, and the camber in cross sections, 
respectively. The value of 𝜁௠,௧௜௣  is larger than the 
value of 𝜁௠,௥௢௢௧, and the difference between the two 
is named the twist angle determining the degree of 
spanwise twist. As shown in Table 2, we picked out 
interesting values based on the ranges observed in 
hovering hummingbirds (Masateru et al. 2017). We 
first determined the maximum value of each 
parameter, and then changed the value slightly to 
make sure that it falls within the range of 
observations. These parameter values are explorable 
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Table 3 Test results from the wings in the orthogonal experiment 

Series 𝛷௠,௥௢௢௧ 𝛹௠,௧௜௣ 𝜁௠,௧௜௣ ℎ௠଴,௥௢௢௧ (
R

c ) Error 𝐶௅
തതത 𝐶஽

തതത 𝐶௉
തതത 𝜂 

1 47.5° 2.5° 37.5° 4%  1 0.6825 -0.0208 0.7793 0.8758 

2 47.5° 5.0° 50.0° 8%  2 0.7329 -0.0323 0.8499 0.8624 

3 47.5° 7.5° 62.5° 12%  3 0.7549 -0.0272 0.9630 0.7840 

4 47.5° 10.0° 75.0° 16%  4 0.7509 -0.0345 1.1795 0.6366 

5 50.0° 2.5° 50.0° 12%  4 0.7426 -0.0269 0.8970 0.8279 

6 50.0° 5.0° 37.5° 16%  3 0.7117 -0.0324 0.9053 0.7862 

7 50.0° 7.5° 75.0° 4%  2 0.6726 -0.0138 1.0134 0.6636 

8 50.0° 10.0° 62.5° 8%  1 0.7486 0.0045 0.9414 0.7952 

9 52.5° 2.5° 62.5° 16%  2 0.7611 -0.0131 1.0251 0.7424 

10 52.5° 5.0° 75.0° 12%  1 0.7414 -0.0112 1.0922 0.6787 

11 52.5° 7.5° 37.5° 8%  4 0.6982 -0.0324 0.8750 0.7980 

12 52.5° 10.0° 50.0° 4%  3 0.7069 0.0023 0.8331 0.8485 

13 55.0° 2.5° 75.0° 8%  3 0.7130 -0.0483 1.0290 0.6929 

14 55.0° 5.0° 62.5° 4%  4 0.7362 -0.0055 0.8780 0.8384 

15 55.0° 7.5° 50.0° 16%  1 0.7918 0.0059 0.9442 0.8386 

16 55.0° 10.0° 37.5° 12%  2 0.7313 -0.0384 0.9286 0.7875 
 

and valuable for the design in hummingbird-like 
flapping wing. We planned sixteen numerical 
simulations through orthogonal design. Those series 
were combined to making up the orthogonal 
experiment with four primary factors and four 
levels for each one in consideration. The error 
column was retained in Table 3 for the analysis of 
variance of the results. Lift is usually evaluated 
according to the time-averaged lift coefficient over 

a stroke period 𝐶௅ = 1/𝑇 ∫ 𝐶௅
்

଴
dt. And there is also 

correspondingly a time-averaged power coefficient 

𝐶௉ = 1/𝑇 ∫ 𝐶௉
்

଴
dt. The lift efficiency, defined as 

the ratio of the time-averaged lift coefficient 𝐶௅ to 
the time-averaged power coefficient 𝐶௉, is thus η =

C୐/C୔ Those are two indices to evaluate the effects 
of various primary factors on wing aerodynamic 
performance. 

2.4.2 Analysis of range 

The factor with a larger range has a more significant 
influence on the evaluation index of concern. 
Analysis of range is described as follows: 

1. Calculate the sum 𝐾௜ of the test results of the 
samples at the same level: 𝐾௜ = ∑ 𝑦௜,௝

ସ
௝ୀଵ ,

𝑖 = 1,2,3,4, where i is the index of levels, 𝑗 is 
the index of the sample, and y୧,୨  is the test 
result of the 𝑗th sample at the 𝑖th level. 

