
  

   
Journal of Applied Fluid Mechanics, Vol. 15, No. 6, pp. 1771-1787, 2022.  

Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. 
https://doi.org/10.47176/jafm.15.06.33536   

  

 

On Accuracy of Lattice Boltzmann Method Coupled with 

Cahn-Hilliard and Allen-Cahn Equations for Simulation 

of Multiphase Flows at High-Density Ratios 

E. Ezzatneshan† and A. A. Khosroabadi 

Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran, Iran 

†Corresponding Author Email: e_ezzatneshan@sbu.ac.ir 

(Received November 7, 2021; accepted June 16, 2022) 

ABSTRACT 

In this work, the accuracy of the multiphase lattice Boltzmann method (LBM) based on the phase-field models, 

namely the Cahn-Hilliard (C-H) and Allen-Cahn (A-C) equations, are evaluated for simulation of two-phase 

flow systems with high-density ratios. The mathematical formulation and the schemes used for discretization 

of the derivatives in the C-H LBM and A-C LBM are presented in a similar notation that makes it easy to 

implement and compare these two phase-field models. The capability and performance of the C-H LBM and 

A-C LBM are investigated, specifically at the interface region between the phases, for simulation of flow 

problems in the two-dimensional (2D) and three-dimensional (3D) frameworks. Herein, the equilibrium state 

of a droplet and the practical two-phase flow problem of the rising bubble are considered to evaluate the mass 

conservation capability of the phase-filed models employed at different flow conditions and the obtained results 

are compared with available numerical and experimental data. The effect of employing different equations 

proposed in the literature for calculating the relaxation time on the accuracy of the implemented phase-field 

LBMs in the interfacial region is also studied. The present study shows that the LBM based on the A-C equation 

(A-C LBM) is advantageous over that based on the C-H equation in dealing with the conservation of the total 

mass of a two-phase flow system. Also, the results obtained by the A-C LBM is more accurate than those 

obtained using the C-H LBM in comparison with other numerical results and experimental observations. The 

present study suggests the A-C LBM as a sufficiently accurate and computationally efficient phase-field model 

for the simulation of practical two-phase flows to resolve their structures and properties even at high-density 

ratios. 

Keywords: Lattice Boltzmann method; Multiphase flows; Cahn-Hilliard equation; Allen-Cahn equation; 

Comparative study. 

NOMENCLATURE 

C  fluid concentration 

sc  speed of sound 

0E       bulk energy 

e  particle velocity 

F        force 

G        gravitational acceleration 

g  momentum distribution function 

h  concentration distribution function 

i  component index 

j  volume diffusive 

M  mobility 

P        pressure 

R        radius 

t  time 

u       local velocity 

x  position 

  lattice direction index 

      constant parameter 

       hydrodynamic equilibrium function 

  coefficient related to surface tension 

  chemical potential 

       kinematic viscosity 

       interface thickness 

  density 

       surface tension 

       relaxation time 

      order parameter 

      weighting coefficient 
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1. INTRODUCTION 

Due to the mesoscopic nature of the interfacial 

interaction, the lattice Boltzmann method (LBM) is 

a powerful alternative and well-established 

numerical method for studying multiphase flow 

problems (Holdych, Rovas et al. 2011, Ezzatneshan 

and Vaseghnia 2020). Despite significant advances 

in the LBM, resolving the interface region between 

the phases is still a challenging task in the interfacial 

flows with high-density ratios (HDR) (Fakhari, 

Mitchell et al. 2017). There are several works to 

improve the numerical stability and performance of 

the LBM for the numerical solution of HDR 

multiphase flows (Inamuro, Ogata et al. 2004, Lee 

and Lin 2005, Bao and Schaefer 2013, Hejranfar and 

Ezzatneshan 2015, Wang, Shu et al. 2015, Zhao, 

Zhang et al. 2019). One of the most appropriate LBM 

approaches for HDR flow simulations are diffuse-

interface models developed based on the phase-field 

theory (Zu and He 2013). In these models, two-phase 

flow properties vary continuously across the 

interface with a smooth transition that provides a 

great advantage for the study of complex interfacial 

dynamics in HDR multiphase flows (Liang, Xu et al. 

2018).  

The phase-field methods proposed for the LBM can 

be categorized as the models developed based on the 

Cahn-Hilliard (C-H) equation (Cahn and Hilliard 

1958) and those of proposed based on the Allen-

Cahen (A-C) equation (Allen and Cahn 1976). The 

LBM based on the C-H equation (C-H LBM) is a 

diffuse-interface capturing technique that is 

developed by minimizing a free-energy functional. 

The chemical potential calculation in the C-H LBM 

allows evaluating the interfacial dynamics by 

considering the curvature effects. Accordingly, the 

difference in the chemical potential of the fluids in 

this method creates a force imbalance to lead the 

multiphase system to the equilibrium state to 

minimize the free energy of the system. However, 

the LBM based on the A-C equation (A-C LBM) is 

an interface tracking method that uses a collision 

invariant to define the phase indicator. In this phase-

filed approach, the balance between the fluxes of 

advection, diffusion, and phase separation across the 

interface evolves the multiphase system (Su, Li et al. 

2018, Otomo, Zhang et al. 2019, Yan, Ye et al. 

2021). 

In the past decade, simulation of multiphase flows 

have been performed by the phase-field models 

based on the C-H and A-C equations (Wang, Yuan et 

al. 2019). Based on the C-H LBM, Lee and Lin (Lee 

and Lin 2005) and Lee and Liu (Lee and Liu 2010) 

have developed numerical techniques with two 

distribution functions, one for computing the 

pressure and velocity fields and the other calculates 

an index parameter for the interface capturing. They 

have employed hybrid finite-difference (FD) 

schemes for evaluating the forcing terms so that 

stable numerical solutions are obtained for 

simulation of HDR multiphase flows. Employing FD 

schemes for spatial discretization of the gradients in 

the Lee et al.’s approach is not suitable for the local 

solution of the LBM and reduces the efficiency of the 

method in parallel computations. Although several 

attempts have been made to develop an entirely local 

C-H LBM (Spencer, Halliday et al. 2011, Tölke, 

Prisco et al. 2013), the FD discretization techniques 

are implemented in most of the studies in this area 

for computing the spatial derivatives until now (Lou 

and Guo 2015, Lee 2019). Based on the A-C LBM, 

Sun and Beckermann (Sun and Beckermann 2007) 

have proposed a phase-field model, which is later 

reshaped into a conservative form by Chiu and Lin 

(Chiu and Lin 2011). By using central moments in 

the formulation of the A-C LBM, Geier et al. (Geier, 

Fakhari et al. 2015) have extended this approach to 

be purely local in the collision step and sufficiently 

accurate for the interface tracking even in 3D 

multiphase flow problems. An LBM approach based 

on the A-C equation is also proposed by Ren et al. 

