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ABSTRACT 

High-order nonlinearities may be an important cause of freak wave generation; however, it is still unclear 

how to stimulate the generation of freak waves in deep-water random waves. This study employs the 

modified fourth-order nonlinear Schrӧdinger equation (mNLSE) to simulate the occurrence of freak waves 

and analyses the influence of high-order nonlinearities on the evolution of random wave trains described 

initially by the JONSWAP spectrum. In the evolution of freak wave generation, variations in the linear and 

nonlinear terms of the mNLSE are displayed with the nonlinear growth of surface elevations. For comparison, 

the corresponding results from the cubic nonlinear Schrӧdinger equation (CSE) and the linear Schrӧdinger 

equation (LSE) are also obtained. Power spectra and spectral peakedness curves in the evolution of the wave 

train are also given to analyze the potential mechanism of freak wave formation. Additionally, the 

probabilities of freak wave appearances are estimated for different initial parameters and different governing 

equations. The results show that the fourth-order nonlinearity plays an important role in the generation of 

freak waves, but this single factor is not enough to generate freak waves, and freak wave occurrence is the 

contribution of multiple factors to the unstable evolution of the wave train. The higher-order nonlinearity, 

concentrated initial random phases, larger wave steepness, narrower initial spectral width, and smaller 

sideband instability parameter can increase the probability of freak wave generation. 

Keywords: Freak waves; High-order nonlinearity; mNLSE; CSE; LSE; Random waves. 

NOMENCLATURE 

a carrier amplitude 

A       dimensionless complex wave envelope of 

the first-order Stokes wave 

A’      complex wave envelope of the first-order 

Stokes wave 

f frequency 

f0 spectral peak frequency 

fH         high frequency limit 

fj          the jth frequency 

fL         low frequency limit 

g gravity acceleration 

h dimensionless water depth 

h’ water depth 

Hcr wave crest height 
Hd zero downcrossing wave height 

Hf zero upcrossing wave height 

Hf+1        neighboring backward wave height of Hf 

Hf-1         neighboring front wave height of Hf 

Hs significant wave height 
Hmax maximum zero upcrossing wave height 

i imaginary unit 

j integer 

k          wavenumber 

k0 carrier wavenumber 

m0 0-order moment of spectrum  

M     frequency interval number 

t       time coordinate 

Tp     spectral peak period 

x       horizontal coordinate 

z       dimensionless vertical coordinate 

z’      vertical coordinate 

α energy scale parameter 

γ peak enhancement factor 

ε wave steepness 

ζ dimensionless wave surface displacement 

ζ’ wave surface displacement 

η dimensionless coordinates corresponding to x 

λ scale factor 

ξ        dimensionless coordinates corresponding to t 

σ peak shape parameter 

ϕ dimensionless potential of the induced 

mean current 

ϕ’ potential of the induced mean current 

ψ       phase function 

ω carrier frequency corresponding to k
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1. INTRODUCTION 

Freak waves are special extreme waves in the 

ocean. Their original accounts came from survivors 

of marine accidents. People began to be concerned 

about this kind of large wave in recent decades. 

Then, various incidents of ships and nearshore 

persons encountering freak waves were reported 

gradually (Liu and MacHutchon 2006; Chien et al. 

2002; Lavrenov 1998; Tian 2006; Kharif and 

Pelinovsky 2003; Warwick 1996; Graham 2000; 

Didenkulova et al. 2006; Nikolkina and 

Didenkulova 2011). Recently, the most likely freak 

wave incident occurred on the beach of Zhangzhou, 

Xiamen, Fujian Province, China, on August 14th, 

2021, in which an abrupt giant wave swept away 17 

persons on the beach and caused 11 deaths 

(http://cnews.chinadaily.com.cn/a/202108/16/WS61

19c179a3101e7ce975ec20.html). All the accidents 

are so shocking that many researchers are paying 

much more attention to freak waves. 

At present, the most classic freak wave is the “New 

Year Wave” that attacked the Draupner oil platform 

in the North Sea on January 1st, 1995 (Haver and 

Andersen 2000; Haver 2004; Walker et al. 2004). 

