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ABSTRACT 

The study of intelligent design methods is becoming a hot topic for the design of turbine cascades. This paper 

proposes a data-based policy model to achieve intelligent design. To gain a high-quality policy model, 

empirical equations and "space extending + elitism" are adopted to dynamically optimize database. This 

guarantees the quality of the model. Compared to traditional optimization design approaches, the proposed 

method relies on less human experience to design a turbine cascade. Ten different turbine cascades are used 

to verify this method. Results show that, aerodynamic performance of the cascades redesigned is either the 

same as or better than that of the traditional cascades. The computing time is reduced by more than one order 

of magnitude compared to a "CFD + optimization algorithm" or "surrogate model + optimization algorithm" 

method. With the advantages in computing time and intelligence, the proposed novel method shows the 

possibility of replacing traditional design methods. 

Keywords: Cascade design; Surrogate model; Artificial intelligence; Optimization design; Neural network. 

NOMENCLATURE 

AVDR Axial Velocity Density Ratio η cascade efficiency 

g transformation function of flow angle θ* parameters of policy model 

i incidence angle (unit is degree) κ curvature 

kw control parameter of leading edge wedge angle λ , μ control parameters of suction surface 

Lax axial chord length π policy model 

M auxiliary points of Bezier Curve σx axial solidity 

Ma Mach number Φ control parameter of iteration 

N number of samples for design variables   

P control points of Bezier Curve   

Q number of samples for optimization variables  Subscript 

r leading or trailing edge radius 1 cascade inlet or leading edge 

w 1/2 wedge angle 2 cascade outlet or trailing edge 

X design variable group d design condition 

Y evaluation variable group k blade angle 

y cascade evaluation value obj objective 

Z optimization variable group p pressure surface 

Zm modification of Zweifel coefficient s isentropic 

  v variable condition 

β flow angle or blade angle   

γ specific heat ratio Acronyms 
γp stagger angle of pressure surface CFD Computational Fluid Dynamics 

△cβ deviation angle coefficient DoA design of artificial intelligence 

△β turning angle of pressure surface EIF Equivalent Inviscid Flow 

δ coefficient related to stagger angle EXP experimental 

δm deviation rate of massflow Ori original 

ε control parameters of pressure surface RANS Reynolds-Average Navier-Stokes 
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1. INTRODUCTION 

Turbine cascade design is a complex and iterative 

process. With the development of computer 

technology and optimization algorithms, design of 

turbine cascades and gas turbines is becoming more 

and more intelligent. Early researchers obtained a 

series of empirical equations to guide the design. The 

"intelligence" is described in the form of equations 

(Pritchard 1985) to simplify the work of designers. 

In the 1990s, the combination of computational fluid 

dynamics and an optimization algorithm ("CFD + 

optimization algorithm") was applied to design 

turbine cascades. This method gradually became a 

widely used design method and it also has been 

continuously developed (Shelton et al. 1993; Sonoda 

et al. 2006; Giel 2008; Chatel et al. 2019). Although 

this approach does not make use of much human 

expert experience, the computational cost is 

expensive. To solve the problem, an improved 

method i.e. "surrogate model + optimization 

algorithm" (Pierret and Van den Braembussche. 

1999) was proposed. A surrogate model is used to 

replace CFD analysis. Hence the computing time is 

reduced by several orders of magnitude (Kosowski 

et al. 2010). For turbine cascade design, different 

surrogate models such as artificial neural networks 

(ANN) (Pierret and Van den Braembussche. 1999; 

Kosowski et al. 2010) and support vector machines 

(SVM) (Anguita et al. 2003) were studied. No 

surrogate model is absolutely superior though ANN 

is the most widely used one.  

Undoubtedly, surrogate models can reduce 

computing time. However, model construction is 

time consuming. Most surrogate models can only be 

used once because they are constructed for a 

specific cascade. Taking model construction time 

into account, "surrogate model + optimization 

algorithm" is still an expensive method. Little work 

has been done on how to reduce the time of model 

construction in turbomachinery. Nevertheless, some 

researchers have tried to improve model adaptation 

to more cascades. A common method is to construct 

a richer CFD database (Kosowski et al. 2009). 

