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ABSTRACT 

A second order differential equation for the energy dissipation rate of turbulence is presented. The derivation 

procedure is explained. The obtained governing equation is a Euler equation, which integration naturally 

conduces to power laws for the energy dissipation rate as a function of the wavenumber, a result that is extended 

to the energy spectrum of turbulence. Power laws are obtained for the cases of two equal and two different real 

roots. For the case of two conjugate complex roots, the solution is a sum of sine and cosine functions of the 

normal logarithm of the wavenumber. The differential equation accrues from a more basic equation obtained 

through thermodynamic-type steps that joint part of already consolidated empirical and semi-empirical 

information on turbulence existing in the literature, and is formally analogue to the Thermodynamics equation 

of thermal radiation. It is also shown that parameters of turbulence like length and velocity scales may be related 

to this formulation. 

Keywords: Turbulence spectra; Thermodynamic analogy; Euler differential equation; Empirical laws; 

Constitutive equations. 

NOMENCLATURE 

𝒜 coefficient of the 5/3 law 

C1, 2 integration constants 

D diameter 

E(k) turbulence energy spectrum 

E(k)N normalized spectrum 

𝐸̇ power per unit mass times volume 

f friction factor 

g gravity acceleration 

G1…7 auxiliary coefficients 

ℎℓ head loss 

IJ unknown coefficient of Euler equation 

k wavenumber 

kN normalized wavenumber 

kC1, C2 lower and upper cutoff wavenumbers 

kD dissipative wavenumber 

kE energy containing wavenumber 

KE kinet energy per unit mass 

kR reference wavenumber 

ℓ eddy diameter 

L length 

Q flow rate 

𝑄̅ heat 

r1, 2 exponents of Euler equation solutions 

S entropy 

SA…D integration constants 

T temperature 

T1, 2 integration constants 

u energy per unit volume 

𝑢̇ power dissipation per unit volume 

𝑈̇ power dissipation  

V velocity scale 

𝒱 volume 

x turbulent transfer coefficient (mass) 

,, auxiliary coefficients 

 characteristic power dissipation 

 (k) spectrum of power dissipation 

1…4 auxiliary coefficients 

 viscosity 

 integration constant 

 fluid density 

 joining empirical information function 

 joining empirical information function 

1, 2 real and imaginary parts of r1, 2 
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1. INTRODUCTION 

Turbulence studies have the characteristic of using 

sophisticated mathematical concepts like statistical 

differential equations and spectral analyses; together 

with ad hoc propositions (see Monin and Yaglom, 

1979, 1981), usually implemented in numerical 

codes, like the turbulent viscosity and its relation 

with higher order statistical moments in the k- and 

the large eddy models; or the law of the wall used as 

boundary condition and applied in numerical meshes 

close to solid boundaries (see Pope 2000). The 

examples may be enriched with other ad hoc 

equations that resume the sound empirical 

knowledge acquired along about one and half 

centuries of investigations solving turbulent flows 

(taking as initial reference the name “Turbulence” 

given by the future Lord Kelvin in 1887, see for 

example Schmitt 2017). Correlations for heat and 

mass transfer, and for drag coefficients; the Chézy 

equation for channel flows; the Darcy-Weisbach 

equation for head losses; the 5/3 law and additional 

power laws for the turbulence energy spectrum; the 

different scales of turbulence, are among the 

empirical knowledge used to complete theoretical 

studies on turbulence (Brodkey 1967; Brodkey and 

Hershey 1988). 

In the first stage of the investigations, evidently the 

equations derived from empirical observations were 

linked to the specific phenomenon under study. In 

this sense, for example, the Darcy-Weisbach 

equation and the 5/3 law for the spectrum of 

turbulence are results obtained for different 

questions generated in independent (at that time) 

sectors of fluid dynamics. The same comparison can 

be made for studies on heat and mass transfer 

coefficients and spectral distributions.  

In a second stage of the investigations, the existence 

of a large amount of empirical and semi-empirical in-

formation for different aspects of turbulence induces 

to explore at least part of this practical knowledge to 

locate eventual links, allowing generating a more 

encompassing empirical or constitutive formulation 

of turbulence. This may be understood as the natural 

way to advance in the comprehension of inner-

connections between empirical parameters and 

concepts in any field of study, being the present stage 

of the studies in turbulence. It is not meant that new 

empirical information is not more generated, but that 

the different conclusions induce to search for 

connections among them. An example of such 

approach may be found in Badillo and Matar (2017). 

Studies on turbulence use tools and concepts that can 

be considered similar to some used in 

Thermodynamics (spectra are one example). 

Similarly to what happens presently in the field of 

turbulence, the variables, concepts, laws, and general 

features of Thermodynamics were proposed and 

lapidated along a long time. About three and half 

centuries were necessary to have the present 

consistent theoretical structure, which also began 

through independent studies (considering as initial 

reference date the peri-od around 1650, when Otto 

von Guericke conceived and built his vacuum pump, 

as mentioned for example by Selvi and Sugumar, 

2018). Similarities between equations of both fields 

are shown in this study. Considering their derivation, 

ideal conditions are common: isothermal, isentropic, 

irreversible conditions are examples in 

Thermodynamics, while stationarity, isotropy 

(statistical properties with spherical symmetry), are 

examples in turbulence, and are also assumed here. 

In the case of isotropic turbulence, when using the 

spectral description (Hinze 1959), there is a simple 

relation between the mean velocity scale V and the 

energy spectrum E(k), given by: 

3

2
𝑉2 = ∫ 𝐸(𝑘)𝑑𝑘

∞

0

 

 

(1) 

The variable k is the wavenumber, defined as the 

inverse of the eddy diameter ℓ: 

𝑘 =
1

ℓ
 

 

(2) 

Isotropic turbulence also furnishes a simple relation 

between the power dissipation per unit mass , the 

fluid kinematic viscosity , and the energy spectrum 

(Hinze 1959), in the form: 

𝜀 = 2𝜈 ∫ 𝑘2𝐸(𝑘)𝑑𝑘
∞

0

 

 

(3) 

The integrations of Eqs. (1) and (3) are performed 

along the whole positive range of wavenumbers, for 

which the evolution of the energy spectrum with the 

wavenumber must be known. However, a definitive 

equation of E(k) is still not disposable. A possible 

option would be to obtain E(k) from a previous 

knowledge of (k), the energy dissipation rate as a 

function of k, also still not disposable. Considering a 

generic turbulent flow occurring in a volume of finite 

extent, the size of the eddies (or the length of 

turbulent motions) is restricted at both large and 

small extremes. The maximum possible length is 

given by a characteristic dimension of the volume 

occupied by the fluid, and the minimum possible 

length is given by the extent of the stable viscous 

movement. From Eq. (2), these dimensions also 

furnish cut-off or limiting wavenumbers, shortly 

indicated by kC1 (lower k) and kC2 (upper k).  

To have functions of k, integrations in the range of 

kC1 to k, and of k to kC2, where k is a generic wave- 

number, may be used (instead of the whole positive 

k axis). This procedure allows studying how spectra 

and other variables vary with k. Positive and negative 

signs are obtained according to the adopted limits 

(ranges) of integration.  

The statistical/mathematical treatment of turbulence 

with its physical principles is well documented in the 

literature. Decades of contributions are adequately 

exposed, discussed, and organized, so that a body of 

knowledge of the theme is accessible to present and 

future researchers. In this sense, the equations of 

conservation of mass, momentum, and energy; the 

use of mean operators; the generation of statistical 

moments of ever higher orders (the closure problem 

of statistical turbulence); the isotropic case; the 

spectral analyses; the solutions for specific 
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conditions; and so on, form the basis of mathematical 

tools, concepts and procedures for further expected 

mathematical advances (Hinze 1959; Monin and 

Yaglom 1979, 1981; Pope 2000, for example). 