(Ren, Song et al. 2016) that is employed for the 

simulation of two-phase flows limited up to 

moderate density ratios. Fakhari et al. (Fakhari, 

Geier et al. 2016) have improved the efficiency of 

the A-C LBM by extension its capabilities for 

implementation on non-uniform grids. The improved 

A-C LBM by Fakhari et al. is then employed 

successfully for the simulation of several applied 

multiphase flows (Fakhari, Bolster et al. 2017, 

Fakhari, Li et al. 2018).  

Regarding the literature review addressed above, 

although the C-H LBM and A-C LBM represent 

similar behaviors in the category of the phase-field 

methods, some key differences between these two 

models are notified that affect their accuracy and 

performance for simulation of multiphase flows, 

particularly at HDR flow conditions. In the 

mathematical formulation, the C-H LBM employs 

second and fourth-order spatial derivatives that 

compromise the locality of the solutions and reduce 

the numerical accuracy due to the need for 

calculating of duplicated Laplacian terms (Fakhari, 

Geier et al. 2019). On the other hand, the A-C LBM 

only uses first-order and second-order spatial 

derivatives for tracking the interfacial dynamics that 

is simple and efficient for parallel computation and 

dealing with complex boundaries. Another important 

difference addressed in the literature for C-H LBM 

and A-C LBM is their capability to conserve the 

mass of a multiphase system (Chiu and Lin 2011, 

Liang, Shi et al. 2014). 

Understanding the effect of the using different LBM 

techniques on the accuracy and performance of the 

fluid flow simulations is important to choose an 

appropriate approach according to its substantial 

capability (Yang and Boek 2013, Ezzatneshan 2018). 

Such an evaluation for the aforementioned phase-

field methods, namely the C-H LBM and A-C LBM, 

needs to be taken into account when conducting the 

simulation results obtained by employing these 

schemes from the physical point of view. In the 

literature, Wang et al.’s work (Wang, Chai et al. 

2016) is the only comparative study to evaluate the 

mentioned phase-field models. They have presented 

a thorough comparison on the order of accuracy and 

numerical error of the LBM based on the C-H and A-

C equations by applying these models for the 

simulation of some benchmark two-phase flows, e.g. 
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the problem of Zalesak’s disk rotation. Since 

studying practical multiphase flows is one of the 

comprehensive capabilities of the phase-field LB 

models, the assessment of the C-H and A-C 

equations for such flow problems is considered in the 

present paper that will be useful for future 

developments of these methodologies. Although 

Wang et al. (Wang, Yuan et al. 2019) recently 

summarized some two-phase flow applications from 

the literature which C-H LBM and A-C LBM are 

applied for simulations reported in those papers, but 

no comparative study is presented on the capability 

and accuracy of the two models in their work. 

In this work, the treatment of the C-H LBM and A-C 

LBM is investigated specifically at the interface 

region between the phases. Moreover, the 

mathematical formulation of the C-H LBM and A-C 

LBM is presented with a clear and understandable 

expression in a similar notation that makes it easy to 

implement and compare these two models. The 

accuracy and computational efficiency of these two 

phase-field LB models are investigated for studying 

multiphase flow problems at HDR conditions in the 

two-dimensional (2D) and three-dimensional (3D) 

frameworks. A stationary droplet is considered to 

evaluate the mass conservation capability of these 

models at different flow conditions. The effect of 

employing different equations proposed in the 

literature for calculating the relaxation time on the 

accuracy of the implemented phase-field LBMs in 

the interfacial region is also studied. Then, the 

implemented C-H LBM and A-C LBM are applied 

for prediction of the practical two-phase flow 

characteristics of the rising bubble, and the obtained 

results are compared with available numerical and 

experimental data. 

The paper is organized as follows: Section 2 provides 

a brief introduction to the formulation of the C-H and 

A-C LBMs. Section 3 presents the results obtained 

for the comparative study of these numerical 

approaches. In Section 4, some conclusions are 

made. 

2. MATHEMATICAL FORMULATION 

The continuity equation for a two-component 

multiphase flow system can be expressed as 

. 0 , 1,2i
i i i

t





  


u  (1) 

where i  is the local density and iu  indicates the 

local velocity. These local properties can be 

computed based on the bulk density i  and the 

average velocity u  as 

( ) , 1,2i i i i i   j u u  (2) 

In this equation, ij  defines the volume diffusive 

flow rate of 
thi  component, where 1 2  j j j  

(Ding, Spelt et al. 2007). The interface position x  of 

a multiphase system at time t  can be captured by the 

composition parameter 1

1

C



  which satisfies the 

following equation (Lee 2009) 

.( ) .
C

C
t


 


u j  

(3) 

Accordingly, the local averaged density is computed 

by 1 2(1 )C C     . 

In the following, the governing equations of two 

phase-field LBMs with the C-H (Lee and Liu 2010) 

and A-C (Geier, Fakhari et al. 2015) equations are 

provided which recover the above-mentioned 

formulations. Herein, a simple and computationally 

efficient collision operator based on the single-

relaxation-time or so-called Bhatnagar-Gross-Krook 

(BGK) approximation is considered for the LBM. 

Calculating schemes of the phase-field gradients for 

determining the interface region between the phases 

by the C-H and A-C approaches are presented and 

compared to each other. 

2.1 Governing Equations of C-H LBM 

The convective C-H equation can be given according 

to Eq. (3) by assuming that the diffusive flow rate is 

proportional to the gradient of the chemical potential 
  as 

M   j  (4) 

where M  is the mobility. In the present study, M  

is set to be a positive constant parameter. The 

chemical potential in the C-H equation is determined 

by minimizing the free energy and reads  

2

0 C      (5) 

where   is a coefficient related to the surface 

tension. The parameter 
0  is the derivative of the 

bulk energy 2 2

0 ( 1)E C C   concerning the 

composition parameter C  

0
0

E

C






 (6) 

For a planar interface, the profile of C  can be stated 

at the equilibrium state as  

2
1 tanh( )

( )
2

z

C z




  
(7) 

In the above equations,   is a constant and   is the 

interface thickness which are chosen based on the 

accuracy and stability of the numerical solutions. For 

given values of   and  , the coefficient   and 

surface tension   can be computed as 

2

8


   (8) 

2

6


   (9) 
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The C-H equation given in Eqs. (3) and (4) can be 

given in the LBM frameworks as follows to recover 

the concentration C : 

12

1
. ( ) ( ).

