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ABSTRACT 

The smoothed particle hydrodynamics (SPH) method is based on the kernel particle approximation, which is 

sensitive to the uniformity of the SPH particle distribution in the computational domain; that is, all SPH 

particles must be distributed evenly in the computational domain. These factors significantly influence the 

practical application of the SPH method. Meanwhile, calculating the sum near the boundaries of the 

computational domain may cause boundary defect problems since there are insufficient particles in the 

support domain, thus often resulting in relatively high errors in numerical simulation results near boundaries. 

To address these problems, the kernel particle approximation discrete process was corrected based on the 

traditional SPH method, and the corrected SPH method, the Godunov-type corrective smoothed particle 

method (CSPM), was formulated by introducing Riemann decomposition. In this study, the traditional SPH 

method and Godunov-type CSPM method were applied in a comparative study of discontinuous function 

problems, 1D shock tubes and 1D detonation waves. According to the analysis results, the Godunov-type 

CSPM method can not only effectively improve the calculation accuracy and compatibility of the traditional 

SPH method in discontinuous shock wave problems but also increase the accuracy of the traditional SPH 

method in capturing strong discontinuities. 

Keywords: Meshfree method; SPH method; Godunov-type corrective smoothed particle method (GSPM); 

1D shock tube; 1D detonation wave. 

NOMENCLATURE 

A, B, R1, R2, ω   fitting coefficients 

Aij intersection point 

ci local sound velocity 

ei internal energy 

f(xi) field function 

hi smooth length 

mi SPH particle mass 

𝑚𝑖𝑗
∗  mass at the intersection 

N SPH particle number 

pi pressure 

𝑝𝑖𝑗
∗𝑅 pressure at the intersection 

𝑝𝑖𝑗
∗𝑅𝑅 normal pressure at the 

intersection 

rij distance between particles i and j 

∆t time step length 

𝑣𝑖𝑗
∗𝑅 normal velocity at the intersection 

vi SPH particle velocity 

V relative specific volume 

Wij smoothed kernel function 

x Cartesian coordinates 

xi position of SPH particle 
𝑥𝑖𝑗

∗  position of the intersection 

∆x distance between two adjacent particles 

𝛾 ratio of specific heats 

ρi SPH particle density 

𝜌𝑖𝑗
∗  density at the intersection 

Ω support domain 
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1. INTRODUCTION 

Recently, many numerical calculation methods have 

been developed with the rapid development of 

computer technology. At present, numerical 

simulation methods can be divided into mesh-based 

methods and meshfree methods according to 

different discretization and solution forms (Sun 

2018). Mesh-based methods are easily influenced 

by mesh distortion when solving large-deformation 

fluid–structure interaction problems. Meshfree 

methods are not restricted by the amount of 

boundary deformation when simulating large-

deformation problems due to the advantages of 

natural Lagrangian characteristics and increasingly 

perfect particle approximation theory (Liu and Li 

2016). Hence, meshfree methods have been 

extensively applied in high-speed impact problems 

(Sun 2018). Typical meshfree methods include the 

discrete element method (DEM) (Chen et al. 2020), 

smoothed particle hydrodynamics (SPH) method 

(Zheng et al. 2020; Gu et al. 2016; Ma et al. 2012), 

moving particle semi-implicit (MPS) method (Tian 

and Wan 2019), etc. The MPS method and SPH 

method are basically equivalent in solving high-

speed impact problems (Hashimoto et al. 2022; 

Abdelrazek et al. 2014; Bakti et al. 2016). 

However, since the MPS method is based on the 

complete incompressible hypothesis (Chen and 

Wan 2019; Chen et al. 2018), it is difficult to apply 

to problems with obvious compressibility effects, 

such as the bubble pulsation process of underwater 

explosions. DEM (Xu et al. 2003) is mainly applied 

to process large-deformation problems of discrete 

particles (the flow of particles such as grits, ice 

blocks, etc.) (Sun et al. 2013; Robb et al. 2016; 

Kloss et al. 2012), and it is inapplicable to study 

high-speed impact problems. Comparatively, the 

SPH theory and method have obvious advantages in 

processing large deformations of fluids and 

compressibility problems. This method easily 

performs parallel computation, has strong 

engineering applicability and is more suitable for 

solving large-scale high-speed impact problems. 