Further, as mentioned, the existing empirical and 

semi-empirical information help solving intricated 

problems usually formulated numerically, and allow 

explaining the still convenience of turbulence 

‘models’ through ad hoc definitions of macro and 

microscales. These semi-empirical scales show that 

the number of nodes in 3D direct simulations grows 

with the 9/4th power of the Reynolds number, quickly 

becoming excessively time and power consuming. 

The codes themselves are built following well 

established rules to linearize nonlinear problems, and 

using general discretization schemes. The 

environment of the numerical codes thus also relies 

on a solid mathematical basis (Patankar, 1980, Rodi, 

2000; Pope, 2000; Hanjalić, 2006; Rebollo and 

Lewandowski, 2014; Layton, 2018, for example).  

On the other hand, the knowledge generated by each 

experimental observation is the fact, the undeniable 

reality that must be followed by any theoretical 

proposal or numerical code that intends to explain 

that specific turbulence phenomenon. In a resumed 

way, specific experimental data are needed to bound 

models by reality. 

The previous three paragraphs show that the basic 

physical principles expressed in mathematical form, 

together with the numerical tools, compose the 

natural way for the studies in turbulence. However, 

the needed empirical information still seems to be a 

set of independent conclusions, not necessarily 

related to each other. In this sense, there is still 

“space” to work on the mathematization of 

consolidated independent empirical results, so that at 

least part of them can be systematized and linked to 

a common formulation. It is in this “space” or “gap 

region” that this study was conducted. 

This text initially reports a procedure to obtain a 

formulation that encompasses a number of 

empirical observations and results inherent to 

turbulence. The procedure uses known relevant 

physical variables (like the power dissipation), a set 

of variables for which a link is searched (similar to 

E(k), , , k, of the dimensional/power law analysis 

of Onsager (1945) on the Kolmogoroff’s 1941 

theory), and results of experimental studies in 

turbulent transfer phenomena. The procedure does 

not use regression analyses on sets of data, but 

brings together already stablished equations 

combining their different information. Time 

consuming trial-and-error calculations were 

conducted when more than one functional form 

seemed adequate to build up the formulation, 

selecting the best suited. The original empirical 

information can be extracted back from the final 

formulation though usual mathematical operations 

(Schulz 2001).  

Further, this text uses the obtained formulation to 

propose an integrable second order governing 

differential equation for the power dissipation  in 

tur-bulent flows. The solutions of its integration are 

used to also obtain energy spectra, which allow 

justifying observed power laws with different 

exponents. Still further, the text shows that usual 

length and velocity scales are also linked to the 

proposed formulation. 

2. PROPOSED FORM OF THE EQUATION 

This section resumes and complements the 

formulation that links empirical conclusions in 

turbulence which was presented in a less developed 

form by Schulz (1991, 2001). It was originally a 

review procedure of existing empirical equations 

intending to reduce the amount of information of the 

different work hypotheses usually linked to them. As 

starting variable, the power dissipation 𝑈̇ = 𝑢̇𝒱 was 

chosen because it is a key parameter in most of the 

turbulence quantification found in the literature. It 

was divided here by the density of the fluid 

furnishing 𝐸̇ = 𝑈̇/𝜌 = 𝑢̇𝒱/𝜌 = 𝜀𝒱, which 

differential form is: 
 

𝑑𝐸̇ = 𝜀𝑑𝒱 + 𝒱𝑑𝜀 (4) 

𝑈̇ is the power dissipation, 𝑢̇ is the power dissipation 

per unit volume, is the power dissipation per unit 

mass, and 𝒱 is the volume of fluid under analysis, 

including the dissipation scales. Further, following 

Onsager’s (1945) contribution to Kolmogoroff 

(1941) and Obukhoff (1941) studies, who suggested 

a constitutive equation between the variables , k,  

and E(k) based on dimensional/power law grounds, 

an auxiliary function  was also proposed having the 

following functional dependence: 

𝜙 = 𝜙(𝜀, 𝒱, 𝑥) (5) 

Equation (5) is a variation of the Onsager’s suggest-

ion. Turbulence increases the transfer of physical 

properties like heat, momentum, mass, and kinetic 

energy, being x the parameter that quantifies 

turbulent transfer. In general, the more turbulent the 

fluid, the more transfer increases, thus increasing x, 

which may be viewed as a measure of turbulence. It 

substitutes the viscosity , which quantifies the 

transfer of momentum in laminar shear movements, 

not being a measure of turbulence. The volume 𝒱 

and the wave- number k are related through 𝒱 = /6k3 

for isotropic turbulence, both thus carrying 

geometrical information of the turbulent movement. 

 is not defined, a different condition of E(k) used by 

Onsager (1945), already known. The differential 

form of Eq. (4) served as basis to conveniently 

express Eq. (5) also in differential form (Schulz 

1991, 2001), which for the present notation is given 

by: 

𝑑𝜙 = (𝛼𝑥𝛽)𝜀𝑑𝒱 + (𝑥𝛿)𝒱𝑑𝜀 (6) 

The convenience is given by the similarity between 

Eqs. (4) and (6), the first with a clear physical 

meaning. Taking =1 and ==0 reproduces Eq. (4), 

which would imply =𝐸̇. Evidently, more general 

results were aimed. The first part of this study was 

thus directed to obtain exponents  and  that 

quantify the effects of x in each parcel, and the 

coefficient that quantifies the weight of each 
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parcel in Eq. (6) based on empirical results of the 

literature. A definition for d followed as 

consequence of this analysis. The second part of the 

study was directed to the application of the resulting 

equation to obtain related turbulence spectra.  

For comparison, the Onsager’s (1945) procedure in-

volves a dimensional analysis with , k,  and E(k) 

that results in three nondimensional variables, which 

are then conveniently related through a product of 

powers of two of them. This convenient choice 

quantifies E(k) as the product of powers of  and k, 

corroborated experimentally. 

2.1 Defining Adequate , , and 

One of the most used tools for calculating power 

dissipation in closed and open conduit is the 

empirical Darcy-Weisbach equation (see, for 

example, White, 2016). It already unifies 

information of power dissipation, velocity and length 

scales for unidirectional mean turbulent flows, being 

thus interesting for the present formulation. For tubes 

the Darcy-Weisbach and the power dissipation 

equations are, respectively (see White 2016): 

ℎℓ = 𝑓
𝐿

𝐷

𝑉2

2𝑔
 

 

(7a) 

𝑈̇ = 𝜌𝑔𝑄ℎℓ 

 

(7b) 

V is the mean velocity in the transversal section of 

the fluid, Q is the flow rate, f is the resistance factor 

(friction factor), hl is the head loss, D is the diameter 

of the tube, L is its length,  is the density of the 

liquid and g is the acceleration of gravity.  

To use Eqs. (7a, b) in differential form, and applied 

to eddy movements, an ideal scheme was conceived, 

consisting of a stationary isotropic turbulence field 

with eddies encompassing the range of sizes from the 

energy containing scale (large eddies) to the so-

called dissipation scale (small eddies). Instantaneous 

velocity profiles from flows in opposite directions 

are ideally sketched in Fig. 1a, showing different 

characteristic mean V values (scales) for different ℓ 

length scales (as in Richardson’s poem “big whorls 

have little whorls…”, quoted by Nature Physics, 

2016) and related to momentary flow rates 

advancing through the cross-section A of the shown 

differential tube length dL. 

The characteristic velocity of turbulence is the RMS 

velocity, varying with 𝒱, being thus V a measure of 

it, and stationarity implies mean variables constant in 

time. For the differential tube length dL of Fig. 1c, 

Eqs. (7a, b) produce: 

𝑑ℎℓ = 𝑓
𝑑𝐿

ℓ

𝑉2

2𝑔
 

(8a) 

𝑑𝐸̇ = 𝑔𝑉𝐴𝑑ℎℓ  (8b) 

Two simplifying hypotheses were applied 

sequentially in the present step: i) ℓ is taken as a 

constant for the “tube” length dL, and ii) d𝒱=AdL. It 

results, after integration: 

𝐸̇ = 𝜀𝒱 =
1

2ℓ
∫ 𝑓𝑉3𝑑𝒱

𝒱

 
 
(9) 

For isotropy, ℓ may be related to the volume of the 

eddy through ℓ = (6𝒱 /)1/3: 

𝜀𝒱4/3 = (
𝜋

6
)

1/3 1

2
∫ 𝑓𝑉3𝑑𝒱

𝒱

 

 

(10) 

Equation (10) involves two parameters of Eq. (6). 