[ ( )] .( )

eq

s

h
h h h

t

C
C p C M

c


    



 



 



      



        

e e u

 (10) 

where h  defines the distribution function, e , 
 , 

and 1 3sc   are the particle velocity, the 

relaxation time, and the speed of sound, respectively 

(Fakhari, Mitchell et al. 2017). The equilibrium 

distribution function eqh  is computed by 

2

2 4 2

. ( . ) ( . )
1

2 2

eq

s s s

h C
c c c

 
 

 
    

 

e u e u u u
 (11) 

where   is a weighting factor along direction  . 

Herein, the D2Q9 and D3Q19 models of the LBM 

are used to discretize the particle velocity for 2D and 

3D flow problems, respectively. Schematics of the 

particle velocity directions for the D2Q9 and D3Q19 

LBMs are shown in Fig. 1. Consequently, e  and 

  can be given, e.g. in D3Q19 form, as 

(0,0,0) 0

( 1,0,0),(0, 1,0),(0,0, 1) 1 6

( 1, 1,0),( 1,0, 1),(0, 1, 1) 7 18

1
0

3

1
1 6

18

1
7 18

36













 






     
        







  



 


e

 
(12) 

 
Fig. 1. D2Q9 (left) and D3Q19 (right) lattice 

models for discretization of particle velocity. 

 
In Eq. (10), 1p  is the hydrodynamic pressure used to 

enforce incompressibility and   can be expressed 

as 

2

2 4 2

. ( . ) ( . )
1

2 2s s sc c c

 
 

 
     

 

e u e u u u
 (13) 

A new distribution function g  is employed to 

recover the pressure and velocity components based 

on the C-H LBM that reads 

2

1
. ( ) ( ).

[ c ( (0)) ( ) ]

.( ) (0)

eq

s

H

g
g g g

t

C h

h


    



  

 



  




      



        

 

e e u

G

e G

 (14) 

where G  is the gravitational acceleration. The total 

density is defined by the following linear relation  

(1 )H LC C      
(15) 

where H  and L  define the density of heavy and 

light fluids, respectively. The new equilibrium 

distribution function eqg  is given by 

2
2

2 4 2

. ( . ) ( . )
c ( )

2 2

eq

s

s s s

g P
c c c

 
  

 
    

 

e u e u u u
 

(16) 

in which 1 HP p Gh  . The dimensionless 

relaxation time   for the multiphase systems studied 

in the present paper is defined based on the 

concentration C  by the linear and inverse functions. 

The effect of these functions on the numerical 

stability and accuracy of the solutions is investigated. 

According to a linear function,   is computed as 

(1 )H LC C      (17) 

and by taking an inverse function,   is defined by 

1 (1 )

H L

C C

  


   

(18) 

It should be noted that the relaxation time i  for 

each fluid is related to the kinematic viscosity i  of 

that fluid by 

2 , ,i s ic t i H L     (19) 

The C-H LBM given in Eqs. (10) and (14) are 

discretized along with characteristics over the time 

step t  in the following forms 

( , )

12

2

( , )

12

2

( , ) ( , t)

1
( ) ( ).

0.5

[ ( )]

( )

( ).
2

[ ( )]

( ) ]
2

eq

x t

MD MD MD

s

x t

eq eq

CD CD CD

s

h t t t h

h h t

C
C p C

c

tM

t
h h

C
C p C

c

t
M

  

  

 

  

 

 







 









   

   


    

   

  

    

   

x e x

e u

e u

 
(20) 
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( , )

2

( , )

( , )

2

( , ) ( , t)

1
( ) ( ).

0.5

[ ( (0))

( ) ]

.( ) (0)

( ).
2

[ ( (0)) ]

eq

t

MD

s

MD

x t

H t

eq eq

CD CD

s

g t t t g

g g t

c

C h

t h

t
g g

c C

  

  

 



 

  

  

 






 

 



 

   

   


    

    

 

  

      

x

x

x e x

e u

G

e G

e u

 
(21) 

In Eqs. (20) and (21), the directional first derivatives 

of a macroscopic property Q  are discretized using 

the second-order central difference (CD) and mixed 

difference (MD) schemes (Lee and Lin 2005) as 

( )

1
. [ ( ) ( )]

2

CDt Q Q t Q t        
x

e x e x e

 
(22) 

( )( )

1
. [ . . ]

2

MD BD CDt Q t Q t Q         xx
e e e  

(23) 

where superscript BD defines the second-order 

biased difference, e.g. the forward one is 

( )
.

1
[ ( 2 t) 4 ( t) 3 ( )]

2

BDt Q

Q Q Q



 



 

 

    

x
e

x e x e x

 
(24) 

The second-order central difference (CD) for the 

directional second derivatives is also defined by  

2

( )
( . )

[ ( ) 2 ( ) ( )]

t Q

Q t Q Q t



 



 

 

   

x
e

x e x x e
       (25) 

Similarly, the differencing schemes for the non-

directional first and second derivatives are  

2( ) ( )

1
( . )CD CD

s

Q t Q
c t

  


 


  
x x

e e  
(26) 

( )( )

1
[ ]

2

MD BD CDQ Q Q    xx
 (27) 

2( ) ( )

1
( . )BD BD

s

Q t Q
c t

  


 


  
x x

e e  
(28) 

2 2

2 2( ) ( )

1
( . )

s

Q t Q
c t

  


  
x x

e  
(29) 

Lou et al. (Lou, Guo et al. 2012) presented a 

thorough study on the effect of discretization 

schemes on the accuracy and stability of two-phase 

LBM. They have concluded that the mixed-

difference scheme can violate the global mass 

conservation depending on flow conditions and grid 

resolution. This issue is investigated in the present 

study for the phase-field LBM based on the C-H 

equation. 