Another method is to construct a cascade generation 

policy (Clark 2019) independent of optimization 

algorithms. This kind of method is called a policy 

model in this paper. A policy model learns 

knowledge from data and uses the knowledge to 

design a product.  

Policy model construction includes database 

construction and data learning. For the turbine 

cascade design, almost all the time consumed 

comes from database construction. With regards to 

database construction, there are two difficulties. The 

first is how to determine the value ranges of 

variables describing a turbine cascade. It has been a 

persistent problem for researchers since the era of 

"CFD + optimization algorithm" (Moroz et al. 

2004). Ranges from upper bound to lower bound for 

variables decide the feasibility and universality of a 

method. To select reasonable value ranges, priori 

knowledge and human expert experience are needed. 

The second difficulty is how to get high quality data. 

The existing optimization design methods cannot 

afford the computing time of generating the 

database. Therefore, a more efficient selection 

strategy is needed to select "good" data into the 

database.  

Based on the above discussion, the most important 

problem for the policy model method is database 

construction. An intelligent turbine cascade design 

method with empirical equations and "space 

extending + elitism" is proposed to solve the 

problem. The equations translate human experience 

into a form that artificial intelligence (AI) can 

understand. "Space extending + elitism" uses 

optimization and selection to store the best human 

experience into AI. For a design task, using the AI 

experience directly is more efficient than "CFD + 

optimization algorithm". The proposed method aims 

to shorten computing time to several minutes to 

design a cascade. It also provides a feasible 

intelligent design idea for other fields. 

2. DESIGN PROCESS 

2.1 Mathematical Expression  

The design variable group X (design requirements), 

optimization variable group Z (design schemes), and 

evaluation variable group Y (aerodynamic 

performance) are essential elements of a design. The 

process of the intelligent turbine cascade design can 

be divided into two steps. The first is the 

mathematical definition of a cascade design shown 

in Eq. (1). The second is to construct a database and 

obtain the best policy model. The policy model is a 

function of design variable group X and the optimal 

schemes Z*. The mathematical expression of the 

function is shown in Eq. (2). 

 ,Y f X Z  (1) 

 *

*Z X


  (2) 

To realize the two processes above, the following 

problems must be solved: 

Determine the ranges of variables in X; 

Determine the initial ranges of variables in Z; 

Specify the mathematical expression of the design 

and evaluation function f; 

Choose an intelligent policy model π; 

Construct a cascade database and obtain the optimal 

policy parameter θ* by data learning. 

2.2 Design Variable Group X 

Based on typical turbine design references (Aungier 

2006a; Kacker and Okapuu 1982; Aungier 2006b). X 

consists of 7 sets of variables given in Eq. (3) 

X={β1d, β2obj, Ma2, AVDR, γ, σx, r2/Lax} 
(3) 

Where β1d is inlet flow angle (based on axial 

direction), β2obj is objective outlet flow angle, Ma2 is 

outlet Mach number, AVDR is axial velocity density 

ratio, γ is specific heat ratio, σx is axial solidity, and 

r2/Lax is the ratio of trailing edge radius to axial chord 

length. 

The reason why β1d, β2obj, Ma2, AVDR and γ are 

associated to X is because they determine the 

operating conditions of a cascade. Geometric 
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variables involving σx and r2/Lax are also involved in 

the design variable group X, since they determine 

the structural constraints of a cascade. The effect of 

Reynolds number will not be considered, because 

the effect of Reynolds number is negligible for most 

traditional turbines. The inlet Reynolds number 

(based on unit length) of 8×106 is selected in this 

paper. Furthermore, the influence of the axial chord 

length Lax is not considered due to the neglected 

influence of Reynolds number. The cascades with 

different axial chord lengths can be obtained by a 

scaling transformation. 

Velocity is a direct reflection of flow conditions, and 

the ratio of the velocity components can be 

expressed by simple trigonometric functions. So, all 

the angles are transformed to cosine functions. The 

transformation functions g1 and g2 of inlet and outlet 

flow angles are given in Eq. (4),(5). 