Differentiating the logarithm of Eq. (10) and 

multiplying the result by 𝜀𝒱 leads to: 

4𝜀

3
𝑑𝒱 + 𝒱𝑑𝜀 = 𝐸̇𝑑𝑙𝑛 [∫ 𝑓𝑉3𝑑𝒱

𝒱

]  

 

(11) 

 

 

Fig. 1. Ideal turbulence field showing a) the multicity of length scales, b) the ideal distribution of eddies 

showing opposite movements in which the boundaries between them define the infinitesimal tube 

length; c) the tube length dL where the Darcy-Weisbach equation is applied.
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The second member was defined as d, resulting:  

4𝜀

3
𝑑𝒱 + 𝒱𝑑𝜀 = 𝑑𝜓 

𝑑𝜓 = 𝐸̇𝑑𝑙𝑛 (∫ 𝑓𝑉3𝑑𝒱
𝒱

)  

 

(12a) 

 

 

(12b) 

Equations (12a, b) furnish valuable empirical facts to 

Eq. (6). From the parcels of Eqs. (6) and (12a) we 

have =, =, and d=xd, thus:  

𝑑𝜙 =
4𝑥𝛽

3
𝜀𝑑𝒱 + 𝑥𝛽𝒱𝑑𝜀 

𝑑𝜙 = 𝑥𝛽𝐸̇𝑑𝑙𝑛 (∫ 𝑓𝑉3𝑑𝒱
𝒱

)  

 

(13a) 

 

 

(13b) 

For the remaining unknown exponent  the 

formulation was solved for x, and experimental 

results of turbulent transport were used. The Schwarz 

equality between the second derivatives of 

interchanged variables was used in Eq. (13a) in the 

form: 

𝑑

𝑑𝜀
(

𝑑𝜙

𝑑𝒱
|

𝜀
)|

𝒱

=
𝑑

𝑑𝒱
(

𝑑𝜙

𝑑𝜀
|

𝒱
)|

𝜀

 

 

(14) 

The derivatives are taken in relation to one variable 

while the second variable remains constant. In Eq. 

(14) the derivatives of were taken in relation to the 

differentials of Eq. (13a), implying that x may be a 

function of , or 𝒱, or “and 𝒱” together. The 

different possibilities were tested, and the 

dependence x=x() showed to be more adequate (by 

trial-and-error). The result for Eqs. (13a) and (14) is: 

𝑑𝑥

𝑥
= −

1

4𝛽

𝑑𝜀

𝜀
 

 

(15) 

𝑥 = 𝜃1𝜀
−

1
4𝛽   

 

(16) 

x is thus a power law of 𝜀. 1 is the integration 

constant that adjusts the dimensions of both 

members of Eq. (16). This power law is an 

empirical evidence already described in the 

literature by different authors along the time. For 

example, using the pre-sent notation, Calderbank 

and Moo-Young (1961) expressed heat and mass 

transfer coefficients from solid surfaces to 

turbulent fluids as x  ()1/4, being  the kinematic 

viscosity. Lamont and Scott (1970) added more 

information of the compounds into contact through 

the Schmidt number Sc, suggesting x  Sc1/2()1/4. 

Chu and Jirka (2003) worked with oxygen 

absorption by water in channels subjected to wind, 

confirming x  1/4. Chen (2019) worked with 

impeller agitators and bubbles, adding the diameter 

of the bubbles and the volume fraction of the 

gaseous phase in the equation for x, confirming also 

the dependence x  1/4. Results of own 

experiments were presented by Schulz (1991) and 

Schulz and Giorgetti (1991) for the dissolution of 

solids of oxalic acid floating at the water surface in 

two experimental devices: i) a 0.10 m3 baffled 

water tank agitated by an impeller which rotation 

varied from 0 to 250 rpm; and ii) a 22.0 m length 

flume in which a smooth bed and five different 

sand and gravel bed roughnesses were tested: 0.97 

mm, 2.38 mm, 4.76 mm, 6.35 mm, and 9.51 mm, 

and imposing flow rates varying in the range from 

16.91 l/s to 29.13 l/s. The dissolution results are 

shown in Fig. 2, and the best adjustment for x is 

given by Eq. (17).  

 

 
 

Fig. 2. Oxalic acid mass transfer coefficient against 

power dissipations. 0 and x0 define the transition 

from natural convection to turbulent diffusion. 

 

𝑥 = [1.496. 104𝑒
− (

6444
𝑇

)
] 𝜀  

1
4  

 

(17) 

For the presented coefficients the dimension of x is 

m/s, and the dimension of  is m2/s3. The dissolution 

of oxalic acid in water is a function of the 

temperature T (expressed in Kelvin), and of 

turbulence ac-cording the 1/4 power law. 

Experiments thus point to  = -1 in Eq. (16), so that 

Eqs. (13a, b) assume the forms: 

𝑑𝜙 =
4

3𝑥
𝜀𝑑𝒱 +

𝒱

𝑥
𝑑𝜀 

𝑑𝜙 =
𝐸̇

𝑥
𝑑𝑙𝑛 (∫ 𝑓𝑉3𝑑𝒱

𝒱

)  

 

(18a) 

 

 

(18b) 

Equations (18a, b) aggregate consolidated empirical 

results that can be traced back by performing the 

inverse calculations (Schulz 2001). As interesting 

result, it is analogue to the Thermodynamics 

formulation of thermal radiation, as evidenced in 

Table 1.  
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Table 1 Analogy between turbulence and 

thermal radiation formulations 

Turbulence Thermal Radiation 

𝑑𝜙 =
4

3𝑥
𝜀𝑑𝒱 +

𝒱

𝑥
𝑑𝜀 

  

𝑑𝑆 =
4

3𝑇
𝑢𝑑𝒱 +

𝒱

𝑇
𝑑𝑢 

𝜀 = 𝜃2𝑥4 𝑢 = 𝜃3𝑇4 

𝑑𝜙 =
𝑑𝜓

𝑥
 𝑑𝑆 =

𝑑𝑄̅

𝑇
 

𝜓 𝑄̅ 

𝜙 𝑆 

𝑥 T 

𝜀 𝑢 

𝒱 𝒱 

 

The analogy is meant for the form of both 

formulations, and not for the meaning of the 

variables. In Table 1 S is the entropy, T is the 

absolute temperature, u is the energy density, 𝑄̅ is the 

heat, 2=𝜃1
−1/4

, and 3 is the integration constant of 

the thermal radiation fourth power law. The radiation 

formulation is usually related to the black body, an 

ideal condition in radiation studies, while the 

turbulence formulation represents the isotropic case, 

also an ideal condition in turbulence studies. dis 

defined by Eq. (18b), which relates it to parameters 

with known physical meaning. A further interesting 

aspect is that the interaction between turbulent 

movements in opposite directions (ideal condition of 

Fig. 1) involves a friction factor, a parameter known 

to be linked to the Reynolds number (also adopted 

here) and to a ‘relative roughness’, which still needs 

further complementary studies.  