Finally, the composition C , momentum u  and 

the hydrodynamic pressure 1p  can be computed by  

2

2

t
C h M




    

(30) 

2

1

2

CD

s

t
g C

c
 




   u e  

(31) 

2

1 .
2

CD

s

t
p g c




   u  

(32) 

2.2 Governing Equations of A-C LBM 

To recover the A-C equation as given in Eq. (3), the 

interface can be tracked by the definition of the order 

parameter ( , )t x . Then, the volume diffusion flow 

rate is considered as  

2

01 4( )
. [ ]M

  


 

  
   


j  

(33) 

where   is the interfacial thickness and 

0

( )

2

L H 



  defines the position of the interface. 

Herein, L  and H indicate two extreme values in 

the bulk of the light and heavy fluids, respectively. 

For a planar interface, the profile of   at the 

equilibrium state can be computed by  

0
0

2( )
tanh( )

2

H L 
 



 
 

x x
 

(34) 

In the present study, Eq. (34) is used to set the initial 

condition for the phase field. For example, to set a 

gas bubble suspended in a liquid phase, the minus 

sign is used, and vice versa. Finally, the interface 

evolution between two fluids based on the A-C 

equation is given by  

 
2

01 4( )
. . [ ]M

t

   
 

 

   
   

 
u

 

(35) 

Comparison of the right-hand-side of the C-H and A-

C equations given in Eqs. (4) and (33), respectively, 

shows that the C-H equation includes a fourth-order 

spatial derivative, while the A-C equation only 

involves a second-order spatial derivative. 

Consequently, the discretization and the numerical 

solution of the A-C equation is more simple and 

much efficient. It should be noted that if central 

moments are invoked, the second-order derivative of 

the A-C equation in the LBM framework can be 

reduced to the first-order derivative, or even no 

derivative (Geier, Fakhari et al. 2015).  

In the LBM framework, the A-C equation defined in 

Eq. (35) can be discretized as  

( , ) ( , )

( , ) ( , )
( , )

0.5

eq

h t t t h t

h t h t
F t

  

 


 



   






x e x

x x
x

 
(36) 

to recover the order parameter  . In this equation, 

eqh  is the equilibrium distribution function and F 

  

is the forcing term that are computed by  
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2

0[1 4( ) ]
( , ) .F t t

  

  


 

  
 


x e  

(37) 

0.5eq eqh h F 

     
(38) 

in which eqh    and   is defined by Eq. (13). 

Similar to the C-H LBM, the distribution function 

g  is employed in the A-C LBM to compute the 

pressure and velocity components that reads 

( , ) ( , )

( , ) ( , )
( , )

0.5

eq

g t t t g t

g t g t
F t

  

 


 



   






x e x

x x
x

 
(39) 

The modified equilibrium distribution function eqg  

and the hydrodynamic forcing term F  are 

computed by 

0.5eq eqg g F     (40) 

2

.

s

F t
c

 








e F
 (41) 

where * ( )eqg p        . The parameter 

*

2

s

p
p

c
  indicates the normalized pressure and F  

is the force vector that is defined by  

s b p    F F F F F  
(42) 

where sF , bF , pF , and F  are the surface tension, 

body, pressure, and viscous forces, respectively. The 

mentioned forces are computed by the following 

relations: 

s   F  
(43) 

b  F G  

(44) 

* 2

p sp c   F  
(45) 

[ ( ) ].T

      F u u  
(46) 

In the above equations, the chemical potential   

and the density   are expressed as 

2

04 ( )( )( )L H                
(47) 

( )( )L L H L          
(48) 

As defined in the previous section, the coefficients 

  and  can be computed by Eqs. (8) and (9). For 

the A-C LBM, the linear and inverse functions of   

based on the order parameter   are as follows 

( )( )L L H L          
(49) 

1 1 1 1
( )( )L

L H L

 
   
     (50) 

whwre the kinematic viscosity   in Eq. (46) is 
2

sc t  . For the accurate computing of   in the 

A-C LBM, Fakhari et al. (Fakhari, Mitchell et al. 

2017) have proposed to use such a linear 

interpolation for the dynamic viscosity as  

( )( )L L H L          
(51) 

and then,   can be given as 

2

sc t




 
  

(52) 

As mentioned, the major difference between the A-

C LBM and the C-H LBM is the schemes used for 

the discretization of the derivatives in the governing 

equations. The gradient and Laplacian operators for 

a macroscopic property Q  in the A-C LBM are 

computed by 

2
( , )

s

c
Q Q t t

c
  



 


  e x e
x

 
(53) 

2
2

2 2

2
[ ( , ) ( , )]

( )s

c
Q Q t t Q t

c
 



 


    x e x
x

  (54) 

As a great advantage for the A-C LBM, these 

schemes are simple and computationally efficient for 

calculating the derivatives instead of employing the 

complicated discretization procedures for the 

directional and non-directional derivatives 

implemented in the C-H LBM (see Eqs. (22)-(29)). 

Finally, macroscopic parameters  , *p , and u  can 

be obtained by  

h


   
(55) 

*p g


  
(56) 

2
g t 






 
F

u e  
(57) 

The velocity in the A-C LBM is updated after the 

pressure. Therefore, there is no need for the 

predictor-corrector scheme which imposes an extra 

computational cost. Additionally, the density 

gradient   and the viscous force F  in the 

direction i  can be computed from (Fakhari, Mitchell 

et al. 2017)  

( )H L      
 (58) 

, 2
[ ( )]

( 0.5)

, ( , , )

eq

i i j

s j

F e e g g
c t x

i j x y z

    


 

 


  

 



  
(59) 
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Applying these relations makes   the only non-local 

variable to compute the density gradient and viscous 

force that enhances the efficiency of the A-C LBM 

in comparison with the C-H LBM. 

3. RESULTS AND DISCUSSIONS 

In this section, the capability of C-H and A-C LBMs 

presented in the previous section are evaluated for 

the simulation of different multiphase flows. At first, 

the numerical results of these models are verified by 

simulation of the equilibrium state of a droplet 

suspended in a gas phase that is a well-known 

benchmark two-phase flow problem. Then, the 

accuracy and efficiency of the C-H LBM and A-C 

LBM are compared by the simulation of 2D and 3D 

two-phase flow systems, including bubble and 

droplet dynamics. The obtained results are compared 

with the existing data in the literature in various flow 

conditions. It should be noted that the density ratio 

and viscosity ratio are indicated by * H

L





  and 

* H

L





 , respectively, where 1H   and 

0.0033H   are set in the present work. Also, the 

interface thickness   is considered to be 5 , and the 

constant parameter M   is set to be 43 10  in all 

the simulations unless otherwise specified.  