    

    

1 1 1 1

1

1 1 1 1

arccos 2 , 1

arccos , 1

d d

d

d d

g g

g g

 


 

  


 
 

 (4) 

  2 2 2arccosobj objg   (5) 

In addition, a constraint "|β1d|<β2obj" is used to 

exclude most unreasonable design conditions. Eq. 

(6) is applied to construct the transformation 

function between the axial solidity σx and the 

modification of Zweifel coefficient Zm. The use of 

Zm can exclude most unreasonable design 

conditions, benefiting the database construction. 

 

2

2 2 1

1

1 2

2cos tan tan
, 30

cos
2

0.75 0.6 1.0 , .

obj obj d

d

d obj

mx

m

Z

Z otherwise

  


 


 
 

 
  
 


 

 (6) 

Table 1 shows the specific ranges of the variables in 

X, where all the angles are defined based on axial 

direction.  

 

Table 1 Design variable ranges and constraints 

of turbine cascades 

Variables Ranges 

β1d[deg]&g1(β1d) [-69.5,69.5]&[0.35,1.65] 

β2obj[deg]&g2(β2obj) [40,80]&[0.174,0.766] 

Ma2 [0.3,1.3] 

AVDR [0.7,1.25] 

γ [1.2,1.67] 

Zm [0.6,1.4] 

r2/Lax [0.005,0.03] 

Constraint |β1d|<β2obj 

 

The ranges of β, Ma2 and AVDR are determined 

based on (Aungier 2006a,b; Kacker and Okapuu 

1982). The fluid types with the range of γ include 

air, gas, water steam, helium and so on. The range 

of Zm is larger than the recommended range of the 

traditional design method. The upper value of r2/Lax 

is bigger than that of traditional turbines. Usually, 

only some micro turbines use the value of 0.03. 

Some unconventional turbine cascades, such as 

hypersonic turbine cascades (Colclough 1966a,b) 

and ultra-high load turbine cascades (Tsujita and 

Kaneko 2019) are not involved in this paper. 

2.3 Cascade Profile Parameterization 

Parameterization is an essential process which 

directly determines the number of optimization 

variables (Li and Zheng 2017). These variables 

compose the optimization variable group Z. A 

parameterization method is proposed, and the initial 

ranges of the variables in Z will be specifically 

discussed later. 

As shown in Fig. 1, the cascade profile is connected 

by two arcs and two Bezier curves, in which the 

suction surface is a 5th-order Bezier curve, and the 

pressure surface is a 4th-order Bezier curve. The 

parameterization causes the profile having four 

connecting points, so continuity conditions of the 

points must be considered. The continuity conditions 

given in this paper are as follows: the G2 continuity 

condition needs to be satisfied at the connecting 

points of the pressure surface and leading edge, and 

the G1 continuity condition needs to be satisfied at 

the other three connecting points. 

 

 
Fig. 1. Schematic of turbine cascade profile 

parameterization. 

 

Although the parameterization method mentioned 

above is not complex, it is not easy to determine the 

variable ranges. To simplify the expression of the 

formulas, only the condition β2k>0 is discussed, 

where the β2k is outlet blade angle. Under the 

condition of β2k<0, the cascade profile can be simply 

reversed to achieve the objective. 

2.4 Leading and Trailing Edges 

For an arc in a two-dimensional plane, its position 

and shape can be completely determined by five 

parameters {β,w,r,x,y}. The cascade position 

determines the leading edge arc (x1,y1), and the 

leading edge radius r1 is determined by Eq. (7). 

1 10.84 cos /ax d xr L    (7) 

The blade angle β1k, 1/2 wedge angle w1, and inlet 

flow angle β1d satisfy the equation given in Eq. (8). 
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𝑡𝑎𝑛 𝛽1𝑑 =
𝑡𝑎𝑛(𝛽1𝑘 + 𝑤1) + 𝑡𝑎𝑛(𝛽1𝑘 − 𝑤1)

2
 

(8) 

There are two unknown variables β1k and w1 in Eq. 