3. SPECTRAL VARIATIONS 

The study of the black body radiation led to the study 

of the radiation spectrum in Thermodynamics (see 

for example Osada 1972; Stewart and Johsnon, 

2016). The similarity between the formulations of 

Table 1 suggests also to search for spectral functions 

in turbulence. Equations (18a, b) lead to: 

4

3

𝑑𝒱

𝒱
+

𝑑𝜀

𝜀
= 𝑑𝑙𝑛 (∫ 𝑓𝑉3𝑑𝒱

𝒱

)  

 

(19) 

Integrating the logarithms and then applying the 

derivative in relation to 𝒱 results in:  
4

3
𝒱1/3𝜀 + 𝒱4/3

𝑑𝜀

  𝑑𝒱
= 𝜃4𝑓𝑉3 

 

(20) 

4 is an integration constant. A generic volume 𝒱(𝑘) 

between the smallest and the largest eddy is related 

to a generic velocity V(k), and to a generic power loss 

(k). Eq. (1) relates this V(k) to the energy spectrum 

E(k) using a free limit of integration as: 

3

2
𝑉2 = ∫ 𝐸(𝑘)𝑑𝑘

𝑘

 

 

(21) 

This defines the variation of V with k. From Eq. (2) 

the volume of an eddy is 𝒱= (/6)/k3. Coupling Eqs. 

(20) and (21), dividing by 
4

3
𝒱1/3, and rearranging 

leads to: 

−𝑘

4

𝑑𝜀(𝑘)

𝑑𝑘
+ 𝜀(𝑘) − 

−
3

4
(

6

𝜋
)

1
3

𝜃4𝑓𝑘 (
2

3
∫ 𝐸(𝑘)𝑑𝑘

𝑘

)

3
2

= 0 

 

 

 

(22) 

 

Equation (22) was used to verify possible forms of 

the spectra (k) and E(k).  

3.1 Spectra for f Containing Viscosity: Euler 

Governing Equation 

In principle, if effects of viscosity are relevant, at 

least one coefficient in Eq. (22) must be related to it, 

a condition satisfied by f. Adequate forms of f must 

be applied to consider viscosity. From the empirical 

knowledge on pipe flows, f depends on viscosity 

through the Reynolds number of the pipe, ReD, 

adapted here to the eddy Reynolds number, 

Rek=V/k or 𝑅𝑒ℓ =Vℓ/. For low Reynolds numbers 

the result f= 64/Rek, was used as the best choice in 

the absence of other references, resulting in  

−1

4𝑘

𝑑𝜀(𝑘)

𝑑𝑘

+
𝜀(𝑘)

𝑘2
− 32 (

6

𝜋
)

1/3

𝜃4𝜈 ∫ 𝐸(𝑘)𝑑𝑘
𝑘

= 0 

 

(23) 

The power dissipation  depends on k. Both variables 

are already linked in the traditional spectral analyses 

of isotropic turbulence, Eq. (3), used here with a free 

limit of integration: 

𝜀(𝑘) = 2𝜈 ∫ 𝑘2𝐸(𝑘)𝑑𝑘
𝑘

 

 

(24) 

A form of the energy spectrum is obtained from the 

derivative of Eq. (24): 

𝐸(𝑘) =
1

2𝜈 𝑘2

𝑑𝜀(𝑘)

   𝑑𝑘
 

 

(25) 

Using Eq. (25) into Eq. (23), taking the derivative in 

relation to k, and rearranging leads to the differential 

governing equation for  given by the present 

formulation: 

𝑘2
𝑑2𝜀(𝑘)

𝑑𝑘2 − 𝐼𝐽 𝑘
𝑑𝜀(𝑘)

𝑑𝑘
+ 8𝜀(𝑘) = 0 

 

(26) 

Equation (26) is a Euler differential equation with 

one unknown coefficient, IJ=5-644(6/)1/3, which 

carries the integration constant 4. The 

quantification of the power dissipation in turbulent 

flows is still a matter of discussion (Hoque et al. 

2015, Wang et al. 2021), being related to the entropy 

generation rate (Bejan 1982). In this sense, Eq. (26) 

for the spectrum  (k) is a new information that may 

help this quantification. The solution of Eq. (26) 

depends on the two values of r of the basic 

substitution =k r (e.g., Boyce and DiPrima 2009), 

given by: 
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𝑟1 =
𝐼𝐽 + 1

2
+ √[

𝐼𝐽 + 1

2
]

2

− 8 

𝑟2 =
𝐼𝐽 + 1

2
− √[

𝐼𝐽 + 1

2
]

2

− 8 

 

 

(27a) 

 

 

(27b) 

If r1≠r2 and both are Real numbers, the solution is:  

𝜀 (𝑘) = 𝐶1𝑘𝑟1 + 𝐶2𝑘𝑟2  (28) 

and       𝐸(𝑘) = 𝑇1𝑘𝑟1−3 + 𝑇2𝑘𝑟2−3     (29) 

C1, C2, T1, and T2 are integration constants that adjust 

the dimensions of the equations. The solutions of  
(k) are power laws of k, and, from Eq. (25), power 

laws also apply to the energy spectrum E(k). The 

theoretical result of governing Eq. (26) confirms 

experimental results that present power law spectra 

with several different exponents (for example 

Voitenko and De Keyser, 2011; Xia et al., 2013; 

Alexandrova et al. 2013, Goldstein et al. 2015, 

Verscharen et al. 2021). Also generic exponents are 

shown in some studies, like the exponent ‘- ’ that 

follows the -5/3 spectrum in Bourouaine et al. 

(2012). For boundary conditions that lead to 

IJ=19/3=~6.33, Eqs. (27a, b) produce r1=4/3 and 

r2=6.0, and the energy spectrum of Eq. (29) has 

powers -5/3 and 3.0. That is, the known exponent -

5/3 of the Kolmogoroff /Obukhoff/Onsager’s 

spectrum is obtained for situations in which f is 

proportional to the viscosity and with power 

dissipation occurring in the whole range of 

wavenumbers. The existence of the -5/3 power for 

nonequilibrium situations (different of the 

Kolmogoroff proposal) was already shown and 

discussed for example by Vassilicos (2015), and the 

present formulation indicates that this result is in fact 

possible. Equations (28) and (29) also show that cut-

off wavenumbers may limit the evolution of  (k) and 

E(k), depending on values and signs of r1,2, C1,2, and 

T1,2.  Figure 3 shows examples of -5/3 spectra using 

various values of r2 to cut their evolutions. For 

continuous evolutions (no cutoff), T1 or T2 are set to 

zero. 

Equations (27a, b) show that equal Real roots r1=r2=r 

occur for 𝐼𝐽 = −1 ± 2√8, being r either √8 or −√8. 

(k) and E(k) are now given by Eqs. (30a, b) and 

(31a, b): 

𝜀(𝑘) = 𝒮𝐴𝑘√8 (ln
𝑘

𝑘𝑅
)  

 

(30a) 

and       𝐸(𝑘) = 𝒮𝐵𝑘√8−3 (ln
𝑘

𝑘𝑅
)  

 

(30b) 

𝜀(𝑘) = 𝒮𝐶𝑘−√8 (ln
𝑘

𝑘𝑅
)  

 

(31a) 

and       𝐸(𝑘) = 𝒮𝐷𝑘−√8−3 (ln
𝑘

𝑘𝑅
)  

 

(31b) 

The integration constants SA, SB, SC, SD, may be 

positive or negative, which compose with the sign of 

the logarithm of k/kR. The integration constant kR has 

the physical meaning of a reference wavenumber. 

The logarithm in Eqs. (30a, b) and (31a, b) also 

produce spectra with beginning or ending cutoff 

wavenumbers, and several values are exemplified in 

Figs. 4 a, b and 5 a,b, limiting the spectra at the left 

or at the right sides. 

 

 

Fig. 3. Equation (29) for different values of r2, 

which adjusts the different observable cutoff 

wavenumbers. 

 

 

 

Fig. 4. a) Left cutoff of the energy spectra using 

Eq. (30b); b) right cutoff using Eq. (30b). 

 

Spectra of E(k) with the √8-3 exponents of Eqs. 

(30b) and (31b) were juxtaposed with the -5/3 

spectrum of turbulence in Fig. 6. The √8-3 exponent 

is better suited for the left side of the spectra, while 

the -√8-3 exponent is better suited for the right side, 

the last being the dissipative range of the spectra. 

Figure 6 compares theoretical and literature 

experimental data evidencing the interesting pattern 

of this juxtaposition. Figure 6 does not present cutoff 

wavenumbers because of the limits of the measured 

values, but proper kR values may be used in Eqs. 