3.1 Model Validation 

For a 2D liquid droplet suspended in the gas phase, 

the surface tension   causes a pressure difference 

p  between the outside and inside of the droplet. 

The Laplace law (Weil 1984) defines a linear relation 

between   and p  for a certain droplet radius R  

as 

in outp p p
R


     (60) 

The Laplace law is verified by using the present C-H 

LBM and A-C LBM for the simulation of a 

stationary droplet placed in a fully periodic square 

domain with the grid size of 201 201 . The 

solutions are performed for various droplet radiuses 

at * 100  , * 20  , and 510  . Herein, the 

droplet with the radiuses 25R  , 35R  , and 

45R   is initialized in the center of the flowfield. 

The initial phase field is also defined by Eqs. (7) and 

(34) for the C-H LBM and A-C LBM, respectively, 

to preserve the stability of the numerical solutions at 

the beginning iterations (Ezzatneshan 2017). Figure 

2 illustrates the results obtained for p  versus 1/ R  

by using the C-H LBM and A-C LBM after the 

droplet reaches to the equilibrium state. For the 

present solutions, it takes about 55 10  time steps 

for the liquid-gas system established to reach the 

equilibrium state using both the phase-field models 

employed. The linear relation between p  and 

1/ R  in Fig. 2 shows that the present C-H and A-C 

LBMs satisfy the Laplace law. Linear fits are in good 

agreement, except for the well-known offset from the 

origin (Lycett-Brown and Luo 2015). The value of 

the surface tension is computed by the slope of each 

line that is obtained 51.1 10    and 51.0 10  by 

the C-H LBM and A-C LBM, respectively. As seen 

in Fig. 2, the slope of the fitted line on the simulation 

results of the stationary droplet by employing the A-

C LBM is 51.0 10  that shows an excellent match 

with the 510   set in the simulation. However, 

there is a slight difference between the value 

obtained for the surface tension based on the slope of 

the fitted line on the C-H LBM results with that set 

in the algorithm. This difference can be depending 

on the accuracy of this model which has been 

affected by the mass conservation property and its 

capability in the capturing interface. Such 

characteristics of the C-H LBM and A-C LBM are 

discussed in detail in Sec. 3.2. 

 

 

Fig. 2. Verification of Laplace law for a 

stationary droplet suspended in gas phase by 

employing C-H LBM and A-C LBM. 

 

In the multiphase LBMs, the existence of the 

undesirable spurious velocity in the interfacial region 

is due to the interaction forces and imbalance 

between stresses in the liquid-gas interface. These 

parasitic currents can be reduced by the 

implementation an appropriate discretization 

technique for computing the forcing terms (Mattila, 

Siebert et al. 2013). Herein, the maximum magnitude 

of the spurious velocity 
s

maxu  and the corresponding 

Capillary number 
s

maxCa u   are given in Table 

1 for the simulation results obtained for the droplet 

suspended in the gas phase at different radiuses using 

the C-H LBM and A-C LBM. Although the results 

show that both the models produce negligible 

spurious velocity, the magnitude of 
s

maxu  computed 

by employing the A-C LBM is higher than that of 

obtained based on the C-H LBM. In the following 

discussions, it is shown that the A-C LBM resolves 

the interface region with a slightly sharper profile 

than the C-H LBM that can be the main reason for a 

bit higher spurious velocities in the interface for the 

A-C LBM. 

1/R


p
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Table 1. Comparison of s

maxu  and Ca  obtained 

for a stationary droplet suspended in gas phase 

by employing C-H LBM and A-C LBM. 

A-C LBM C-H LBM  R  
85.58 10  

51.9 10  
93.49 10  

61.2 10  

s

maxu  

Ca  
25  

84.37 10  
51.5 10  

81.19 10  
64.0 10  

s

maxu  

Ca  
35  

83.65 10  
51.2 10  

83.36 10  
51.1 10  

s

maxu  

Ca  
45  

 

3.1 Comparison Study in Two-dimensional 

Framework 

At first, the mass conservation property of the 

implemented phase-field models is checked by 

simulation of the stationary droplet to examine the 

efficiency of the C-H LBM and A-C LBM in the 2D 

framework. This two-phase flow problem is studied 

in a periodic square domain with 101 101  lattice 

nodes in which a droplet with 20R  , * 1000  , 
* 100  , and 510   is placed in the center of the 

flow domain. In Fig. 3, the shape of the droplet at the 

initial time is compared with that obtained at the 

equilibrium state after 55 10t    iterations by the 

C-H LBM and A-C LBM. The droplet modeled using 

the C-H LBM shrinks due to losing mass, while the 

shape of the droplet simulated by employing the A-

C LBM does not significantly change during the 

solution. 

 

 
(a) 

 
(b) 

Fig. 3. Mass conservation study for a stationary 

2D droplet with * 1000   and * 100   by 

employing (a) C-H LBM, and (b) A-C LBM. 

 

To have a quantitative comparison on the mass 

conservation property of these two phase-field 

models for simulation of the 2D stationary droplet, 

the variation of the total mass of the two-phase 

system is plotted in Fig. 4. This figure shows that the 

A-C LBM preserves the total mass, while for the C-

H LBM the mass of the two-phase system decreases 

at the beginning iterations and then, gradually 

increases. This study shows that although the results 

obtained for the 2D stationary droplet by the C-H 

LBM satisfy with the Laplace law, this model is not 

mass conservative. The effect of this undesirable 

feature on the flow parameters in the system is 

examined by investigation of the density and velocity 

profiles through the domain. 

 
Fig. 4. Comparison of total mass variation 

obtained for a stationary 2D droplet with 
* 1000   and * 100   by employing C-H LBM 

and A-C LBM. 

 

 
(a) 

 
(b) 

Fig. 5. Comparison of density (a) and velocity (b) 

profiles obtained for a stationary 2D droplet 

with * 1000   and * 100   by employing C-H 

LBM and A-C LBM. 