The smoothed particle hydrodynamics (SPH) 

method proposed by Lucy (1977), Gingold and 

Monaghan (1977), and Monaghan (1982) is a 

numerical method in the form of a pure Lagrangian 

mesh-free method. The core idea of the SPH 

method lies in interpolation theory. First, the kernel 

function estimation approximation is performed 

through an integral kernel called the “smoothed 

kernel function”. Second, the fluid dynamics control 

equation set is transformed into the SPH control 

equation set for numerical calculation. In the whole 

flow field, fluid media are dispersed into a series of 

“particles” that carry all physical properties, such as 

mass, density, velocity, internal energy and pressure 

intensity. Since these particles can move randomly 

according to fluid motion laws, the SPH method is 

theoretically applicable to any deformation problem 

(Liu and Liu 2003). 

Since the traditional SPH method is only applicable 

to fluid dynamics studies for very short periods 

(Zhang 1996), it is still in the exploration stage in 

terms of boundary processing technology, 

numerical pressure stability, particle searching 

efficiency and discontinuous surface (region) 

processing. For example, restricted by the 

continuity principle of kernel approximation, 

particles in the solving domain must be distributed 

evenly, which is very disadvantageous for 

applications of the SPH method. There are 

boundary problems caused by the truncation 

integral in the kernel approximation. Moreover, 

there is no particle outside of the boundaries during 

particle approximation. For the above reasons, there 

are boundary defects caused by insufficient particles 

when calculating the sum of particles near 

boundaries. 

Many different solutions have been proposed to 

effectively process discontinuities and strong 

discontinuities. In 1999, Chen and Beraun (2000), 

Liu et al. (2002), and Wang et al. (2002) proposed a 

new SPH algorithm from the Taylor series 

expansion, which was called the corrective 

smoothed particle method (CSPM). It effectively 

solves the boundary kernel function interpolation 

problem, thus improving the calculation accuracy, 

compatibility and tensile instability of the 

traditional SPH method. However, the CSPM 

method requires the equation set to be smooth and 

continuous in the solving domain, which restricts 

applications of the CSPM method in the 

discontinuity problem. Additionally, to solve the 

low calculation accuracy of artificial viscosity in 

studies of the traditional SPH method, many 

scholars have proposed some improvements or 

alternative methods (Morris and Monaghan 1997; 

Parshikov and Medin 2002; Monaghan 1997; 

Inutsuk 1994; Gao et al. 2007). Parshikov and 

Medin (2002) introduced the idea of Godunov 

discontinuity decomposition into the traditional 

SPH method and increased the ability of the 

traditional SPH method to effectively capture 

discontinuities. However, the algorithm has some 

limitations. Gao et al. (2007) proposed a new SPH 

method that combined the Godunov discontinuity 

decomposition idea and the discrete form of the 

CSPM method (introducing the Riemann solution 

into the discrete control equation set of the CSPM 

method)—the Godunov-type corrective smoothed 

particle method (GSPM). The GSPM solves the 

difficulties of the CSPM in solving discontinuous 

fluid dynamics problems and has a higher 

discontinuity capture accuracy than the traditional 

SPH method. 

In this study, the abovementioned 3 types of SPH 

methods were summarized. The basic formulas of 

various methods were deduced thoroughly. 

Moreover, a comparative study on the discontinuity 

function, 1D discontinuous shock tube and 1D 

trinitrotoluene (TNT) explosive denotation was 

carried out by using the traditional SPH method and 

GSPM. According to the calculation results, the 

GSPM increases the strong discontinuity capture 

accuracy of the traditional SPH method and 

significantly and effectively relieves the numerical 

fluctuation of the pressure and density of explosive 
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products within the computational domain after 

TNT explosion. 