(30b) and (31b). Juxtapositions with other power 

laws resulting from Eq. (29) are also possible. 
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Fig. 5. a) Left cutoff of the energy spectra using 

Eq. (31b); b) right cutoff using Eq. (31b). 

 

If r1 and r2 are conjugate complex numbers, they are 

represented as: 

𝑟1 =
𝐼𝐽 + 1

2
+ 𝑖√|[

𝐼𝐽 + 1

2
]

2

− 8|

= 𝜔1 + 𝑖𝜔2 

𝑟2 =
𝐼𝐽 + 1

2
− 𝑖√|[

𝐼𝐽 + 1

2
]

2

− 8|

= 𝜔1 − 𝑖𝜔2 

 

(32a) 

 

 

(32b) 

The solutions for  and E(k) are then given by: 

𝜀(𝑘) = 𝑘𝜔1 [
𝐶1𝑐𝑜𝑠(𝜔2 ln 𝑘)

+𝐶2𝑠𝑖𝑛(𝜔2 ln 𝑘)
]        

      𝐸(𝑘) = 𝑘𝜔1−3   

[
𝑇1𝑐𝑜𝑠(𝜔2 ln 𝑘)

+𝑇2𝑠𝑖𝑛(𝜔2 ln 𝑘)
]

𝜈
 

 

(33a) 

 

(33b) 

In this case the spectra have, in principle, a periodic 

character along the wavenumber axis. However, 

fluids dissipate energy through its viscous property 

and have E(k) evidently limited by viscosity in the 

smaller scales. Further, for fluids occupying finite 

regions, eventual larger movements (larger eddies) 

are also limited by the dimensions of these regions 

Having attained zero mean kinetic energy on both 

length extremes, turbulent fluids do not “recover” 

movements at smaller or larger wavenumbers (no 

periodicity).  

Equations (33a, b) also furnish bounded turbulent 

energy spectra, but with two limiting extremes. The 

start and end points are given by the sine and cosine 

functions. The general slope of the curve (or 

succession of curves) and its position in the graph is 

governed by 1, 2, T1 and T2. Figure 7 illustrates an 

energy spectrum of Eq. (33b).  

A further analysis of Eqs. (27a, b) considers the value 

of IJ representing boundary conditions of specific 

problems (physical impositions). Figure 8 shows the 

evolution of the exponents r1-3 and r2-3 as function 

of IJ in the interval (-∞, ∞), and Table 2 shows the 

limiting values of -3 (central asymptote of Fig. 8), -

3+√8, -3-√8 (with √8 =2√2). The classical value of -

5/3 is also evidenced in the table. The 45° angle 

between the two asymptotes of Eqs. (27a, b) 

produces projections between the two sets of axes 

with the factor cos(45°)=√2. Figure 8 shows r1-3 and 

r2-3 values of intersection points of the axes of the 

function that coincide with some classical exponents, 

 

 
Fig. 6. Good superposition between literature 

data and theoretical trends of E(k) as 

proportional to k-5/3 and to k√8-3, the last 

obtained by solving Eq. (26) for equal real roots. 

 

 
 

Fig. 7. Example of E(k) for conjugate complex 

roots of Eqs. (27a, b). Periodicity is not expected 

for space-restricted and viscous-dissipative fluid 

flows. 
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Table 2: Power law exponents as functions of IJ 

IJ r1 r2 r1-3 r2-3 

→-∞ →0 →-∞ →-3 →-∞ 

-100 -0.08087 -98.919 -3.0809 -101.92 

-50 -0.16381 -48.836 -3.1638 -51.836 

-30 -0.27854 -28.722 -3.2785 -31.722 

-20 -0.43082 -18.569 -3.4308 -21.569 

-10 -1 -8 -4 -11 

-7.8 -1.5132 -5.2868 -4.5132 -8.2868 

-7.6 -1.6 -5 -4.6 -8 

-7 -2 -4 -5 -7 

-6.7 -2.5 -3.2 -5.5 -6.2 

-1-2√8 -√8 -√8 -3-√8 -3-√8 

  Complex solutions   

-1+2√8 √8 √8 -3+√8 -3+√8 

4.6569 2.8398 2.8171 -0.16017 -0.18293 

5 4 2 1 -1 

5.6 5 1.6 2 -1.4 

6 5.5616 1.4384 2.5616 -1.5616 

19/3 6 4/3 3 -5/3 

8 8 1 5 -2 

10 10.217 0.78301 7.2170 -2.2170 

20 20.612 0.38813 17.612 -2.6119 

30 30.740 0.26025 27.740 -2.7398 

50 50.842 0.15734 47.843 -2.8427 

100 100.92 0.07927 97.921 -2.9207 

→∞ →∞ →0 →∞ →-3 

 

 
 

Fig. 8. Exponents r1-3 and r2-3 against IJ. The 

asymptote r1-3=r2-3=-3 is the central horizontal 

line. Classical exponents are shown in the 

vertical axis together with the -3√8 results. 

 

like 4 (Batchelor quoted by Heisenberg 1948), and -

7 (Heisenberg 1948). This geometrical characteris-

tic may be used as a mnemonical tool for the 

mentioned literature exponents, and to evidence the 

limiting values of of -3, -3+√8, and -3-√8. The 

exponent -3 is commonly found in experimental 

studies (Tung 2003; Brannigam et al. 2015, for 

example). Figure 9 shows data of very different 

experiments plotted together. The axes were 

normalized for the origin to coincide with the 

intersection point of the spectra slope lines -5/3 and 

-3. Results for solar wind spectra are generally 

presented following  slopes  around  -√8~ -2.82. The 

data of the ocean boundary layer are for concurrent 

velocities (Lien and Sanford 2001). 

 

Fig. 9, Results of spectra slopes tending to -3. 

Good superposition between data and theory. 

 

3.2 Spectra for f Without Viscosity: 5/3 Law 

Certainly, the most used energy spectrum in 

turbulence studies is the Kolmogoroff/ 

Obukhoff/Onsager spectrum, obtained for the 

inertial subrange, an ideal region along the 

wavenumbers where viscosity is not relevant and  is 

taken as a constant parameter, also used for the 

scaling of length and velocity in the highest limiting 

wavenumber. In an earlier stage of the studies in 

turbulence, the energy transfer, or energy cascade 

was explained to occur from the larger to the smaller 

eddies, the firsts containing or storing the turbulent 

kinetic energy, and the lasts acting as a drain that 

consumes or dissipates this energy. In this sense, 

smaller eddies are generated by larger eddies and 

energy is transferred to them until the dissipation 

scale. This unidirectional point of view was then 

changed to the possibility of having also the energy 

cascade occurring from smaller to larger eddies. In 

this sense, by adding turbulent kinetic energy in the 

region of small eddies, they  compose  to  generate 
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larger eddies, so that in fact energy is transferred to 

the larger movement scales. A simple example is a 

jar of water to which concentrated fruit juice is added 

and a thin wire or wood stick is used to agitate the 

mixture with short movements. Despite the small-

scale turbulent movements generated around the 

stick, they compose and generate larger scale 

movements that attain the scale of the jar itself and 

help the whole mixture. A net “inverse” energy 

transfer occurs, being also dissipated in the larger 

scales. An extensive review of direct and inverse 

cascades may be found in Alexakis and Biferale 

(2018), and measurements of a specific study may be 

found in Neely (2013), for example.  

Although not necessary to obtain the -5/3 power (as 

already shown), the present formulation also leads 

to this law when using Kolmogoroff’s hypotheses 

(together with the studies of Obukhoff 1941 and 

Onsager 1945). Both energy cascades (direct and 

inverse) may occur simultaneously. Figures 10 a, b, 

c show sketches of several cases, with the energy 

input concentrated at a chosen wavenumber region, 

being then distributed to larger and smaller scales 

produced by the specific agitation conditions. 