 

The comparison of the density and velocity profiles 

obtained based on the C-H LBM and A-C LBM for 

the equilibrium state of the stationary droplet with 

20R  , * 1000  , * 100  , and 510   is 

shown in Fig. 5. These profiles are plotted at the mid-

line of the 2D domain, from the center of the droplet 

to the right boundary. As observed in this figure, the 

density profile predicted using the A-C LBM at the 

equilibrium state is quite consistent with that 

provided as the initial condition which confirms the 
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mass conservation property of this model. The value 

of liquid and gas densities obtained based on the C-

H LBM, however, significantly affected by the loss 

of the mass and does not match with the density ratio 

set at the initial condition. Note that the A-C LBM 

provides a slightly sharper interface in the density 

profile compared with the C-H LBM. Although it is 

expected zero velocity magnitude at the equilibrium 

state of the stationary droplet, the velocity profile 

presented in Fig. 5 indicates the existence of spurious 

velocities su  in the simulation results for the 2D 

equilibrated liquid-gas system based on both the 

phase-field models employed. By using the A-C 

LBM, the maximum value of su  in the interface 

region is higher than that calculated by the 

implementation of the C-H LBM. The sharpness of 

the interface profile in the A-C LBM can be the main 

reason for the higher values of the spurious velocity. 

On the other hand, loss of the mass in the C-H LBM 

causes a smooth profile in the interface region and 

consequently produces weak spurious currents. 

The accuracy of the implemented phase-field models 

is also compared to determine how the simulation 

results of these multiphase LBMs depend on the 

calculation of the relaxation time   at the interface 

region. Figure 6 compares the profiles of   

computed based on the linear and inverse functions 

across a planar interface with 0.01H   and 

0.1L  . This figure illustrates that the variation of 

relaxation time for both the functions is monotonic 

with respect to the position at the interface of the 

liquid-gas system. 

 
Fig. 6. Comparison of   profiles computed by 

linear and inverse functions in interface region. 

 

The effect of these relaxation time distribution across 

the interface is examined on the density and velocity 

profiles obtained by the C-H LBM and A-C LBM in 

Figs. 7 and 8, respectively. This comparison study is 

performed for the stationary droplet with * 100   

at two density ratios * 10   and * 1000  . 

Generally, it can be seen that the function used for 

calculation of   has no significant effect on the 

distribution of the density in the liquid-gas flowfield 

simulated by using C-H LBM and A-C LBM. 

However, the spurious velocities in the interface 

region are affected by   profiles which show the 

method of the relaxation time calculation can impact  

 

  
                             (a) 

  
                            (b) 
Fig. 7. Comparison of density (left) and velocity (right) profiles obtained for a stationary 2D droplet 

with * 100  , and * 10   (a) and * 1000   (b) by employing C-H LBM.
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                         (a) 

  
                            (b) 

Fig. 8. Comparison of density (left) and velocity (right) profiles obtained for a stationary 2D droplet 

with * 100  , and * 10   (a) and * 1000   (b) by employing A-C LBM. 

 

the numerical stability of the solutions. For the lower 

density ratio * 10  , this impact is not considerable 

in both the models. While at the high-density ratio 
* 1000  , the magnitude of the spurious velocity 

calculated at the interface region based on the inverse 

function of   is higher than that obtained by linear 

function for the simulations by the C-H LBM. For 

the A-C LBM, the linear function produced stronger 

spurious currents at the interface region of the 

stationary droplet with * 1000  . From Figs. 7 and 

8, it also can be seen that the mass conservation 

property of the phase-field models employed in the 

present study does not depend on the relaxation time 

distribution. The droplet shrinks by using the C-H 

LBM with both the relaxation time functions at the 

density ratios considered, while the A-C LBM 

preserves the total mass to be conserved in the 

flowfield at all the conditions studied. 

A comparison study is performed on the capability 

of the C-H LBM and A-C LBM for the simulation of 

the stationary droplet at high-density ratio and the 

obtained results are presented in Fig. 9. The highest 

value of the density ratio that is possible to resolve 

by these models with a numerically stable solution is 

defined. The present study shows that the C-H LBM 

is stable for the density ratio up to order of 104. 

However, the A-C LBM preserves the stability of the 

solution for the density ratio up to order of 106. The 

efficiency of the applied C-H and A-C LBMs is 

investigated by the comparison of the computational 

cost. The run time measured for the simulation of the 

stationary 2D droplet is given in Table 2. This  

 
(a) 

 
(b) 

Fig. 9. Comparison of density profiles obtained 

for a stationary 2D droplet with * 100   at 

different density ratios by employing (a) C-H 

LBM and (b) A-C LBM. 
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comparison shows that the A-C LBM has about 20% 

less computational cost for the solution of this test 

case to reach the time of 55 10t   . The 

differencing scheme used to discretize the 

derivatives in the C-H equation can be the main 

reason for its higher computational cost.  

 

Table 2. Comparison of computational cost for 

simulation of a stationary 2D droplet with C-H 

LBM and A-C LBM for 55 10t    time steps. 

Method Run time (minutes) 
C-H LBM 12.6  

A-C LBM 10.5  
 

The capability and efficiency of the C-H LBM and 

A-C LBM for predicting characteristics of practical 

liquid-gas flows are investigated by simulation of a 

rising bubble under the influence of buoyancy force 

in the 2D framework. In this study, an unconfined 

domain is considered with 240 960  grid size, and 

two effective non-dimensional numbers, namely 

Bond number 
2(2 )yG R

Bo





  and Morton number 

4

3 2

y H

H

G
Mo



 


 , are defined. In these definitions, yG  

is the gravity in y  direction and H L     . 

Figure 10 illustrates the comparison between the 

results for the rising bubble obtained based on the C-

H LBM and A-C LBM at two flow conditions with 

1000Bo   and 48000Mo  , and 240Bo   and 

260Mo  . It is obvious that the loss of the mass in 

the solution results of the C-H LBM impacts the 

shape of the bubble and its dynamics during the 

rising process. The area of the bubble shape 

computed based on the C-H LBM simulations is 

decreased during the solution. While the area of the 

rising bubble modeled by employing the A-C LBM 

is preserved constantly due to the mass conservation 

property of this model. However, if such a 

comparison is not made, the appearance of the 

bubble resulting from the present numerical 

solutions based on both the C-H LBM and A-C LBM 

in Fig. 10 seems comparable with those expected 

according to the shape regime map (R. Clift 1978) at 

the given Bo  and Mo  numbers. This comparison 

shows the importance of the present study in 

determining the advantages and shortcomings of the 

numerical methods applied. Accordingly, it can be 

concluded that the phase-field LBM based on the A-

C equation is more accurate than the C-H LBM for 

the simulation of two-phase flow systems in the 2D 

framework. 