Its wave height Hf =25.6 m and Hd =25.0 m, its wave 

crest height Hcr=18.5 m and its period is 

approximately 12 s, while its neighboring heights 

are Hf-1=11.6 m and Hf+1=6.8 m and the significant 

wave height is Hs=11.9 m in the background wave 

train. Thus Hcr/Hf =0.72, Hf/Hs =2.15, Hf/Hf-1=2.21, 

Hf/Hf+1=3.76 and Hd/Hf =0.98. Some of them are 

much higher than the thresholds of the rigorous 

freak wave definition given by Klinting and Sand 

(1987), and these ratios are also obviously different 

from those of ordinary waves, showing obvious 

nonlinear properties. 

Generally, wave nonlinearity has an important 

effect on the unstable evolution of wave trains, 

which affects not only the internal energy 

distribution among different components in random 

waves but also the symmetry of the wave shape. 

Veltcheva and Soares (2016) analyzed the 

nonlinearity of measured freak waves by the 

Hilbert–Huang transform method and proposed that 

a larger intrawave frequency modulation is 

associated with a higher asymmetry of the wave 

profile. Cui and Zhang (2011) and Hu and Zhang 

(2014) carried out wavelet transforms to analyze the 

energy evolution of wave trains and found that the 

nonlinearity effect leads to the shift of energy to 

high frequencies to form freak waves. Mori and 

Yasuda (2002) used a high-order nonlinear model 

and its second-order approximated model together 

with the Wallops spectrum to study the effect of 

spectrum width and water depth on the stability of 

random waves and believed that higher-order 

nonlinearities beyond the third order stimulate the 

chaotic evolution of Fourier spectral energy in 

deep-water waves, which can produce a single and 

extreme large wave with a remarkable peak height, 

and higher-order nonlinearities can be regarded as a 

reason for freak waves in deep water. Thus, the 

influence of high-order nonlinearities on the 

prediction of maximum wave height and freak 

waves should be considered independently of 

spectral width. 

Many parameters in the initial wave trains also 

affect the formation of freak waves in their 

nonlinear evolution. Kashima and Mori (2019) 

pointed out that the third-order nonlinearity at 

greater water depths remarkably affects the random 

wave height distribution on the slope. Onorato et al. 

(2001) used the CSE to study the occurrence of 

freak waves in random oceanic sea states 

characterized by the JONSWAP spectrum, 

revealing that large values of the Phillips parameter 

and enhancement coefficient increase their 

occurrence probability. Shemer et al. (2010a) 

investigated the spatial evolution of unidirectional 

random waves in a 300 m long wave tank and with 

the CSE and the mNLSE as the theoretical models 

and indicated that the statistical characteristics of 

the random wave field depend on the local width of 

the frequency spectrum and deviate from Gaussian 

statistics: the probability of extremely large (the so-

called freak) waves is highest when the local 

spectral width attains a maximum. Shemer et al. 

(2010b)  used the Gaussian spectrum, JONSWAP 

spectrum and rectangular spectrum to study the 

influence of spectrum width on the statistical 

parameters of nonlinear random waves in this large 

wave channel and pointed out that when the initial 

spectrum was narrow enough, freak waves would 

appear relatively frequently and the probability of 

freak waves for a wide initial spectrum is lower 

than that given by the Rayleigh distribution. Xia et 

al. (2015) performed a numerical simulation of 

freak wave generation in random sea states given by 

the JONSWAP spectrum with the mNLSE model 

and an instability indicator of the Benjamin-Feir 

index and proposed that a narrow spectrum and 

small significant wave height are helpful to form 

freak waves. Kirezci et al. (2021) employed the 
fully nonlinear Chalikov-Sheinin (CS) model and 