(8). A variable kw and two procedure parameters βp1 

and βp2 are used. The definitions of these parameters 

are given in Eq. (9). 

1 1 1

2 2 2

1 1

2 1

p k

p k

p d

w

p d

w

w

k

 

 

 

 

 

 






 

(9) 

The outlet 1/2 wedge angle w2 is a known constant, 

which will be discussed later. So far, the 

parameterization of leading edge can be expressed 

by a variable kw. According to the characteristic of 

the pressure surface and definition of kw, the value 

range of kw being 0 to 1 is reasonable. It is easier to 

obtain a more reasonable cascade profile by 

narrowing the range as kw∈[0.2,0.6]. 

The coordinate of the trailing edge (x2,y2) can be 

obtained from (x1,y1), Lax, and γp, where Lax can take 

any value as the reference length. γp is the stagger 

angle of the pressure surface and can be obtained by 

an iterative calculation of leading edge, trailing 

edge, and pressure surface. The iterative calculation 

process will be discussed later. The trailing edge 1/2 

wedge angle w2 has a significant influence on 

trailing edge thickness and trailing edge loss. The 

increase of w2 always leads to the increase of 

aerodynamic loss, so it is more reasonable to give 

w2 a constant value instead of a range. The value 

between 0 and 7° is common. Considering the 

thickness and aerodynamic loss, the value is given 

in Eq. (10). 

w2=3° (10) 

The trailing edge radius r2 is a geometric constraint, 

which is included in the design variable group X. 

The blade angle β2k is calculated from the objective 

outlet flow angle β2obj and the deviation angle Δcβ. 

The mathematical expression for β2k is given in Eq. 

(11). 

2 2cos cosk obj c     (11) 

where β2obj can be obtained from the design variable 

group X. The deviation angle Δcβ represents the 

deviation between the blade angle and the flow angle 

to a certain extent. The variable range of Δcβ is easy 

to determine. This paper takes the range of 

Δcβ∈[-0.2,0.2]. So the parameterization of the 

trailing edge is expressed by one variable Δcβ. 

2.5 Pressure Surface 

The pressure surface consists of a 4th-order Bezier 

curve. As shown in Fig. 2, suppose that the 

connection point of the pressure surface and the 

leading edge is P0, and the connection point of the 

pressure surface and the trailing edge is P4. The 

auxiliary point M can be obtained by the G1 

continuity condition. 

 

 
Fig. 2. Schematic of pressure surface Bezier 

Curve. 

 

A vector 𝜀 is defined to construct the function of 

pressure surface, as shown in Eq. (12). 

     

 

 

 

 

1 2 1 0 2 4

2

3 3 3 4

1 2 3

1 3

2

1 1

2

1

, ,

, 0,1

1,

M P P
P

P M P

   

 

   

 



    


  





 

 (12) 

Eq. (13) is obtained by G2 continuity condition at the 

leading edge and pressure surface connection point. 

 
1 0 0 2

1 0 01.5

0

4

3

r P M P P
P P M P

P M


    

(13) 

where r1 is leading edge radius. So far, all the control 

points of the pressure surface are expressed by 𝜀. 

The pressure surface has a specific turning angle, 

and the flow near the pressure surface is always 

subsonic for traditional turbine cascades. Under 

flow conditions, the aerodynamic loss near the 

pressure surface comes from a large local flow 

turning caused by a large change of local curvature. 

Therefore, a function between the curvature 

distribution and 𝜀  needs to be established. To 

establish the function, two parameters are defined as 

shown in Eq. (14). 

 

2 1

12
1

p p

p p

  

 




  


 



 (14) 

where βp1 and βp2 are defined in Eq. (9), γp is shown 

in Fig.1. Thus, the curvature of any point on the 

pressure surface is a function defined in Eq. (15). 

 0, , , ,t        (15) 

where t is the parameter of Bezier curve. κ0=-1/r1 is 

the curvature at point P0. The equation takes the sign 

of the curvature into account and takes κ0<0. A 

min-max optimization function is proposed as shown 

in Eq. (16) avoiding sharp local changes of the blade 

profile. 
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 0argminmax | , ,opt
t

       
(16) 

It is found that the influence of κ0 on 𝜀opt  is 

negligible. Finally, an interpolation table is 

constructed to solve 𝜀opt  by inputting δ and Δβ. 