3.1 Comparison Study in Three-

dimensional Framework 

The comparison study between the phase-field 

LBMs implemented based on the C-H and A-C 

equations is performed in a 3D framework to 

examine their accuracy and efficiency for simulation 

of practical multiphase flows. The equilibrium state  

 

Fig. 10. Comparison of results obtained for a 

rising 2D bubble at 1000Bo   and 48000Mo   

(left), and 240Bo   and 260Mo   (right) by 

employing C-H LBM and A-C LBM. 

 

of a 3D stationary droplet in a periodic cubic domain 

with 101 101 101   is considered to investigate the 

mass conservation property of the C-H LBM and A-

C LBM. In this study, the droplet radius is set to be 

20R  , and the properties of the two-phase system 

are * 100   and 510  . Herein, two density 

ratios * 10   and 1000  are used to demonstrate the 

capability of the phase-field models employed in 

resolving the interface region for the 3D stationary 

droplet simulations. 

In Fig. 11, the shape of the droplet at the initial time 

is compared with that obtained at the equilibrium 

state after 52 10t    iterations by the C-H LBM and 

A-C LBM. The shape of the 3D droplet at the 

equilibrium condition obtained by applying the C-H 

LBM shrinks during the simulation due to losing 

mass, while the A-C LBM provides the equilibrium 

state of the droplet with similar shape and mass of 

the system as set at the initial condition. The obtained 

results also show that the mass conservation property 

of these phase-field models does not depend on the 

magnitude of the density ratio. 

 

  
(a) 

  
(b) 

Fig. 11. Mass conservation study for a stationary 

3D droplet suspended in gas phase with * 100  , 

and (a) * 10   and (b) * 1000   by employing 

C-H LBM (left), and A-C LBM (right). 
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(a) 

  
(b) 

Fig. 12. Comparison of density (left) and velocity (right) profiles obtained for a stationary 3D droplet 

suspended in gas phase with * 100  , and (a) * 10   and (b) * 1000   by employing C-H LBM and A-

C LBM. 

 

The effect of the losing and conserving mass by the 

C-H LBM and A-C LBM, respectively, on the 

density and velocity fields of the two-phase system 

includes the 3D stationary droplet is examined in Fig. 

12. This figure shows the comparison of the density 

and velocity profiles obtained based on these models 

for the equilibrium state of the droplet at the flow 

conditions considered in Fig. 11. As illustrated in this 

figure, the density profile predicted using the A-C 

LBM at the equilibrium state is quite consistent with 

that provided as the initial condition at both the 

density ratios * 10   and 1000 , which confirms 

the mass conservation of this model. However, the 

density profiles obtained by employing the C-H 

LBM for the equilibrium state is deviated from the 

initial profile due to the lack of mass conservation. 

Similar to the 2D simulations performed for the 

equilibrium state of the droplet, the results presented 

in Fig. 12 for the 3D stationary droplet demonstrate 

the existence of spurious velocities in the interface 

region. Note that by increasing the density ration 

from * 10   to 1000 , the magnitude of the 

spurious velocity obtained based on both the C-H 

LBM and A-C LBM is increased. The magnitude of 

the spurious velocity produced in the interfacial 

region of the 3D droplet by using the A-C LBM is 

lower than that obtained by the C-H LBM. This 

comparison study confirms that the A-C LBM is 

more accurate than the C-H LBM in terms of mass 

conservation. Although the stability of these two 

phase-field models can be affected with an increment 

of the density ratio due to increasing the spurious 

currents, the A-C LBM can preserve the stability of 

the numerical solution of two-phase flow systems 

because of producing weaker spurious currents. 

The 3D simulation of bubble rising under the 

influence of gravitational force is performed to assay 

the capability of the C-H LBM and A-C LBM for 

predicting the characteristics of such a practical 

multiphase flow problem. Herein, the dynamic 

behavior of a rising bubble is studied in a rectangular 

cuboid flow domain with 144 144 240   lattice 

nodes at different flow conditions and the results 

obtained are compared with numerical and 

experimental data. Figure 13 shows the present 

results obtained for the rising bubble shape based on 

the C-H LBM and A-C LBM at two flow conditions 

with 1000Bo   and 48000Mo  , and 240Bo   

and 260Mo  . For more clarity and ease of 

comparison, a subzone of the domain is presented in 

this figure that shows half of the flowfield. The 

difference in the deformation in the interface region 

between the shape of the bubble predicted by these 

phase-field models is obvious, particularly at the last 

snapshot when the bubble reached the terminal 

velocity (final shape). This study shows that A-C 

LBM exhibits more deformation than C-H LBM, 

which can be attributed to the mass conservation in 

the simulations based on the A-C LBM. On the other 

hand, the A-C LBM preserves the initial volume of 

the bubble and therefore, the rising bubble size in the 

A-C LBM simulations is larger than that in the 

solutions by C-H LBM that consequents more 

deformation. 
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(a) 

 

(b) 

Fig. 13. Comparison of results obtained for a 

rising 3D bubble at (a) 1000Bo   and 

48000Mo  , and (b) 240Bo   and 260Mo   by 

employing C-H LBM and A-C LBM. 

 

To examine the accuracy of the C-H LBM and A-C 

LBM in predicting the shape of the rising bubble 

presented in Fig. 13, the current result obtained with 

both the models for the final shape of the bubble after 

reaching the terminal velocity is compared with that 

obtained by an LBM solution (Amaya-Bower and 

Lee 2010) and an experimental observation (Bhaga 

and Weber 2006) at flow condition 240Bo   and 

260Mo   in Fig. 14. As can be seen in the figure, 

the rising bubble shape obtained by employing A-C 

LBM is more comparable with previous 

computational and experimental data which indicates 

the better accuracy of this model in comparison with 

the C-H LBM.  

For the quantitative verification of the current results 

obtained for the rising bubble at 240Bo   and 

260Mo  , the terminal Reynolds number of the 

bubble 
(2 )

Re H t
t

H

U R


 , computed according to the 

terminal velocity tU , is given in Table 3. This 

comparison shows that the terminal Reynolds 

number obtained by the A-C LBM is in excellent 

agreement with the experimental data that confirms 

the accuracy and efficiency of this model in 

comparison with the C-H LBM. 