2. Calculate the average effect 𝑘௜  of a factor at 
𝑖th level: 𝑘௜ = 𝐾௜/4, 𝑖 = 1,2,3,4. 

3. Calculate the range 𝑅௩ : 𝑅௩ = 𝑚𝑎𝑥{ 𝑘௜} −
𝑚𝑖𝑛{ 𝑘௜}, 𝑖 = 1,2,3,4. 

4. Repeat the preceding step. 1—3 to calculate 
and analyze the range for each factor. 

2.4.3 Analysis of range (ANOVA) 

Analysis of range has advantages of simplicity and 
intuition, but it can’t distinguish the fluctuation of 
the results caused by the change in levels of each 
factor from that caused by the test error. We carried 

out further analysis of variance for the test results. 
The ANOVA is described as follows: 

1. Calculate the sum of squares ( 𝑆𝑆 ) of the 
deviations: 𝑌 = ∑ 𝑦௡/𝑁𝑡ே௧

௡ୀଵ ,   𝑁𝑡 = 16 , 
where n is the index of samples, 𝑦௡ is the test 
result of the 𝑛th  sample, 𝑁𝑡  is the total 
number of the samples and 𝑌 is the mean of 
the test results of all the samples: 𝑆𝑆 =
∑ (𝑘௜ − 𝑌)ଶସ

௜ୀଵ . 
2. Calculate the degree of freedom (DF): 𝑑𝑓 =

𝑛 − 1,   𝑛 = 4. 
3. Calculate the mean deviation ( 𝑀𝑆 ): 𝑀𝑆 =

𝑆𝑆/df. 
4. Construct the 𝐹-statistic for each factor. 𝐹 =

𝑀𝑆/𝑀𝑆௘ , where 𝑀𝑆௘  is the mean deviation 
under the influence of random error. 

5. List the analysis of variance table to taking 
the statistical test. 

The computed F is large enough for a factor, and 
then there might be more significant differences in 
the test result due to the different levels of the factor. 
Its effect on the evaluation index will be believed to 
be statistically significant. 

3. RESULTS AND DISCUSSION 

3.1 Lift and Aerodynamic Power 

Sixteen simulations in Table 3 were performed. 
Besides, a rigid wing was supplemented to the test 
list for comparison. We conducted these simulations 
by five cycles for each series to obtain a convergent 
solution, and the time courses were taken at the fifth 
cycle when the flows became periodic. There 
existed a significant asymmetry in the lift force, and 
we attributed that to the asymmetrical kinematics of 
the downstroke and upstroke. However, the 
asymmetry observed in the lift coefficient was not 
so evident in the drag coefficient and power 
coefficient, as seen in Fig. 10b and Fig. 10c. During  
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Fig. 10. Time histories of lift, drag and power coefficients of the series listed in the orthogonal 

experiment table during the 5th flapping cycle. A rigid wing is also added to the present 
experiment for comparison. 

each half stroke, three local peaks occurred in the 
lift coefficient, corresponding to the enhancements 
of the wake capture, delayed stall, and rotational 
circulation mechanisms, respectively. A 
comparative result showed that the downward out-
of-stroke-plane bending during the upstroke phase 
intensified the first two peaks in the lift coefficient 
by increasing the first peak and decreasing the 
second peak. And another noteworthy feature is that 
the lift coefficient generated by flexible wing 
declined steadily after reaching the second peak, 
while the high lift force was maintained for a longer 
duration during the downstroke phase. The first 
peak at the beginning of each half stroke was less 
affected than the third peak of lift coefficient at the 
end of each half stroke, which shows that the wing 
benefited much more from the rotational 
circulation. The lift coefficients display some 
differences in the amplitude and timing of the 
second peak during the translation phase, but those 
still vary with time in a similar way to the lift 
coefficient of the rigid wing. 

The dynamic twist played a significant role in the 
generation of aerodynamic forces during the whole 
flapping cycle. As shown in Fig. 10a, all wings had 

a negative lift generation at the beginning of each 
half stroke. This study has found that a decrease in 
the twist angle can reduce the magnitude of 
negative lift and increase the first peak in the lift 
coefficient. The wing with a moderate twist angle, 
such as those in series 5, 6, 15, and 16, improved 
the first peak. During the translation phase of the 
downstroke, flexible wings achieved their second 
lift peak later than the rigid wing and had an even 
higher value. The wings in series 1, 2, 5, 6, and 11 
had weaker enhancement than those in series 8, 9, 
10, and 14. Even though the wings in series 3, 4, 7, 
and 13 had large pitching angles at their tips, the 
enhancement was not significant during that. The 
main factor that changed the effect of the dynamic 
twist was the spanwise out-of-stroke bending of the 
wing because the bending and the torsion 
determined the effective angle of attack at each 
radial cross section. As the twist angle increased, 
the wing generated a higher peak at the end of each 
half stroke. The wing with a larger pitching angle at 
the tip had a higher rotational speed due to the 
constrained duration of rotation motion. 