Therefore, the parameterization of the pressure 

surface is expressed by adding a new variable δ. In 

this paper, the range of δ is given as δ∈[-0.5,0.5]. 

2.6 Suction Surface 

The suction surface consists of an n-order Bezier 

curve. However, it is found that when n>5, the 

increase of curve order will no longer get obvious 

aerodynamic performance benefit, so n=5 is chosen. 

In this paper, the suction surface only uses convex 

Bezier curves, which can suit most of the design 

requirements, and that is why the method cannot be 

applied to hypersonic cascades. Fig. 3 depicts the 

geometric schematic of the suction surface Bezier 

curve.  

 

 
Fig. 3. Schematic of suction surface Bezier 

Curve. 

 

The connection point of the suction surface and the 

leading edge is P0, and the point of the suction 

surface and the trailing edge is Pn. The auxiliary 

point M1 is obtained by G1 continuity condition. 

Other auxiliary points and control points are 

obtained by Eq. (17). 

 

 

 

  

 

 

1 1 1 0 0

1 1 1

1 1

1 1 1

1 1

1

,

2,3, , 2

, [0,1]

n n n

i i i i

i i n i i

i n n i i

i i

P M P P

P M P P

P M P

P P P

M line P P PP

i n







 

 



 

  

 

  

  

  

  



 



……

 (17) 

where P is the control point group of Bezier curve, M 

is a defined auxiliary point group, line is a function 

to find the intersection of two lines. 𝜆 and 𝜇 are 

two defined vectors of suction surface. According to 

the assumption of the convex curve, λi∈[0,1] and 

μi∈[0,1] are taken. Thus, the parameterization of 

the suction surface is expressed by two vectors 𝜆 

and 𝜇. 

2.7 Optimization Variable Group Z 

By analyzing the process of parameterization, it can 

be seen that for a specific design requirement, nine 

independent variables need to be given to determine 

a complete cascade profile. Table 2 shows the initial 

ranges of optimization variables, which have already 

been discussed in detail. The ranges will be adjusted 

by the policy model to eliminate bad cascades. 

 

Table 2  Initial ranges of optimization variables 

Variables Ranges 

Δcβ [-0.2,0.2] 

kw [0.2,0.6] 

δ [-0.5,0.5] 

λ1, λ2, λ3 [0.0,1.0] 

μ1, μ2, μ3 [0.0,1.0] 

 

2.8 Evaluation Variable Group Y 

Three demands are considered to evaluate the 

aerodynamic performance of turbine cascades: the 

requirements of massflow, power, and structural 

constraints need to be satisfied; The aerodynamic 

performance is good enough; The performance 

under off-design conditions is not bad. How to 

comprehensively evaluate the three demands is a 

problem in multi-point turbine cascade design. Some 

algorithms have the advantages of solving 

multi-objective problems, such as the 

second-generation (Deb et al. 2002) and the 

third-generation (Deb and Jain 2013; Jain and Deb 

2013) multi-objective genetic algorithms. However, 

they will lead to unacceptable computing time for 

the big data needed in this paper. Therefore, a 

aerodynamic performance evaluation equation based 

on multi-point design experience is given, as shown 

in Eq. (18). 

2 2

2

2

2

2

0.5 0.5 0.1

cos cos

cos

d v

obj

obj

s

y m

m

Ma

Ma

  

 






  




 
  
 

 

(18) 

In the above, δm is deviation rate of mass flow, η is 

efficiency of the cascade, defined as the square of the 

ratio of outlet Mach number to outlet isentropic 

Mach number, and β2 is outlet flow angle. The 

subscript d represents the design condition, and v 

represents the condition with positive attack and 

different outlet Mach number of off-design 

conditions. Moreover, y represents the evaluation 

value of aerodynamic performance. The evaluation 

variable group Y is composed of the evaluation value 

y. 