the high-order spectral model to study the 

probability of freak waves caused by modulation 

instability, which is indicated by three parameters, 

under the wave conditions described by the 

JONSWAP spectrum. The occurrence probabilities 

of freak waves are shown in the contour line charts 

against the Phillips parameter-enhancement 

coefficient plane. When the Phillips parameter is 

within the range of (0.001, 0.020), the probability 

generally changes in a single peak, which first 

increases and then decreases. When the 

enhancement coefficient is in the range of (1, 7), the 

probability tends to increase. It is concluded that 

steepness and bandwidth are two controlling 

parameters in freak wave formation and that their 

combination can further instigate or limit 

modulation instability. Janssen (2003) used the 

Zakharov equation to investigate nonlinear four-

wave interactions and freak waves and proposed 

that a narrower spectrum and larger wave steepness 

are favorable for the appearance of freak waves, 

while it is sensitive to initial random phases. 

Gramstad and Bitner-Gregersen (2019) also 

proposed that steepness is a key parameter for the 

probability of extreme and freak waves after 

analyzing the relation between spectral parameters 
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(Hs, Tp, steepness, and bandwidth) and kurtosis. 

Zhang et al. (2016) discussed statistical properties 

of nonlinear wave series with the nonlinear CS 

model and the temporal version of MNLS and 

revealed that both numerical models are able to 

capture the critical features (e.g., low probability) of 

mechanically generated long-crested waves induced 

by the nonlinear modulation except for the 

exceedance distribution of wave height and the 

more subtle features. 

These studies show that NLS-type models are 

suitable for the investigation of freak waves. The 

nonlinearity of waves and the variation in 

component wave energy can influence the 

formation of freak waves, and many factors in the 

initial wave trains, such as wave steepness, spectral 

width, and spectral parameters, also affect the 

probability of freak waves. However, they partially 

emphasized the effects of some factors on freak 

wave generation. 

On the basis of existing investigations, this paper 

studies the influence of higher-order nonlinearities 

together with other relevant factors on freak wave 

formation. The mNLSE model is selected to 

simulate the generation of freak waves in deep and 

random sea states. The corresponding results from 

the CSE model and the LSE model are also given to 

analyze the effect of multiple factors on the 

appearance of freak waves. 

2. NUMERICAL MODELS 

2.1 Governing Equations and Numerical 

Solutions 

The dimensionless mNLSE (Lo and Mei 1985) in 

the moving coordinate system with group velocity 

is shown in Eqs. (1) and (2), which controls the 

evolution of the deep-water complex wave envelope 

characterized by the narrow spectrum. 
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where ε=ka, the following transformations in Eq. 

(3) exist between the physical variables and 

dimensionless variables. 

 

where λ is the scale factor that adjusts the 

calculation domain in ξ to 2π and x is the horizontal 

coordinate of the wave propagation direction. Thus, 

(ξ, η, z) is a new coordinate system transformed 

from the dimensional coordinate system (t, x, z’). 

Equation (1) is a higher-order nonlinear equation 

and can be solved quickly with Eq. (2) through a 

split-step pseudospectral method (Lo and Mei 

1985). According to the evolution of the complex 

envelope in space, the wave surface displacement 

can be calculated as Eq. (4). 
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where ψ=-η⁄ε2+ξ⁄ελ is the phase function of the 

carrier wave and c.c. represents a complex 

conjugate. 

The right part of Eq. (1) is the fourth-order 

nonlinear term, and the third term on the left is the 

third-order nonlinear term. Letting the fourth-order 

term be 0, the mNLSE becomes the CSE, and only 

letting the first two terms on the left side be 0, it 

becomes the LSE. In the computation, the free wave 

surface evolved through the LSE is {Aeiψ+c.c. }/2, 

and the wave surface simulated with the CSE is the 

truncated term of Eq. (4) to the second harmonic 

term. 

2.2 Initial Wave Conditions 

The typical sea states, described by the JONSWAP 

spectrum (Yu and Liu, 2011), are selected as initial 

random wave conditions. This spectrum is 

expressed as follows: 
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where α is also known as the Phillips parameter. If f 

≤ f0, σ = 0.07, and if f > f0, σ=0.09. 