The spanwise in-stroke-plane bending harmed lift, 
but its influence was less significant than the  
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Table 4 Table about range analysis for the time-
averaged lift coefficient 

Table 5 Table about range analysis for the 
efficiency in lift production. 

 𝛷௠,௥௢௢௧ 𝛹௠,௧௜௣ 𝜁௠,௧௜௣ ℎ௠଴,௥௢௢௧ 
𝐾ଵ 2.9212 2.8992 2.8237 2.7982 
𝐾ଶ 2.8755 2.9222 2.9742 2.8927 
𝐾ଷ 2.9076 2.9175 3.0008 2.9738 
𝐾ସ 2.9723 2.9377 2.8779 3.0155 
𝑘ଵ 0.7303 0.7248 0.7059 0.6995 
𝑘ଶ 0.7188 0.7305 0.7435 0.7231 
𝑘ଷ 0.7269 0.7293 0.7502 0.7434 
𝑘ସ 0.7430 0.7344 0.7194 0.7538 
𝑅௩ 0.0242 0.0096 0.0443 0.0543 

 

 𝛷௠,௥௢௢௧ 𝛹௠,௧௜௣ 𝜁௠,௧௜௣ ℎ௠଴,௥௢௢௧ 
𝐾ଵ 3.1588 3.1390 3.2475 3.2263 
𝐾ଶ 3.0729 3.1657 3.3774 3.1485 
𝐾ଷ 3.0676 3.0842 3.1573 3.0781 
𝐾ସ 3.1574 3.0678 2.6718 3.0038 
𝑘ଵ 0.7897 0.7847 0.8187 0.8065 
𝑘ଶ 0.7682 0.7914 0.8443 0.7871 
𝑘ଷ 0.7669 0.7710 0.7893 0.7695 
𝑘ସ 0.7893 0.7669 0.6679 0.7509 
𝑅௩ 0.0228 0.0245 0.1764 0.0556 

 

 

spanwise twist. The wing with a smaller elevation 
angle at the root produced lower lift during the 
downstroke phase. Furthermore, the lift force was 
lower during the deceleration phase. The wing with 
the significant spanwise bending in the stroke plane 
generally had lower stroke speed than the rigid 
wing, and the correlation between lift and bending 
was broken during the translation phase of the 
upstroke. The effect of wing twist had a more 
dominant role in the lift generation during this 
phase. As described earlier, the wing with a small 
pitching angle at the tip enhanced lift, while the one 
with a large pitching angle at the wingtip reduced 
lift. 

Another difference between the lift coefficients of 
those wings exists in the timing of the second local 
maximum during the translation phase of the 
downstroke. And a long delay of the second peak 
was thought to be caused by the effect of the 
camber in cross sections. And this effect interacted 
with the LEVs, resulting in a longer duration of 
high lift during the subsequent deceleration phase. 
Although there were slight differences in the 
magnitude of the lift coefficient, a longer duration 
led to a larger time-averaged value. The effect of 
the camber in cross sections didn’t seem to work 
during the translation phase of the upstroke. 

The dynamic wing morphing reduced the power 
consumption throughout the flapping cycle except 
during the rotation phase. The aerodynamic power 
consumption was increased substantially in a way 
like that the lift was enhanced due to the large twist 
angle. The power coefficients had the same trends. 
Flexible wings had small non-dimensional power 
coefficients during the translation phase, especially 
for the wing with a large pitching angle at the tip, 
such as the wings in series 4,7,10, and 13. In 
contrast, those with a small pitching angle at the tip 
had large values, such as the wings in series 6, 11, 
and 16. During the translation and rotation phases, 
the wing with a moderate twist angle might 
consume the least power. In addition, the 
correlation between power consumption and twist 
was the most significant. 

3.2 Analysis of the results in the orthogonal 
experiment 

Table 3 lists the time-averaged lift, drag and power 
coefficient, and efficiency in lift production in the 
orthogonal experiment. 