Power dissipates in the whole wavenumber range, 

and a constant distributed (k) was used to fit 

Kolmogoroff/Obukhov/Onsager’s condition 

(constant energy flows from the largest to the 

smallest eddies, being dissipated there). Figure 9 

also shows regions where dissipation is eventually 

more condensed, indicated as “final energy drains”. 

In Eq. (22), following the analogy with flows in pipes 

and the knowledge of the behaviour of the friction 

factor, f assumes a constant value for higher 

Reynolds numbers. The spectra may evolve between 

the limits kE and kD (Figs. 10a and b), or between the 

limits kE and 𝑘ℓ, (left side of Fig, 10c) and 𝑘ℓ and kD, 

(right side of Fig. 10c). Constant  (k)= implies that 

d/dk=0, so that Eq. (22) furnishes: 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡. (
𝜀

𝑘
)

2
3

= ∫ 𝐸(𝑘)𝑑𝑘
𝑘

 
 

(34) 

The derivative of Eq. (34) leads to: 

𝐸(𝑘) = 𝒜𝜀
2
3 𝑘−

5
3 

(35) 

The coefficient 𝒜 involves the integration constant 

4 and the adequate sign. Equation (35) is the 

Kolmogoroff/Obukhoff/Onsager spectrum obtained 

from the present formulation when using 

Kolmogoroff’s hypotheses. Empirical studies 

suggest for 𝒜 a value of about 1.5 (see, for example, 

Pope 2000 and Cheng et al. 2010).  

Because the power dissipated at the left side (bass 

range in Fig. 11a) may be different from that 

dissipated at the right side (crescendo range in Fig. 

11b), the vertical position of the spectral function 

may also be different at both sides. The 

multiplicative factor 2/3 in Eq. (35) dislocates 

vertically the function in the log/log graph as shown 

in Fig. 11. 

 

Fig. 10. Kolmogoroff’s hypotheses usually 

adopted for the energy spectrum; a) Direct 

energy cas-cade in the Kolmogoroff sense; b) 

Inverse energy cascade; c) Concomitant direct/ 

inverse cascades. 

4. CHARACTERISTIC PARAMETERS 

4.1 Characteristic Power Dissipation 

The present formulation involves a friction factor for 

opposite turbulent motions (Fig. 1), inherited from 

the Darcy-Weisbach equation, which allows 

observing the effect of length scales through the 

eddy’s Reynolds number (Rek=V/k, or Reℓ=Vℓ/). 

Known semi-empirical results for turbulence scales 

may also be obtained from Eqs. (18a, b), equated 

here to obtain Eq. (36), resembling Eqs. (12a, b).  

4𝜀

3
𝑑𝒱 + 𝒱𝑑𝜀 = 𝐸̇𝑑𝑙𝑛 (∫ 𝑓𝑉3𝑑𝒱

𝒱

)  

 

(36) 
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Fig. 11: Dislocated spectra for distinct character-

istic  at distinct regions of the wavenumber 

axis; A=apport of energy; B= bass range 

dissipation (low k); C= crescendo range 

dissipation (high k); a) lower  in bass range; b) 

higher  in bass range. 

 

Taking a mean constant velocity V for the volume, 

dividing Eq. (36) by 𝐸̇ and presenting the result in 

the form of differentials of logarithms leads to: 

4

3
𝑑𝑙𝑛(𝒱) + 𝑑𝑙𝑛(𝜀) = 𝑑𝑙𝑛 (𝑉3 ∫ 𝑓𝑑𝒱

𝒱

)  
 

(37) 

The integration of Eq. (37) produces, for the 

characteristic dissipation : 

𝜀 =
Ξ𝑉3 ∫ 𝑓𝑑𝒱

𝒱

𝒱4/3
 

(38) 

 is an integration constant. Two different cases are 

considered: i) high agitation (large eddy Reynolds 

numbers, constant f); ii) low agitation (small eddy 

Reynolds numbers, f=64/(Vℓ)). Using ℓ=(6𝒱 /)1/3 

for both cases, the integration of Eq. (38) furnishes 

for the characteristic , respectively: 

𝜀 = 𝐺1

𝑉3

ℓ
 

and             𝜀 = 𝐺2 (
√𝜈 𝑉

ℓ
)

2

 

 

(39a) 

 

(39b) 

G1 and G2 are constants. Equations (39a, b) are usual 

in turbulence studies (see Hinze, 1959). In the pre-

sent study they are linked to the friction factor, which 

expresses the interaction between eddies (Fig. 1).  

4.2 Mean Velocity Scales 

Equation (40a) defines the isotropic turbulence 

kinetic energy (KE), which, used for an eddy of 

generic scale ℓ together with Eqs. (39a, b) leads, 

respectively, to Eqs. (40b) and (40c): 

𝐾𝐸 =
𝑉2

2
+

𝑉2

2
+

𝑉2

2
=

3𝑉2

2
 

𝐾𝐸 =
3

2𝐺1
2/3

(𝜀ℓ)2/3 

and           𝐾𝐸 =
3

2𝐺2

𝜀ℓ2

𝜈
 

 

(40a) 

 

(40b) 

 

(40c) 

Again, Eqs. (40 b, c) are known in the literature of 

turbulence (Hinze, 1959). Equations (39b) and (40c) 

are valid for low Rek eddies (low V and/or ℓ, high ), 

and Eqs. (39a) and (40b) are valid for high Rek eddies 

(high V and/or ℓ, low ). The conclusions obtained 

from the friction factor related to the interaction 

between turbulent movements (Fig. 1) give support 

to the usual approximations adopted in the literature.  

Because the -5/3 spectrum was obtained for f with 

and without , Eqs. (39a, b) may equally describe 

turbulence parameters for a range of eddy sizes 

(wavenumbers). By equating them, a constant 

Reynolds number is obtained (G3 is a constant):  

𝑉ℓ

𝜈
= 𝐺3 

 

(41a) 

Further, Eqs. (39a) and (41a) produce (41b): 

𝑉 = 𝐺4(𝜈𝜀)
1
4 

 

(41b) 

G4 is a constant coefficient.  

4.3 Mean Length Scales 

Equations (39b) and (41a) produce (41c): 

ℓ = 𝐺5

𝜈3/4

𝜀
1/4

 

 

(41c) 

G5 is a constant coefficient. Equations (41b, c) are 

the Kolmogoroff velocity and length scales, 

considered valid for the smaller eddies, with G3 

usually equal to 1.0. f=64/𝑅𝑒ℓ and f=constant thus 

resulted in consistent equations for the characteristic 

.  

4.4 Velocity and Length Scales Merged with the 

Characteristic Power Dissipation 

An equivalent form of Eq. (39b) is obtained by 

adopting f  𝑅𝑒ℓ
−𝑝

 (laminar case, and turbulent case 

for smooth pipes as shown by Holland and Bragg, 

1995, who mention the equation of Blasius and the 

equation of Drew), and results in  

𝜀 = 𝐺6 (
𝑉3

ℓ
)

1

𝑅𝑒ℓ
𝑝 

 

(42) 
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G6 is a constant coefficient. Equations (39a) and (42) 

produce Eq. (41a) for any p. Further, Eqs. (41a) and 

(42) produce: 

𝜀 = 𝐺7 (
𝑉3−𝑝𝜈𝑝

ℓ1+𝑝 ) 

 

(43) 

Equation (43) suggests that the characteristic  is not 

uniquely defined along the spectrum. Additionally, it 

leads to the usual expressions of the literature for big 

and small ℓ (or k) scales. p = 0 is used for no 

influence of viscosity, and p = 1 for the 1st power 

influence. New values p and functions f may be 

tested in similar studies. Flows in tubes show that the 

friction factor has a complex behaviour with the 

Reynolds number, and involves additional multiscale 

geometrical characteristics in its quantification (tube 

diameter, roughness). General turbulent flows also 

present complex behaviours and are influenced by 

different scales, inducing the continuity of studies 

involving f, and that combine consolidated empirical 

knowledge of different sources of applied fluid 

mechanics. 