In the simulation, f0 is set as the carrier frequency, 

k0 is the corresponding wavenumber, the wave 

steepness ε=(k0Hs)/2 and the significant wave height 

0
0.4 mH

s
 . Based on the linear superposition 

law, the initial wave surface is assumed to be 
composed of M monochromatic waves, and its 

dimensionless form is as follows: 
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where φj is a random number distributed in (0, 2π). 

Most of the JONSWAP spectral energy is 

distributed in the frequency range (fL, fH), and the 

rest is omitted. This frequency range is divided into 

M intervals, where its interval 
jjj fff  1
 and 

2)(
~

1 jjj fff  
 are set, and then 

jjj ffSC  )
~

(2 , 

where Mj ,,2,1  , 50M , f1=fL and f51=fH. 

 The corresponding dimensionless initial complex 

wave envelope is constructed as follows: 
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A’ = aA, ζ’ = aζ, ϕ’ = ωa2ϕ, ε2kx = η 

εωλ (2kx/ω-t) = ξ, ελkz’ = z, ελkh’ =h               (3) 
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Table 1 Parameters of the initial wave trains 

Parameters α γ f0, Hz f, Hz
 

λ M 

Value 0.0081, 0.0162 4, 7 0.1 0.5 f0 ~1.6 f0  0.1~1.2 50 

 

where all relevant parameters except random phases 

are selected as shown in Table 1. The random 

phases are from the products of random numbers in 

the range of (0, 1) and 2π, which are displayed in 

Fig. 1. 
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Fig. 1. Three groups of random numbers for the 

initial phase. 

 

3. NUMERICAL RESULTS AND ANALYSIS 

3.1 Generation of Freak Waves 

Mei (1992) pointed out that sideband instability, 

namely, Benjamin-Feir instability, exists in the 

evolution of the slow modulated periodic wave 

train, which can cause its amplitude to increase 

exponentially in the local domain. 

It is known that sideband instability develops 

rapidly when the wave steepness is large (Lo and 

Mei 1985). Therefore, JONSWAP spectral 

parameters α=0.0162 and γ=7 were set to simulate 

the initial wave train, and this spectrum is so high 

and steep that its wave steepness is large. The initial 

random phases come from the random numbers of 

Group 1 in Fig. 1, which are mainly used in our 

simulations except for special instructions. The 

simulated results for λ=0.4 are selected to display 

the effect of high-order nonlinearity on freak wave 

generation. In the evolution of the wave train, the 

zero upper-crossing method is employed to estimate 

the wave height, and the definition given by 

Klinting and Sand (1987) is used to determine the 

occurrence of freak waves. 

Figure 2 (a) shows the evolution of the initial wave 

train by the mNLSE. The initial wave surface 

processed periodically consists of a series of wave 

groups. In the evolution, the second wave group on 

the left becomes increasingly higher, and their 

adjacent wave displacements gradually decrease. 

The group at η=1.122 grows into a freak wave 

group with a sharp and thin crest and bilateral 

asymmetry troughs. There are corresponding 

extreme waves in the wave trains before and after 

the generation of freak waves. Although they are 

not determined as freak waves because they cannot 

simultaneously meet the three conditions of freak 

waves, they are still dangerous waves.Figures 2 (b) 

and (c) show the corresponding wave trains from 

evolutions of the same initial complex envelope 

through the LSE and CSE, respectively. In Fig. 2 

(b), the energy of the wave train in the evolution 

gradually shifts to the second wave group on the left 

so that it continuously increases, but its growth 

speed is less than that obtained through the mNLSE. 

At η=1.122, it evolves into an extreme asymmetric 

wave group; however, the extreme wave does not 

reach the threshold of a freak wave. In Fig. 2 (c), 

the evolution of the wave surface through the LSE 

is similar to the results of the CSE, but there is no 

distinguished wave surface growth, and no extreme 

wave appears. 