3.2.1 Analysis of the range 
Range analyses for the lift coefficient and the 
efficiency in lift production were presented in 
Tables 5 and 6, respectively. According to the 
significance level, the four factors in Table 4 were 
sorted as follows: ℎ௠଴,௥௢௢௧ > 𝜁௠,௧௜௣ > 𝛷௠,௥௢௢௧ >

𝛹௠,௧௜௣ . The analysis for the calculated average 
effect indicated that the lift generated by the 
flexible wings differed significantly due to the 
variations at the level of two primary factors: the 
camber in cross sections at the root and the pitching 
angle at the tip. As shown in Table 5, the effect of 
camber was more intuitive in that the wing with 
relatively more obvious camber in cross sections 
produced the larger time-averaged lift. The dynamic 
twist affected the lift generation throughout the 
stroke period, so it is no wonder that its effect had 
the second-highest significance level. A larger twist 
angle caused a higher positive lift peak before the 
stroke direction reversed and a higher negative lift 
peak afterward. In addition, the duration of the 
transition phase was so short that the lift produced 
during this phase didn’t contribute much to the 
time-averaged lift. That was one of the reasons why 
the significance of camber effect exceeded that of 
wing twist effect. From the results in Table 4, the 
wing with a moderate pitching angle at the tip had a 
large time-averaged lift. This finding was consistent 
with the correlation between twist angle and lift 
coefficient observed during the translation phase. 
Besides, the adverse effect of the in-stroke-plane 
bending can be seen more clearly in Table 5 
because the wing without the in-stroke-plane 
bending had the most time-averaged lift force 
generation. But it’s worth noting that the wing with 
the most in-stroke-plane bending produced the 
second-highest average effect. Its value was 
computed according to the results from series 1, 2, 
3, and 4, where the twist angle and camber were 
increased synchronously. Hence, the negative effect 
of the in-stroke-plane bending is not as effective as 
the combined effects of wing twist and cross-
section camber. Under the dominating influence of 
the elevation angle at the tip, the average effect of 
time-averaged lift force fluctuated in relationship 
with the level of this factor. The spanwise out-of-
stoke-plane bending was believed to be invalid. 
According to the results in Table 5, we determined 
the parameters for the deformation to maximize the 
lift. Their values were listed as follows: ℎ௠଴,௥௢௢௧ = 
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Table 6 Table about variance analysis for the 
time-averaged lift coefficient. 

Table 7 Table of variance analysis for the 
efficiencies 

 DF SS MS F 
𝜑௠,௥௢௢௧ 3 0.001217 0.000406 1.34 
𝛹௠,௧௜௣ 3 0.000189 0.000063 0.21 
𝜁௠,௧௜௣ 3 0.005127 0.001709 5.65 

ℎ௠଴,௥௢௢௧ 3 0.006804 0.002268 7.49 
Error 3 0.000908 0.000303 —— 
Total 15 0.014246 —— —— 

 

 DF SS MS F 
𝜑௠,௥௢௢௧ 3 0.001933 0.000654 0.85 
𝛹௠,௧௜௣ 3 0.001580 0.000527 0.70 
𝜁௠,௧௜௣ 3 0.071215 0.023738 31.40 

ℎ௠଴,௥௢௢௧ 3 0.006809 0.002270 3.00 
Error 3 0.002268 0.000756 —— 
Total 15 0.083805 —— —— 

 

 

16%𝑐ோ , 𝜁௠,௧௜௣ = 62.5° , 𝛷௠,௥௢௢௧ = 55°  and 

𝛹௠,௧௜௣ = 10° .Similarly, the four factors were 
ranked based on the significance level as 

follows:  𝜁௠,௧௜௣ > ℎ௠଴,௥௢௢௧ > 𝛹௠,௧௜௣ > 𝛷௠,௥௢௢௧ . 
The spanwise twist had the most significant effect 
on the efficiency, while the in-stroke-plane and out-
of-stroke-plane bending exhibited the same level of 
significance, both of which were lower than the 
camber effect. The increased power consumption of 
the highly twisted wing during the transition phase 
was much larger than the reduced power 
consumption during the translation phase, which 
was the reason why a large twist angle resulted in 
low efficiency. In addition, the wing with a 
moderate twist angle had the maximum average 
effect. The camber in cross sections decreased the 
efficiency, but its adverse effect was not as 
significant as that of the overlarge twist angle. 
Under the influence of either the spanwise in-
stroke-plane bending or out-of-stroke-plane 
bending, there was subtle difference between the 
values of the average effect. We determined the 
parameters of the flexible wing with the highest 
efficiency, and their values were listed 
below:  ℎ௠଴,௥௢௢௧ = 4%𝑐ோ , 𝜁௠,௧௜௣ = 50° , 𝛷௠,௥௢௢௧ =

55° and 𝛹௠,௧௜௣ = 5°. 