The inlet flow angle β1v, and outlet Mach number 

Ma2v under the condition v are given by design 

experience as shown in Eq. (19). Except β1v and 
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Ma2v, the others are equal to the variables under 

design conditions. 

 1 1

2 2

2 2

2 2

arctan tan 0.5

0.2 0.8

1.0 0.8 1.2

0.2 1.2

v d

d d

v d

d d

Ma Ma

Ma Ma

Ma Ma

  

 


  
  

 (19) 

The aerodynamic parameters involved above can be 

obtained by a quasi-three-dimensional numerical 

simulation method using Multiple Blade Interacting 

Streamtube Euler Solver (MISES) (Youngren 1991; 

Drela and Giles 1987). The solver uses an Equivalent 

Inviscid Flow (EIF) model to simulate the flow field, 

where both the boundary layers and shock waves 

can be captured. The advantage of using EIF is fast 

calculation, though it is less accurate than more 

widely used methods such as RANS.  

3. POLICY MODEL 

The policy model is used to solve a high 

dimensional regression problem shown in Eq. (2). 

The artificial neural networks (ANN), being a 

widely used regression model, is adopted to 

implement the policy. The ANN uses Error Back 

Propagation(BP) to update the parameters of the 

network until a minimum regression error. 

A database updating method is proposed to gain high 

quality data. The method is achieved by a learning 

framework called "space extending + elitism". As 

shown in Fig. 4, the framework consists of four 

parts: policy network, space extending process, 

design simulation, and selection of elites. The inputs 

include the number of iterations, the number of data 

N and Q, the variable ranges of X, the initial variable 

ranges of Z, and the updating rule of the control 

parameter of iteration Φ which controls the 

convergence rate and model precision. The variable 

ranges of X and Z have already been discussed. The 

values of N, Q and Φ are summarized in Table 3. 

 

Table 3 Values of the iterative parameters 

during the model construction 

Iteration N Q Φ 

1 2000 50 ---- 

2 4000 50 0.35 

3 4000 100 0.25 

4 4000 100 0.15 

5 4000 80 0.1 

 

For an iterative step, the variables in X are sampled 

using Latin hypercube sampling method, and the 

number of samples is N. The sampling process is 

repeated enough times to get the distribution of the 

samples with the max-min Mahalanobis distance, 

which is an important evaluation of the sample 

quality. The process effectively ensures the spatial 

uniformity of the samples, though the computing 

time increases a few minutes, which is negligible 

compared to the whole database construction time. 

 
Fig. 4. Framework of database construction. 

 

After the design variable group X is input in the 

policy model, N samples in the optimization 

variable group Z are obtained according to Eq. (2). 

The policy model is a fully connected ANN with 

four layers (including input and output layers). The 

number of neurons in each layer is chosen as 7, 40, 

50, and 9, respectively. It was found that more 

neurons did not increase the prediction precision in 

this study. The output layer activation function is 

Sigmoid shown in Eq. (20). The activation function 

of hidden layers is Selu (Klambauer et al. 2017). It 

can adaptively realize the data standardization of the 

hidden layers. The mathematical expression of Selu 

is shown in Eq. (21). 

 
1

1 x
Sigmoid x

e



 (20) 

 
0

1.0507 , 1.7326

x

x if x
Selu x

e otherwise


 

 


 



 

 (21) 

N numbers of quasi-elite samples are gained. To 

gain better elites, a search process centered on 

quasi-elites Zi is carried out. The search space 

follows a uniform distribution shown in Eq. (22). 
Each Ti is filled with Q numbers of samples, so the 

total number of the samples is N×Q. 

   ~ ,i i i i i iT X X U Z Z Z Z     (22) 

The extended data is input to the design simulation 

process. Subsequently the evaluation value of each 

sample can be obtained. During selection of elites, 

the sample with the highest evaluation value in each 

Ti is maintained. Thus, N quasi-elites are replaced 

by better elites, so that the quality of the database is 

improved. Finally, the new elites are used to update 

the parameters of the policy model. Then, an 

iterative step has been completed. 