Figure 3 shows the variations in the modulus of 

each term in the first formula for the mNLSE, CSE 

and LSE corresponding to Fig. 1. In Eq. (1), the 

first and second terms of the mNLSE are linear 

terms, the third term is a third-order nonlinear term, 

and the fourth and fifth terms are fourth-order 

nonlinear terms. As shown in Fig. 3(a), at η=0, the 

amplitude of the fourth term is larger and that of the 

fifth term is smaller in the second wave group on 

the left. With the increase in this wave group height, 

the amplitude of the fourth term varies rapidly in 

the form of a single peak, always has a maximum 

value at the time of the large wave, and reaches the 

extreme value in the whole evolution at the time of 

freak wave generation. The amplitude variations of 

other terms are similar to that of the fourth term, but 

their levels gradually decrease from the second 

term, third term, and first term to the fifth term at 

the time of large wave generation. In Fig. 3(b), the 

amplitude of the third-order nonlinear term does not 

have an obvious change in the initial wave train, but 

it has a remarkable single-peak growth at the 

moment   of  the   asymmetric  big   wave  in  the 

evolution, while the second linear term also has a 

significant peak growth, so it is determined that the 

third-order nonlinearity plays an important role in 

the asymmetric growth of the large wave. Fig. 3(c) 
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Fig. 2. Wave train evolution for freak wave generation through the mNLSE and corresponding 

evolutions through the CSE and LSE. 
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Fig. 3. Variations in each term modulus in the three Schrӧdinger equations corresponding to Fig. 2. 
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exhibits the amplitude evolutions of linear terms in 

the LSE. In the whole evolution, their amplitudes 

have not changed significantly. 

Evolutions of each order term of the three 

Schrӧdinger equations and variations in the 

corresponding wave elevations indicate that the 

fourth-order nonlinearity from the fourth term of the 

mNLSE and the third-order nonlinearity lead to the 

rapid and asymmetric increase in the large wave 

height, while the second linear term also effectively 

promotes the generation of large waves, so the 

occurrence of freak waves mainly arises from the 

contribution of the fourth-order and third-order 

nonlinearities and linearity, and the fourth-order 

nonlinearity plays a more important role than the 

third-order nonlinearity. 

3.2 Spectrum Evolution 

In the evolution of the wave train, the frequency 

spectrum is calculated by means of the fast Fourier 

transform method, and its spectrum width is 

estimated by using the peakedness Qp. A larger Qp 

denotes a narrower spectrum width. 


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Figure 4(a) shows variations in the frequency 

spectrum for the wave train evolution through the 

mNLSE. When the wave train propagates from η = 

0 to η = 1.122, the energy of the spectral peak 

continuously decreases and mainly shifts to the high 

frequency components far away from the peak 

frequency, especially for the position of the freak 

wave. At η=1.5, the peak values decrease 

considerably and mainly shift to the frequency band 

near the spectral peak, corresponding to an 

asymmetric large wave in Fig. 1. For the wave train 

evolution via the CSE, the energy of the spectrum 

peak has a smaller decline and a slight shift to the 

high frequency components, as shown in Fig. 4(b). 

When the initial wave train evolves through the 

LSE, its frequency spectrum remains basically 

unalterable in the whole evolution, as shown in Fig. 

4(c). 

Figure 5 exhibits the peakedness curves of the 

above spectra. In the evolution of the initial wave 

train through the LSE, the peakedness curves in Fig. 

5(c) change very slightly, so the spectral width can 

be considered to be unchanged. For the wave train 

evolution controlled by the CSE, the peakedness 

curves in Fig. 5(b) drop gradually with the 

appearance of high waves with asymmetric crests 

and troughs, and thus, the spectral width increases 

correspondingly. The peakedness curves in Fig. 5(a) 

computed via wave trains from the mNLSE have a 

similar decline to that of the CSE, but their 

declining range is larger. 

For the mNLSE model, variations in the spectra and 

peakedness curves show that the fourth-order 

nonlinearity strengthens the shift of the spectrum 

peak energy to the high-frequency components, 

which causes the generation of asymmetric extreme 

waves, such as freak waves. The CSE model gives 

similar but weakened outcomes. 