2. BASIC FORMULA OF 

TRADITIONAL SPH METHOD 

The SPH method is used to solve the partial 

differential equation set based on variable fields 

such as density, velocity, momentum and energy in 

fluid dynamics problems. It disperses problem 

domains defined in the partial differential equation 

set and calculates functions of variable fields on any 

point as well as the approximate value of 

derivatives. Next, it applies the approximation 

function to the partial differential equation set to 

obtain a series of discrete ordinary differential 

equation sets that are only related to time. Finally, it 

solves the ordinary differential equation set to solve 

problems. 

In the SPH method, the whole system is expressed 

by independent mass and limited particles 

occupying independent spaces. Functions and their 

derivatives must be converted into the discrete form 

of the superposition sum of all particles in the 

support domain. Then, the particle approximations 

of functions and their derivatives at particle i are 

expressed as: 
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where 𝑊𝑖𝑗 = 𝑊(𝒙𝑖 − 𝒙𝑗 , ℎ) = 𝑊(|𝒙𝑖 − 𝒙𝑗|, ℎ)  is 

called the smoothed kernel function. h is the smooth 

length which is used to define the sphere of 

influence of 𝑊𝑖𝑗 . 𝑚𝑗  and 𝜌𝑗  are the mass and 

density of particle j (j = 1, 2,..., N), respectively. N 

refers to the total number of particles in the support 

domain of particle i. 𝑟𝑖𝑗 = |𝒙𝑖 − 𝒙𝑗| is the distance 

between particles i and j. 

3. BASIC FORMULA OF CSPM 

The corrected smoothed particle method (CSPM) 

was proposed by Chen and Beraun (2000), Liu et al. 

(2003a), and Wang et al. (2002) in 1999. The basic 

idea of CSPM is based on Taylor series expansion. 

It implements regularization processing to kernel 

approximation and particle approximation in the 

traditional SPH method. In other words, kernel 

estimation in the traditional SPH method is replaced 

by corrected kernel estimation gained from Taylor 

series expansion, and then the specific control 

equation set is dispersed. 

First, the function f(x) implements Taylor expansion 

on one point or one particle in the computational 

domain. Second, both sides of the function are 

multiplied by the smooth function [Wi(x)] on the 

corresponding particle support domain (Ω) at the 

same time. Third, an integral is carried out on Ω, 

thus obtaining the kernel particle approximation of 

f(x) on Ω. Finally, the particle approximation 

formula of f(x) on Ω is obtained. Similarly, both 

sides of the Taylor series expansion formula are 

multiplied by the first-order derivative or high-order 

derivative of Wi(x) on the corresponding particle 

support domain (Ω) at the same time. Subsequently, 

an integral is carried out on Ω, thus obtaining the 

kernel particle approximation of the first-order 

derivative or high-order derivative of f(x) on Ω. 

Finally, the particle approximation formula of the 

first-order derivative or high-order derivative of f(x) 

on Ω can be obtained. 

Given a 1D computational domain, suppose that f(x) 

is fully smooth in the interval Ω of particle i. Then, 

it gains the following formula through a Taylor 

series expansion of f(x) on point xi at particle i in the 

computational domain: 
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where 𝑓𝑖 = 𝑓(𝑥𝑖), 𝑓𝑥𝑖 = 𝑓𝑥(𝑥𝑖) = (𝑑𝑓 𝑑𝑥⁄ )𝑖 , 𝑓𝑥𝑥𝑖 =
𝑓𝑥𝑥(𝑥𝑖) = (𝑑2𝑓 𝑑𝑥2⁄ )𝑖. 