5. FINAL REMARKS AND CONCLUSION 

In this study empirical and semi-empirical 

independent results of turbulence were joined in an 

alternative formulation using the consolidated 

knowledge to grasp the behavior of turbulence 

variables in cases not considered in the original 

independent studies.  

The Darcy-Weisbach equation for head losses and 

the power law for transfer coefficients formed the 

initial dyad of empirical equations. It allowed 

defining two auxiliary functions in differential form, 

d and d, and to link them to the power dissipation 

per unit mass , the volume of an eddy 𝒱, the velocity 

scale of turbulence V, and the turbulent transfer 

coefficient x, using a thermodynamic-like equation 

that resembles the equation of the black body 

radiation.  

The present study is a second option for the 

dimensionally obtained power law for isotropic 

turbulence (sequential studies of Kolmogoroff, 

Obukhoff and Onsager). Like Onsager (1945), four 

variables were used, one of which () has its 

differential form (d) defined through the other 

three. Onsager (1945) used directly the energy 

spectrum. However, the parameter  used here is 

unknown a priori, and depends on the physical 

property transferred through turbulence, so that 

dimensional analyses are not promptly possible. 

About the turbulence transfer, instead of firstly 

inserting the viscosity as a relevant parameter in a 

dimensional analysis, and then discarding it when 

suggesting a power law, in the present study the 

turbulent transfer was introduced through the 

parameter x (remembering that viscosity relates to 

laminar momentum transfer). The formulation 

started from the definition of the power dissipation 

in differential form. Coefficients and exponents of 

the initial equation were obtained from empirical 

consolidated results.  

This formulation allows treating power dissipation 

from a new point of view. Applying definitions from 

the theory of isotropic turbulence, a second order 

governing equation was obtained for the power 

dissipation per unit mass (Eq. 26) in the form of a 

Euler equation. It allows obtaining power spectra for 

the energy dissipation rate and for the turbulence 

kinetic energy as dependent on the wavenumber. 

There are no a priori limits for the values of the 

exponents of the spectra, which agrees with the broad 

range of exponents found in the literature. As 

expected, specific boundary conditions may lead to 

specific exponents. The -5/3 power law is obtained 

imposing the Kolmogoroff’s conditions (equilibrium 

conditions) with constant power dissipation along 

the energy spectrum. Additionally, it was also shown 

that the -5/3 exponent may be attained for boundary 

conditions that do not follow the equilibrium 

condition, once more agreeing with the literature. 

The exponent -3, a result found in experiments 

performed in different turbulence studies described 

in the literature (oceans, channels, solar wind) is 

obtained as a limiting condition of the present 

formulation, increasing its potential of application. 

The friction factor showed to be a useful parameter 

for the study of the characteristic energy and related 

mean turbulence scales. It allows considering 

different eddy’s Reynold number Rek. or Reℓ 

through a consolidated factor. The cases f=64/Rek 

and f=constant were applied, resulting in consistent 

equations for the characteristic power dissipation , 
reproducing relations already existing in the 

literature. The testing of different forms of f in the 

context of turbulent interactions is still open to study. 

The structure given to the formulation allows 

exploring possible extensions to bring together more 

empirical results. Power laws, spectral descriptions, 

the interpretation and use of the friction factor, are 

some of the usual concepts that were discussed here 

from a new point of view while testing this 

formulation. It is expected that this approach can be 

further im-proved, simplifying the understanding of 

turbulence phenomena and the interconnection 

between the concepts that we build for them.  

ACKNOWLEDGEMENTS 

The author thanks Prof. Ingo Schulz for relevant 

initial advices and the financial support T. I. M bó 

04031-928-2005 obtained through his person; and to 

Prof. Janka Neuwiem for decisive advices in the final 

part, and the financial support: K. I. E.lce 20061-

936-2021.obtained through her person. 

REFERENCES 

Alexakis, A. and L. Biferale (2018). Cascades and 

transitions in turbulent flows, Physics Reports 

(767-769), 1-101.  

Alexandrova, O., C. H. K. Chen, L. Sorriso-Valvo, 

T. S. Horbury and S. D. Bale (2013). Solar wind 

turbulence and the role of ion instabilities, 

Space Science Reviews 178, 101-139.  



H. E. Schulz / JAFM, Vol. 15, No. 4, pp. 959-972, 2022.  

 

971 

Badillo, A and O. K. Matar (2017). On the missing 

link between pressure drop, viscous dissipation, 

and the turbulent energy spectrum, APS/123-

QED. 

Bejan, A. (1982). Entropy Generation through Heat 

and Fluid Flow, John Wiley and Sons, USA. 

Bourouaine, S., O. Alexandrova, E. Marsch and M. 

Maksimovic (2012). On spectral breaks in the 

power spectra of magnetic fluctuations in fast 

solar wind between 0.3 and 0.9 au, The 

Astrophysical Journal, 749 (102), 7. 

Boyce, W. E. and R. C. Di Prima (2009). Elementary 

Differential Equations and Boundary Value 

Problems, 9th ed., John Willey and Sons, Inc., 

USA. 

Brannigan, L., D. P. Marshall, A. Naveira-Garabato 

and A. J. G. Nurser (2015). The seasonal cycle 

of Submesoscale flows, Ocean Modelling, 15.  

Brodkey, R. S. (1967), The Phenomena of Fluid 

Motions, Addison-Wesley Publishing Co, USA. 

Brodkey, R. S. and H. C. Hershey (1988). Transport 

Phenomena: A Unified Approach, McGraw-

Hill Book Co. 

Bruno, R., D. Telloni, D. DeIure and E. Pietropaulo 

(2017). Solar wind magnetic field back-ground 

spectrum from fluid to kinetic scales, MNRAS, 

472, 1052–1059.  

Calderbank, P. H. and M. B. Moo-Young (1961). 

The continuous phase heat and mass-transfer 

properties of dispersions, Chemical 

Engineering Science 16, 39-54. 

Cerbus, R. Y., C. C. Liu, G. Gioia and P. 

Chakraborty (2020). Small-scale universality in 

the spectral structure of transitional pipe flows, 

Science Advances, Jan 24; 6(4):eaaw6256. 

Chen, Y. (2019). Simulation and experimental 

investigation of power consumption, gas 

dispersion and mass transfer coefficient in a 

multi-phase stirred bioreactor, Brazilian 

Journal of Chemical Engineering, 36(4), 1439 - 

1451.  

Cheng, X. L., B. L. Wang, F. Hu and R. Zhu (2010). 

Kolmogorov constants of atmospheric 

turbulence over a homogeneous surface, 

Atmospheric and Oceanic Science Letters, (3)4, 

195-200.  

Chu, C. R. and G. H. Jirka (2003). Wind and Stream 

Flow Induced Reaeration, Journal of 

Environmental Engineering, ASCE 129(12), 

1129-1136,  

Gamard, S. and W. K. George (1999). Reynolds 

number dependence of energy spectra in the 

overlap region of isotropic turbulence, Flow, 

Turbulence and Combustion 63, 443–477.  

Goldstein, M. L., R. T. Wicks, S. Perri and F. 

Sahraoui (2015). Kinetic scale turbulence and 

dissipation in the solar wind: key observational 

results and future outlook, Philosophical 

Transactions of the Royal Society A 373: 

20140147.  

Hanjalić, K. (2006). Turbulence and transport 

phenomena: modelling and simulation, 150p. 

https://www.academia.edu/22152743/TURBU

LENCE_AND_TRANSPORT_PHENOMEN

A_Modelling_and_Simulation. 

Heisenberg, W. (1948). On the theory of statistical 

and isotropic turbulence, Proceedings of the 

Royal Society, 402-406. 

Hinze, J. O. (1959). Turbulence: An Introduction to 

its Mechanism and Theory, McGraw-Hill. 

Holland, F. A. and R. Bragg (1995). Fluid Flows for 

Chemical Engineers, 2nd ed., Arnold, a division 

of Hodder Headline PLC, London. 