Although the wavelet spectrum method is more 

suitable for analyzing freak wave trains in the time 

and frequency domains (Chien et al. 2002), here, 

the energy spectrum method can still give similar 

results for the generation of freak waves to those 

from Cui and Zhang (2011) and Hu and Zhang 

(2014). 
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Fig. 4. Variation in the power spectrum for each wave train corresponding to Fig. 2. 
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3.3 Freak Wave Generation Probabilities 

In these computations, the generation of freak 

waves is sensitive to initial random phases, so three 

groups of random numbers in Fig. 1, α=0.0162, γ=7 

and the mNLSE are selected to study the effect of 

initial random phases on the freak wave formation. 

Fig. 6 displays the probabilities of different cases. 

The probability of freak wave occurrences in the 

evolution decreases with the growth of λ, and no 

freak wave occurs when λ>0.9. For the initial 

random phases of Group 1, the probability of freak 

wave occurrences is the largest. The probability for 

Group 2 is in the middle. For Group 3, freak waves 

appear only when λ=3. Therefore, the following 

simulations are carried out with the initial random 

phases of Group 1. 

To analyze the effect of initial random phases on 

freak wave formation, random numbers are divided 

into 10 intervals with an interval of 0.1. The 

percentage of the number in every interval to the 

total number is shown in Fig. 7 for each random 

phase group. For Group 1, 18% of the random 

numbers are between 0.4 and 0.5. For Group 2, 16% 

of the random numbers are between 0.3 and 0.4, 

and 18% of the random numbers are between 0.5 

and 0.6. Therefore, the relative concentration of 

random initial phases may be the reason for the 

higher probability of freak wave generation. 
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Fig. 6. Freak wave occurrence probability for 

three groups of initial random phases. 
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Fig. 7. Percentage of the number of random 

numbers in each interval. 

To further determine the effect of nonlinearity on 

the occurrence of freak waves, evolutions of the 

same initial wave train are performed to estimate 

the probability of freak waves in space with the 

three Schrödinger equations employed. The results 

are shown in Fig. 8, except for the probabilities of 

cases for α=0.0081 and γ=4, which are all equal to 

0. 
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Fig. 8. Comparisons of the freak wave 

occurrence probability with the mNLSE, CSE 

and LSE employed for different spectral 

parameters. 

 

Figure 8 (a) shows the cases for spectral parameters 

α=0.0162 and γ=7. When the mNLSE is applied, the 

probabilities of freak wave occurrence are the 

largest among the simulations through the three 

equations. The maximum probability is 4.28%, and 

freak waves occur in the scale factor range of 

0.2≤λ≤0.95. When the CSE is employed, the 

corresponding occurrence probabilities decrease 

more than when the mNLSE is employed, the 

maximum probability is 1.25%, and the scale factor 

range of freak wave occurrence is 0.2≤λ≤0.5. When 

the LSE is used, no freak wave appears in the 

evolution of wave trains. In Fig. 8 (b), the spectral 

parameters are set to α=0.0162 and γ=4. When the 

mNLSE is selected as the governing equation, the 

probabilities and the range of the scale factor for 

freak wave generation are similar to the cases of 

γ=7 for different λ values, but the probabilities drop 

considerably, and the maximum value is 1.29%. 

When the CSE is employed, the occurrence 

probability still decreases with increasing scale 
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factor λ, whose range of freak wave occurrence is 

0.2≤λ≤0.3, where the maximum occurrence 

probability is 0.44%. For the LSE model, freak 

waves do not appear in the evolution of the wave 

train. In Fig. 8 (c), where α=0.0081, γ=7, and the 

mNLSE is selected as the governing equation, the 

probabilities for freak wave generation are very 

low, with a maximum value of 0.07%, and freak 

waves occur in the scale factor range of 0.2≤λ≤0.3. 

When the CSE and LSE are employed, there is no 

freak wave in the simulations. Therefore, the fourth-

order nonlinearity can increase the freak wave 

occurrence probability more than the third-order 

nonlinearity. 

For the same α, the JONSWAP spectrum becomes 

narrow, and the wave steepness grows with 

increasing γ. For the same γ, according to the 

spectrum peakedness formula in (8), the spectrum 

width does not vary with α, but the wave steepness 

grows with increasing α, as shown in Table 2. 