The iteration process above will be carried out for a 

while. With the increase in iteration cycles, the 

control parameter Φ decreases so that the variable 

ranges in Z will be narrowed, and finally the optimal 

parameters of the policy model are found and 

locked. 

In general the policy model can generate good 

design schemes. To solve the over-fitting or 
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under-fitting problem of any surrogate model and to 

improve the quality of the intelligent turbine cascade 

design further, an optimization process is applied 

based on the scheme designed by the policy model. 

The contribution of the optimization is to eliminate 

the fitting error of the surrogate model. Δcβ, kw and δ 

represent outlet blade angle, leading edge wedge 

angle and stagger angle of cascades respectively. 

These three variables are optimized by dozens of 

EIF simulations with the objective function shown 

in Eq. (18). Usually, the computing time of ANN is 

negligible and a single EIF simulation takes 3 to 15 

seconds for different cases. So, the total time for a 

turbine cascade design is only several minutes with 

a single CPU core.  

Table 3 shows the values of N, Q and Φ in this 

study. About 1.4 million design simulations were 

carried out. To decrease computational cost, 52 

CPU cores (2.1GHz) were used for the model 

framework with good parallel computing 

characteristics. The time consumption of the model 

construction was about 4 days which is longer than 

that of traditional models. However, compared to 

the tradition models which were constructed for a 

specific cascade, the proposed policy model in the 

current study can be used for almost all the 

traditional turbine cascades included in Table. 1. 

The increase in the time consumption of the model 

construction is worth it in terms of universality 

improvement of the policy model. 

For cascade design, dozens of design simulations 

are required for the method in this paper, hundreds 

of design simulations for "CFD surrogate model + 

optimization algorithm" (Lee et al. 2014; Waesker et 

al. 2020) methods and more times for modeless 

methods. So, the proposed method reduces the 

computing time by at least one order of magnitude 

compared to the widely used methods. 

4. APPLICATION OF THE PROPOSED 

POLICY MODEL 

To verify this novel method, ten turbine cascades are 

designed and compared with some typical cascades 

to show that the policy model is intelligent and the 

cascades designed have good aerodynamic 

performance. These typical cascades are called "Ori" 

(Original). Ori_Case1 from a turbine institute has 

not been published. Ori_Case2 is from (Bryce et al. 

1985). Ori_Case3 and Ori_Case4 are from (Behr 

2007). The other cases are successively from 

(Sonoda et al. 2006; Kiock et al. 1986; Meng et al. 

2019; Hodson and Dominy 1987; Thulin et al. 1982; 

Chatel et al. 2019). These cascades can be divided 

into two classes roughly. Ori_Case1, Ori_Case5 and 

Ori_Case10 were obtained from the "CFD + 

optimization algorithm" method. The others were 

designed based on human experience. The 

differences between the cascades can be found in 

the detailed design requirements and geometric 

profiles given in Appendix.  

The redesigned ten cascades using the policy model 

are named as DoA_Case1 to DoA_Case10. To 

compare the aerodynamic performance of the Ori 

and DoA cascades, Reynolds Averaged Navier 

Stokes equations (RANS) were conducted. The 

NUMECA-FINE-Turbo software was used to 

simulate flow fields. Experimental (EXP) data for 

Ori_Case1 was used to verify the predictive 

accuracy of RANS. The blade height of the test 

cascade, Ori_Case1, is 160mm. Four five-hole 

probes are distributed within a pitch. The measuring 

position is 28mm behind the trailing edge, at mid 

span of the blade height. For supersonic flow, the 

measurement results are corrected based on the 

assumption that a normal shock wave forms at the 

probe. For the CFD, a single-channel is used as the 

computational domain. A 3D straight blade model is 

adopted. The number of grid nodes is about a 

million. The SST turbulence model with wall 

functions is used, and the equivalent roughness 

height is set as 1 micrometer. The aspect ratio is 3.5. 

Fig. 5 compares predicted total pressure loss 

coefficients and measured ones. The results show 

that the CFD prediction is reliable. 

 

 
Fig. 5. Comparison of experimental data and 

CFD results for Ori_Case1. 
 