3.2.2 Analysis of variance 

Variance analysis tables for time-averaged lift 
coefficient and efficiency were shown in Table 6 
and 7, respectively. We arranged the factors as 
follows based on the magnitude of the F values in 
Table 6: ℎ௠଴,௥௢௢௧ > 𝜁௠,௧௜௣ > 𝛷௠,௥௢௢௧ > 𝛹௠,௧௜௣ . It 
was believed that the differences in lift were 
primarily caused by camber and twist effect. 
However, they were ranked as follows according to 
the results in Table 7: 𝜁௠,௧௜௣ > ℎ௠଴,௥௢௢௧ > 𝛹௠,௧௜௣ >

𝛷௠,௥௢௢௧ . The F value corresponding to the twist 
effect was much larger than that corresponding to 
any other factors. Judging from the order in the 
significance level, dynamic twist considerably 
impacted the efficiency, while other factors were 
not statistically significant. These conclusions were 
consistent with those drawn in the analysis of the 
range in the last section. 

The optimized wings were tested and compared 
with the rigid wing. We presented the time courses 
of the lift, drag, and power coefficients in Fig. 11 
and listed the time-averaged values in Table 8. The 
time-averaged lift coefficient of the wing with the 
largest time-averaged lift was 0.798 and was 

increased by 35.7% compared to that of the rigid 
wing. But the efficiency was just increased by 10%. 
However, the most efficient wing produced an 
efficiency of 0.885, which was 25.9% higher than 
the efficiency of the rigid wing. The time-averaged 
lift coefficient of the optimized wing with the 
largest lift was higher than that of any other wings 
in the orthogonal experiment. So was the efficiency 
of the optimized wing with maximum efficiency. 
Those verified the effectiveness of orthogonal 
design for wing flexibility optimization. 

3.3 A comparative study for the optimized 
wings 

The net forces 𝐶ி  and vector angles 𝛼ி  were 
calculated according to 

𝐶ி = ට𝐶௅
ଶ+𝐶஽

ଶ                                                 (9) 

𝛼ி = 𝑡𝑎𝑛ିଵ 𝐶௅/𝐶஽                                            (10) 

And the instantaneous net forces and vector angles 
during the fifth cycle were plotted in Fig. 12. The 
vector angle is a angle between the force vector and 
the positive x-axis, so the angle between the force 
vector and the horizontal stroke plane during the 
upstroke is(180 − 𝛼ி)° . As the force vector tilts 
towards the vertical direction, the lift component 
outperforms the drag component, which indicates 
an improved aerodynamic performance. One key 
observation is that the instantaneous net force were 
reduced due to wing flexibility during the 
translation phase. But it caused this force to title 
closer to the vertical direction than in the rigid wing 
case. The differences in the net forces generated 
during the downstroke were not so significant as 
those generated during the upstroke. The 𝛼ி in Fig. 
12 shows that the mean vector angle for the rigid 
wing was almost around 25° . The difference 
between those of the two flexible wings was slight, 
and they had a value close to 45° . The flexible 
wings with the higher mean values of 𝛼ி indicated 
superior aerodynamic performance than the rigid  

 

Table 8 Time-averaged force and power 
coefficients, and the efficiencies in the optimized 

cases 

Configuration 𝐶௅ 𝐶஽
തതതത 𝐶௉

തതത 𝜂 
Rigid 0.588 -0.003 0.829 0.709 

Max. 𝐶௅ 0.798 0.009 1.023 0.780 
Max. 𝜂 0.738 0.001 0.827 0.893 
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Fig. 11. Time courses of lift, drag and power coefficients of the optimized wings and the rigid wing. 
 

 
Fig. 12. Instantaneous net forces and variation of the net force angles. 

 
 

 
Fig. 13. 3D view of vorticity distributions on the optimized flexible wings and the rigid wing at 𝒕/𝑻 =

𝟒. 𝟐𝟓 and 𝒕/𝑻 = 𝟒. 𝟕𝟓. 
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wing. However, the flexible wings produced higher 
peaks during the rapid rotation phase, and the 
enhancement was the most significant for the 
optimized wing with the most lift production. 