Comparing Fig. 8 (a) with (b) and comparing Fig. 8 

(c) with the probabilities of cases of α=0.0081 and 

γ=4, the probability of freak wave occurrence 

increases with increasing γ or decreasing spectrum 

width. Comparing Fig. 8 (a) with (c) and comparing 

Fig. 8 (b) with the results of cases of α=0.0081 and 

γ=4, the probability of freak waves increases with 

increasing α or wave steepness. These results are 

consistent with some numerical and experimental 

findings given by Onorato et al. (2001) and  

Shemer et al. (2010b). 

It is known that sideband instability is related to 

wave steepness and wave steepness ε is related to 

spectral parameters α and γ. For the mNLSE model, 

according to the sideband instability criterion given 

by Lo and Mei (1985), the sideband instability 

ranges are different for different values of α and γ, 

as shown in Table 2, which can become large with 

the decrease in ε. For the CSE model, according to 

the sideband instability condition given by Onorato 

et al. (2001), sideband instability affects the 

evolution of the wave train in the range of 0<λ< 2 . 

In all the evolutions of wave trains, there is no freak 

wave when the scale factor is larger than 1.0, as 

shown in Fig. 8. When the scale factor exceeds the 

sideband instability range or in the cases of 

α=0.0081 and γ=7, no freak wave appears in any of 

the simulations. There is no freak wave occurring in 

the linear evolution of the wave train. Therefore, 

sideband instability plays an important role in the 

generation of freak waves, and the probability of 

freak wave occurrence decreases with increasing 

scale factor overall. 

4. CONCLUSIONS 

The occurrences of freak waves are numerically 

carried out through the mNLSE in random sea 

states characterized by the JONSWAP spectrum. 

For comparison, the same simulations are also 

performed with the CSE and LSE. Variations in the 

wave trains and nonlinear and linear terms of the 

three equations are analyzed and compared to 

determine the effect of higher-order nonlinearity on 

freak wave generation. The curves and widths of the 

 Table 2 Wave steepness and sideband instability 

ranges for different spectrum parameters 

α γ ε mNLSE CSE 

0.0162 7 0.163 0<λ<1.125 

0<λ< 2  
0.0162 4 0.139 0<λ<1.163 

0.0081 7 0.115 0<λ<1.202 

0.0081 4 0.098 0<λ<1.231 

 

power spectra for the above evolutions of wave 

trains are estimated to reveal the energy transfer 

characteristics of the higher-nonlinearity effect on 

the freak wave appearance. The probabilities of 

freak wave occurrence in space are also computed 

for different parameters to analyze how they affect 

the formation of freak waves. Thus, the following 

conclusions can be drawn: 

1) In the evolution of freak wave generation, fourth-

order nonlinearity plays a key role in the nonlinear 

growth of the wave surface, and linearity and third-

order nonlinearity also have an important effect. 

2) The fourth-order nonlinearity causes a larger 

shift of the spectrum peak energy to the higher 

frequency components and a wider spectrum than 

the evolution results of the third-order nonlinearity. 

This energy transfer characteristic may be the 

internal cause of freak waves. 

3) Initial phase modification is helpful for the 

generation of freak waves. The relative 

concentration of random initial phases can increase 

the probability of freak wave generation 

4) The higher-order nonlinearity, larger wave 

steepness, narrower initial spectrum and smaller 

sideband instability parameter can increase the 

probability of freak wave formation. 

5) It is very difficult to generate freak waves only 

by the linear evolution of waves. 

On the whole, the fourth-order nonlinearity plays a 

very important role in the generation of freak 

waves, but a single factor is not enough to generate 

freak waves. The freak wave is the product of many 

factors that are beneficial to the generation of 

nonlinear large waves. It is difficult for realistic 

random wave trains to evolve into freak waves, and 

wave groupiness has an important influence on the 

generation of freak waves. Therefore, the wave 

group needs to be considered in further analyses. 
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