Both sides of Eq. (4) are multiplied by Wi(x) which 

is defined on the local support domain (Ω) of 

particle i. Next, the integral of Ω is obtained: 
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If the first-order and higher-order derivatives of f(x) 

in Eq. (5) are ignored, the corrected formula of the 

kernel particle approximation of f(x) on point xi at 

particle i in the computational domain is: 
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Similarly, both sides of Eq. (4) are multiplied by the 

first-order derivative of Wi(x) on the local support 

domain (Ω) of the corresponding particle. In other 

words, 𝑊𝑖,𝑥(𝑥) = 𝜕𝑊𝑖(𝑥)/𝜕𝑥  is used to replace the 

first-order derivative of Wi(x), while the second-

order and higher-order derivatives of f(x) in Eq. (5) 

are ignored. In this way, the corrected formula of 

the first-order kernel particle approximation of f(x) 

on point xi at particle i in the computational domain 

is: 
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The numerators in Eq. (6) and Eq. (7) are indeed the 

kernel particle approximation formula of the 
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function and the first-order derivatives in the 

traditional SPH method, while denominators 

(regularization factor) are descriptions of 

regularized properties of Wi(x), which is defined on 

Ω of particle i. Hence, the corrected kernel particle 

approximation gained by CSPM is gained through 

regularization based on the kernel particle 

approximation formula, which is gained by the 

traditional SPH method. 

Moreover, it must be noted that when the 

boundaries of the support domain and 

computational domain of particle i are independent 

from each other, the integral of the corresponding 

Wi(x) on Ω is 1. When the boundaries of the 

support domain and computational domain of 

particle i intersect, the integral of the corresponding 

Wi(x) on Ω is not 1. Obviously, for any particle i in 

the computational domain, the truncation errors of 

the field function f(xi) and its first-order derivative 

with respect to x [fx(xi)] are (x - xi)2 order. For any 

particle i on boundaries or near boundaries of the 

computational domain, the truncation errors of f(xi) 

and fx(xi) are (x - xi) orders. In other words, 

particles in the computational domain are first-

order continuous, and particles on boundaries or 

near boundaries of the computational domain are 

zero-order continuous. Moreover, the premise of 

such continuity is to ensure that all SPH particles 

are distributed uniformly in the computational 

domain. 

Therefore, the description of the regularization 

properties of Wi(x), which are defined on Ω of 

particle i, is ignored, or it hypothesizes that all 

integrals of Wi(x) on Ω in regard to any particle in 

the computational domain meeting the 

regularization conditions are the essential causes of 

boundary defects in the traditional SPH method. 

The continuous integral expressions in Eq. (6) and 

Eq. (7) are rewritten as the sum expressions at the 

discrete point, thus obtaining the particle 

approximation on particle i. 

 

 
1

1

N
j

j ij

j j

i
N

j

ij

j j

m
f x W

f x
m

W









 
  
 

 
  
 





                                       

(8)

 

 

   

 

   

 

1

1

,

1

,

1

N
j

j i i ij

j j

x i
N

j

j i i ij

j j

N
j

j i ij x

j j

N
j

j i ij x

j j

m
f x f x W

f x
m

x x W

m
f x f x W

m
x x W

















 
      

 
 

   
 

 
     

 
 

  
 









                   

(9)

 

where 𝑊𝑖𝑗,𝑥 = 𝜕𝑊𝑖𝑗 𝜕𝑥𝑗⁄ . 

Through the above introduction to the CSPM based 

on the correction of the traditional SPH method, the 

CSPM discrete form of the 1D fluid dynamics 

control equation set can be gained by using the 

CSPM: 
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Based on the above equations, differences between 

CSPM and the traditional SPH method are 

manifested by different structures of the integral 

expressions of kernel particle approximation. 

Moreover, kernel particle approximation and 

particle approximation in CSPM are connected with 

those in the traditional SPH method through 

numerators. The denominators describe the 

regularization properties of Wi(x), which are defined 

on Ω of particle i. 