In order to understand how the wing flexibility 
affected the vortical structures, the flow 
visualization was considered for 𝑡/𝑇 = 4.25  and 
𝑡/𝑇 = 4.75 with the optimized wings and the rigid 
wing. At these time instants, the effect of wing 
flexibility on the peak of the generated force was 
more distinct in Fig. 11. The characteristics of the 
leading-edge and the trailing-edge vortex were 
investigated along the wingspan; fourteen cross 
sections. Normalization of the vorticities was 
achieved according to  𝜔ഥ = 𝜔𝑐/𝑈. Figure 13 shows 
that the LEV has fully developed at these instants. 
At 𝑡/𝑇 = 4.25, one noticeable feature is that the 
LEV had stronger vorticity for the rigid wing but 
separated at the outboard section. For the optimized 
wings, the LEV adhered to the wall across the entire 
wingspan. The flexible wings stabilized the LEV 
near the wingtip. As shown in Fig. 12, this 
enhancement led to an approximately equal amount 
of net force generation. But the rigid wing had the 
most power consumption at this time instant. The 
leading-edge vortex and the trailing-edge vortex 
with opposing directions produced vorticity, and the 
distance between their vortex cores established a 
link between vorticity and the first moment of 
vorticity. The generated aerodynamic forces were 
directly proportional to the first moment of vorticity 
(Zhu and Sun 2017). From Fig. 13, the trailing-edge 
vortex was the main vortex at the inboard section 
since the LEVs had weaker vorticity and occupied a 
relatively narrower area. And the trailing-edge 
vortex had stronger vorticity and a further distance 
between the vortex cores at the inboard section, 
which caused the increase in the first moment of 
vorticity. All those have verified that the rigid wing 
had the most net force generation at this time 
instant. We concluded that the wing flexibility 
decreased the net force, but it also reduced power 
consumption. And the flexible wings produced 
more vertical force during the downstroke and the 
equivalent vertical force during the upstroke (Fig. 
11). They improved the aerodynamic efficiency by 
using less energy to make the net force closer to the 
vertical direction. 

4. CONCLUSION 

This paper investigated several important 
parameters that determine the aerodynamic 
performance of a flexible hummingbird-inspired 
flapping wing in hover and their effects on the time-
averaged lift force and lift efficiency. 16 series of 
three-dimensional numerical simulations were 
performed to predict the unsteady aerodynamic 
forces on the wing and aerodynamic power 
consumption. We also assessed the significance 
level of effect of each deformation through range 
analysis and variance analysis. We selected the 
optimum condition through the orthogonal test and 
statistical analysis and simulated two wings with 

optimized lift and efficiency, respectively. The 
conclusions were summarized as follows: 
 
 A decrease in the twist angle will reduce 

the magnitude of the negative lift and 
increase the first peak of the lift coefficient 
at the beginning of each stroke cycle. 

 The lift coefficient produced by the highly 
twisted wing was relatively larger during 
the translation phase of the downstroke. 
However, that correlation disappeared 
during the translation phase of the 
upstroke.  

 During the upstroke phase, the downward 
out-of-stroke-plane bending intensified the 
first two peaks of the lift coefficients by 
increasing the first peak and decreasing the 
second peak.  

 Camber delayed the timing of the second 
lift peak. And it interacted with the LEVs 
to improve the magnitude of the second 
peak and maintained the high lift on the 
wing for a longer duration before the 
stroke changed direction.  

 The in-stroke-plane bending had a weak 
effect on the lift production, and its 
positive influence only existed during the 
acceleration phase of the downstroke. 

 the camber in cross sections was the most 
significant influence factor on the time-
averaged lift force, while the spanwise 
twist had an additional impact in 
determining the aerodynamic efficiency 
during the hovering flight. The effects of 
the spanwise in-stroke-plane and out-of-
stroke-plane bending were relatively 
insignificant. 

 The optimized wing with the largest lift 
generated a time-averaged lift coefficient 
that was 35.7% higher than the time-
averaged lift coefficient generated by the 
rigid wing. Besides, the efficiency 
produced by the optimized wing with the 
highest efficiency was 25.9% higher than 
the efficiency produced by the rigid wing. 
Therefore, the effect of the morphing in 
enhancing the wing performance was 
significant. 

 The net force generated by the rigid wing 
was the largest. The wing flexibility 
decreased the net force, but also reduced 
power consumption. They improved 
aerodynamic efficiency by using less 
energy to bring the net force closer to the 
vertical direction. 
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