Hoque, M. M., M. J. Sathe, S. Mitra, I. B. Joshi and 

G. M. Evans (2015). Comparison of specific 

energy dissipation rate calculation 

methodologies utilising 2D PIV velocity 

measurement, Chemical Engineering Science 

137, 752–767.  

Kolmogorov, A. N. (1941). The local structure of 

turbulence in incompressible viscous fluid for 

very large Reynolds’ numbers. Proceedings of 

the USSR Academy of Sciences 30, 301–305. 

Lamont, J. C. and D. Scott (1970). An eddy cell 

model of mass transfer into the surface of a 

turbulent liquid, AIChE Journal 16(4), 513-519. 

Layton, W. (2018) Turbulence: numerical analysis, 

modelling and simulation, Special Issue, Fluids, 

MDPI, St. Alban-Anlage 66, Basel, Switzerland, 

http://www.mdpi.com/journal/fluids/special_is

sues/turbulence).  

Lien, R. C. and T. B. Sanford (2001). Turbulence 

spectra and local similarity scaling in a strongly 

stratified oceanic bottom boundary layer, 

Continental Shelf Research 24(3), 375-392.  

McComb, W. D. and M. Q. May (2018). The effect 

of Kolmogorov (1962) scaling on the 

universality of turbulence energy spectra SUPA 

School of Physics and Astronomy, University of 

Edinburgh.  

Monin, A. S. and A. M. Yaglom (1979). Statistical 

Fluid Mechanics: Mechanics of Turbulence, 

Volume 1, the MIT Press, 4th ed. 

Monin, A. S. and A. M. Yaglom (1981). Statistical 

Fluid Mechanics: Mechanics of Turbulence, 

Volume 2, the MIT Press, 2th ed..  

Nature Physics (2016). Big whorls, little whorls, 

Nature Phys 12, 197, quoting Richardson, L. F. 

1922, Weather Prediction by Numerical Pro-

cess. Cambridge University Press.  

Neely, T. W., A. S. Bradley, E. C. Samson, S. J. 

Rooney, E. M. Wright, K. J. H. Law, R. 

Carretero-González, P. G. Kevrekidis, M. J. 

Davis and B. P. Anderson (2013). 

Characteristics of two-dimensional quantum 



H. E. Schulz / JAFM, Vol. 15, No. 4, pp. 959-972, 2022.  

 

972 

turbulence in a compressible Superfluid, 

Physical Review Letters 111, 235301. 

Obukhov, A. M. (1941). On the distribution of 

energy in the spectrum of turbulent flow, 

Comptes Rendus of the Academy of Sciences of 

the U.R.S.S 32, 19.  

Onsager, K. (1945). The distribution of energy in 

turbulence. Physical Review, 68:281.  

Osada, J. (1972). Evolution of the ideas in physics, 

Edgard Blücher Ed., University of São Paulo 

Ed., (book in Portuguese), Brazil. 

Patankar, S. V. (1980). Numerical heat transfer and 

fluid flow, 1st ed., Series in Computational 

Methods in Mechanics and Thermal Sciences, 

CRC Press, Taylor and Francis Group, Boca 

Raton, FL. 

Pope, S. B. (2000). Turbulent Flows, Cambridge 

University Press, 1st ed., UK. 

Puga, A. J. (2016). Characteristics of the velocity 

power spectrum as a function of Taylor 

Reynolds number, PhD thesis for Mechanical 

and Aerospace Engineering presented at the 

University of California, Irvine. 

Rebollo, T. C. and R. Lewandowski (2014). 

Mathematical and numerical foundations of 

turbulence models and applications, Series in 

Modeling and Simulation in Science, 

Engineering and Technology, Birkhäuser. 

Rodi, W. (2000). Turbulence Models and Their Ap-

plication in Hydraulics A State-of-the-Art Re-

view, 3rd Ed., IAHR, International Association of 

Hydraulic Research, Monograph Series. 

Saddoughi, S. G. and S. V. Veeravalli (1994). Local 

iso-tropy in turbulent boundary layers at high 

Reynolds number. J. Fluid Mech. 268, 333-372. 

Sassa, K. and H. Makita (2005) Reynolds number 

depen-dence of elementary vortices in 

turbulence, Pro-ceedings International 

Symposium on Engi-neering Turbulence 

Modelling and Measure-ments; ETMM6, 

Sardinia, Italy, 431-440. 

Schulz, H. E. (1991) Investigação do mecanismo de 

reoxigenação da água em escoamento e sua 

correlação com o nível de turbulência junto à 

superfície – Parte 2 (Investigation of the reoxy-

genation mechanism of flowing water and its 

correlation with the turbulence level at the sur-

face–2nd Part, in Portuguese) PhD Thesis, São 

Carlos School of Engineering, University of 

São Paulo, São Carlos, Brazil. 

Schulz, H. E. and M. F. Giorgetti (1991). 

Measurements of reaeration coefficient with the 

solids probe, In: Air-water Mass Transfer, S. C. 

Williams and J. S. Gulliver (eds), ASCE,278-

293. 

Schulz, H. E. (2001). Alternatives in Turbulence, 

EESC, Printed by University of São Paulo (book 

in Portuguese, ISBN 8585205377), Brazil. 

Schmitt, F. G. (2017). Turbulence from 1870 to 

1920: the birth of a noun and of a concept, C. R. 

Mecanique 345, 620–626. 

Selvi, N. and P. Sugumar (2018) Concepts of 

thermody-namics, International Journal of 

Pure and Ap-plied Mathematics 119 (12), 1675-

1683.  

Slaughter, G. M. (1964). Investigation of the 

ener-gy spectrum of turbulence in a closed 

rectan-gular conduit, PhD Thesis, Georgia 

Institute of Technology, 190p. 

Stewart, S. M. and R. B. Johnson (2016). 

Blackbody Radiation: A History of Thermal 

Radiation Computational Aids and 

Numerical Meth-ods, 1st Ed., CRC Press, 

Boca Raton. 

Tung, K. K. (2003). The k-3 and k-5/3 energy spectrum 

of atmospheric turbulence: Quasigeostrophic 

Two-Level Model Simulation, Journal of the 

Athmospherica Sciences 60, 824-835. 

Vassilicos, J. C. (2015). Dissipation in turbulent 

flows, Annu. Rev. Fluid Mech, first published 

online as a Review in Advance on August 25, 

2014, 47, 95–114. 

Verscharen, D., R. T. Wicks, O. Alexandrova, R. 

Bruno, D. Burgess, C. H. K. Chen, R. 

D’Amicis, J. D. Keyser, T. D. Wit, L. Franci, J. 

He, P. Henri, S. Kasahara, Y. Khotyaintsev, K. 

G. Klein, B. Lavraud, B. M. Maruca,;= M. 

Maksimovic, F. Plaschke, S. Poedts, C. S. 

Reynolds, O. Roberts, F. Sahraoui, S. Saito, C. 

S. Salem, J. Saur, S. Servidio, J. E. Stawarz, Š. 

Štverák and D. Told (2021). A Case for 

electron-astrophysics, Exp Astron, Voyage 

2050-Science themes for ESA’s long-term plan 

for the science programme: Solar Systems, ours 

and others (Part2).  

Voitenko, Y. and J. De Keyser (2011). Turbulent 

spectra and spectral kinks in the transition range 

from MHD to kinetic Alfven turbulence, 

Nonlin. Processes Geophys 18, 587–597. 

Wang, G., F. Yang, K. Wu, Y. Ma, C. Peng, T. Liu, 

and L. P. Wang (2021). Estimation of the 

dissipa-tion rate of turbulent kinetic energy: a 

review, Chemical Engineering Science (229), 

116133, 17p.  

White, F. M. (2016). Fluid Mechanics, University of 

Rhode Island, McGraw-Hill Education, NY, 

USA, 864p. 

Xia, H., N. Francois, H. Punzmann and M. Shats 

(2013). Lagrangian scale of particle dispersion 

in turbulence, Nature Communications, 4

 