 

Table 3. Comparison of terminal Reynolds 

number Ret
 obtained for a rising bubble at 

240Bo   and 260Mo  . 

Ret  Method  

7.8  Experimental (Bhaga 

and Weber 2006) 

 

6.2  Numerical (Amaya-

Bower and Lee 2010) 

 

6.7  C-H LBM  

7.8  A-C LBM  

 

According to the experimental observations (Bhaga 

and Weber 2006), a relationship between the drag 

coefficient dC  of a rising bubble and its terminal 

Reynolds number Ret  is established as 

1
0.9 0.9

0.9 16
(2.67)

Re
d

t

C
  
    
   

 (61) 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 14. Results obtained for a rising 3D bubble at 240Bo   and 260Mo   by employing (a) C-H LBM, 

and (b) A-C LBM, in comparison with (c) numerical result presented in Ref. (Amaya-Bower and Lee 

2010), and (d) experimental observation in Ref. (Bhaga and Weber 2006). 
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Fig. 15. Comparison of drag coefficient for a 

rising 3D bubble obtained by employing C-H 

LBM and A-C LBM with numerical results 

(Amaya-Bower and Lee 2010) and experimental 

correlation (Bhaga and Weber 2006) at flow 

conditions defined in Fig. 13.  

 

Figure 15 shows the comparison between the present 

results obtained for the dC  of the rising bubble 

versus its Ret  with that of reported in Refs. (Bhaga 

and Weber 2006, Amaya-Bower and Lee 2010) at the 

flow conditions considered in Fig. 13. It can be seen 

that the present simulation results are in good 

agreement with the previous computational data, 

although the predicted dC  versus Ret  based on the 

present A-C LBM is more consistent with the 

experimental correlation at higher Reynolds 

numbers. The relative error between the present 

numerical results and the experimental correlation is 

given in Table 4. There is a deviation between the 

experimental data and the numerical results, 

particularly at the lower Reynolds number. Similar 

discrepancy between numerical results and 

experimental data for the drag coefficient of a rising 

bubble is also reported in the literature (Fakhari and 

Rahimian 2010, Amaya-Bower and Lee 2011). Such 

a discrepancy can be due to the diffuse interface 

characteristic of numerical methods based on 

multiphase LBMs which leads to inaccurate 

predictions at the diffusion dominant flow 

conditions. 

 

Table 4. Relative error of drag coefficient 

predicted by present numerical results in 

comparison with the experimental correlation 

for a rising bubble at 240Bo   and 260Mo  . 

(%)Error  Test case 

12  C-H LBM, Re 6.7   

30  C-H LBM, Re 4.8  

2  A-C LBM, Re 7.8  

36  A-C LBM, Re 4.5  

 

Finally, the capability of the A-C LBM in resolving 

more complex interfacial dynamics is demonstrated 

by the simulation of a rising bubble at two flow 

conditions with 24Bo   and 0.0034Mo  , and 

240Bo   and 0.0434Mo  . As illustrated in Fig.  

 

 

 
(a) 

 
(b) 

Fig. 16. 3D bubble rising at (a) 24Bo   and 

0.0034Mo  , and (b) 240Bo   and 0.0434Mo 

by employing A-C LBM. 

 

16 for 24Bo   and 0.0034Mo  , the bottom 

surface of the bubble is deformed throughout the 

trajectory until an oblate ellipsoidal cap is formed. 

With the increment of the effective non-dimensional 

numbers to 240Bo   and 0.0434Mo  , the bubble 

shape transforms from the spherical cap to a toroidal 

shape during the rising process that is comparable 

with that expected according to the shape regime 

map (R. Clift 1978) and other computational results 

(Amaya-Bower and Lee 2010). The present study 

confirms the accuracy and stability of the A-C LBM 

for simulation of complex practical multiphase flows 

with preserving the total mass of the system in 3D 

frameworks. 

4. CONCLUSION 

In this work, the capability and efficiency of the 

lattice Boltzmann method (LBM) coupled with two 

phase-field models based on the Cahn-Hilliard (C-H) 

and Allen-Cahn (A-C) equations are examined for 

simulation of two-phase flow systems with high-

density ratios. The mathematical formulation and the 

schemes used for discretization of the derivatives in 

the C-H LBM and A-C LBM are presented and the 

accuracy and performance of these two models are 

evaluated for simulation of flow problems in the two-

dimensional (2D) and three-dimensional (3D) 

frameworks. Herein, the equilibrium state of a 

droplet and also, the practical two-phase flow 

problem of the rising bubble are considered to 

investigate the mass conservation property of the 

phase-filed models employed at different flow 

conditions and the obtained results are compared 

with available numerical and experimental data.  

It is indicated that the numerical results for the 

equilibrium state of a 2D stationary droplet obtained 

based on both the C-H LBM and the A-C LBM 

satisfy the Laplace law, although the A-C LBM 

accurately predicts the surface tension of this two-

phase flow in comparison with the C-H LBM. The 

present study shows that the C-H LBM has a serious 

failure in the total mass conservation of the two-

phase systems studied in the 2D and 3D frameworks. 

The droplet and bubble shapes obtained based on this 

phase-field model shrink due to loss of the mass that 

significantly impacts its accuracy for the 

computation of the flow structure and characteristics. 

The mixed-differencing scheme used to discretize 
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the derivatives in the C-H equation is the main reason 

for the non-mass conservation issue. On the other 

hand, it is shown that the A-C LBM is an efficient 

phase-field model in terms of the mass conservation 

and the results obtained by employing this model are 

in good agreement with the previous computational 

simulations and experimental observations. Also, the 

study of the flow properties, e.g. the density and 

velocity variations, in the interface region illustrates 

that the C-H LBM does not preserve the density ratio 

set for the flow problem during the simulation, while 

the density profile obtained based on the A-C LBM 

is exact the same with that of defined in the initial 

condition. Both the models produce very small 

spurious currents in the interfacial region which is 

not considerable in comparison with the flow 

velocities in the practical two-phase flows studied, 

e.g. the rising bubble. In conclusion, the present 

study suggests the A-C LBM by taking into account 

the mass conservation property, preserving the 

density ratio, numerical stability at higher density 

ratios, and also due to the acceptable accuracy for the 

simulation of practical two-phase flows to resolve 

their structures and properties even at high-density 

ratios. 
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