For any case, the outlet flow angle β2 should be 

equal to the objective value β2obj. However, it is 

acceptable that the outlet flow angle deviations of 

the ten designed cascades are all less than 1 degree, 

the largest δm is 3.6% and the average δm is 1.6%. 

For more comparisons, the profiles and total 

pressure loss coefficients are shown in Fig. A in 

Appendix. Mach distributions of the cascades are 

shown in Fig. B in Appendix. These results include 

the operating conditions with different incidence 

angle (i) and outlet Mach number. For Case1 and 

Case5, the aerodynamic performance is not much 

different between the Ori and DoA cascades. For 

Case10, the DoA cascade performs better than the 

Ori under relatively high Mach number and worse 

under lower Mach number. The three Ori cascades 

are designed by researchers with "CFD + 

optimization algorithm" method. It means that the 

proposed policy model method can achieve the 

level of optimization design. For the other cases, the 

DoA cascades perform about the same or better. For 

Case2, Case3, Case4 and Case7, the DoA cascades 

perform better. The reason is that the DoA cascades 

obtain more reasonable Mach number distributions 

than those of Ori. To some extent, these cases prove 

that the policy model proposed in this paper has 

advantages on optimization. 
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5. CONCLUSIONS 

The processes or steps of how to construct an 

intelligent surrogate model, i.e. policy model has 

been introduced. Ten cascades have been 

redesigned to verify this policy model. Predicted 

aerodynamic performances for the redesigned and 

original cascades have been compared. Some 

conclusions can be drawn as follows:  

"Space extending + elitism" and empirical 

equations can construct high quality database. 

"Space extending + elitism" can obtain the expert 

coefficients of the equations more efficiently than 

traditional methods. The coefficients can be stored 

in an ANN policy model. Once the policy model 

has been constructed, it is intelligent enough to 

complete a design task for a designer without any 

prior knowledge 

Compared to the "surrogate model + optimization 

algorithm" method, the current obtained policy 

model can replace the optimization algorithm. 

Computing time is reduced by more than one order 

of magnitude. Less human expert experience is 

required and cascades with good aerodynamic 

performance can be gained. These advantages 

demonstrate a potential for the new method to 

replace traditional design methods.

APPENDIX 

Table. A Design requirements of ten turbine cascades 

(Note: the unit of angle is degree, the unit of length is meter and the β2 is outlet flow angle from RANS) 

 Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9 Case10 

γ 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

β1 48.5 0 52.4 0 65 30 25 -38.8 0 0 

β2obj -72.3 -75.2 -71.8 75.3 -69.1 -67.1 -60.3 55.1 79.7 -75.6 

β2 -72.1 -74.7 -71.9 75.5 -68.7 -68.0 -60.3 55.7 79.6 -75.9 

Ma2 0.87 1.25 0.53 0.55 1.15 0.9 0.7 0.71 0.92 0.85 

AVDR 1.0 1.0 1.0 1.0 1.0 1.0 0.7 1.0 1.0 1.0 

Pitch 0.061 0.045 0.042 0.063 0.042 0.042 0.055 0.031 0.1 0.062 

Lax 0.0499 0.0314 0.0463 0.0492 0.0562 0.048 0.0649 0.0518 0.0429 0.0363 

r2/Lax 0.0166 0.0194 0.0121 0.0145 0.0187 0.0303 0.014 0.0065 0.0198 0.0207 
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Fig. A. Comparisons of cascade profiles and total pressure loss coefficient. 
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Ori_Case1 

 

DoA_Case1 

 

  
Ori_Case2 

 

DoA_Case2 

 

  
Ori_Case3 

 

DoA_Case3 

 

  
Ori_Case4 

 

DoA_Case4 

 

  
Ori_Case5 DoA_Case5 
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Ori_Case6 DoA_Case6 

  
Ori_Case7 DoA_Case7 

  
Ori_Case8 DoA_Case8 

  

Ori_Case9 DoA_Case9 

  
Ori_Case10 DoA_Case10 

Fig. B Distributions of predicted Mach number at the midspan at design conditions. 
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