4. BASIC FORMULA OF THE 

GODUNOV-TYPE CSPM 

Although the CSPM method achieves more 

accurate and reliable results in a series of practical 

applications compared to the traditional SPH 

method, the basic approximation idea of the CSPM 

is based on the Taylor series expansion of the kernel 

function. This requires the control equation set to 

meet full smoothness and continuity on the whole 

computational domain. Hence, the applications of 

CSPM to discontinuity problems (e.g., shock wave) 

are restricted significantly. For effective 

applications of the CSPM method to the 

discontinuity problem, Gao et al. (2007) proposed a 

new SPH method based on the combination of the 

Godunov discontinuity decomposition idea and 

discrete forms of the CSPM method (introducing 

the Riemann solution into the discrete control 

equation set of CSPM) in 2007. This is known as 

the Godunov-type CPSM (GSPM). 

First, it hypothesizes that all physical properties of 

SPH particles in the support domain are in constant 

distribution and that the support domains of 

particles are spherical. The support domains of each 

particle are tangent (j = 1), intersecting (j = 3) or 

separated (j = 2) pairwise. Moreover, the connection 

line (ij) between particles i and j is perpendicular to 

the interface of the support domains of each 

particle. The intersection point between line ij and 

the interface is expressed by Aij (when support 

domains of two particles intersect or separate, the 
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position of intersection is determined by the radius 

proportion of the support domain of corresponding 

particles). The velocity (𝑣𝑖𝑗
∗𝑅) and pressure (𝑝𝑖𝑗

∗𝑅) at 

Aij can be calculated by the results expressed in the 

sound velocity approximation for the Riemann 

solution, which was proposed by Godunov in 2002. 

In addition, particles i and j exchange momentum 

and energy on the interface (Fig. 1 and Fig. 2). It 

can be seen from the above hypothesis that particles 

i and j form a Riemann problem. The initial 

discontinuity surface of this Riemann problem is: 
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This initial discontinuity surface moves toward two 

sides at the local sound velocities of cj and ci. 

Moreover, the velocity and pressure intensity of 

particles are equal within the region scanned by 

shock waves. Next, the normal velocity and 

pressure intensity on the discontinuous interface can 

be calculated according to the mass and momentum 

conservation equation. The expressions are: 
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where 𝛾 = 1.4. 

 

 
Fig. 1. Interaction diagram of SPH particles in 

the GSPM. 

 

 
Fig. 2. RST coordinate system and pressure 

distributions on interface abc. 

Parshikov and Medin (2002) suggested replacing 

velocity (𝑣𝑗
𝑅) and pressure (pj) in Eq. (15) and Eq. 

(16) by 2 𝑣𝑖𝑗
∗𝑅 − 𝑣𝑖

𝑅  and 2 𝑝𝑖𝑗
∗𝑅 − 𝑝𝑖  (Riemann 

solution) in the traditional SPH method, 

respectively. Nevertheless, it can be found from the 

calculated results that through the above method, 

the Riemann solution can be introduced in the 

discrete expression of CSPM to calculate the 1D 

shock wave problem. The position of the captured 

shock wave array deviates from the known accurate 

solution to some extent. It was discovered from a 

numerical experiment that such deviation is mainly 

caused by asymmetric momentum and energy 

exchange between two adjacent SPH particles in the 

CSPM discrete control equation set. However, the 

control equation set deduced from the CSPM makes 

it difficult to obtain a group of discrete expressions 

with symmetric momentum and energy exchange 

between two adjacent SPH particles. 

For this reason, Gao et al. (2007) designed another 

method to introduce the Riemann solution: the 

physical properties of SPH particle j in the discrete 

expression, which is gained through CSPM, are 

directly replaced by the Riemann solution at the 

discontinuity surface, considering the displacement 

of the discontinuity surface. 

Based on the volume ratio of the support domains 

of two contacting particles and the displacement of 

the contact discontinuous surface of two connecting 

particle support domains, the position of the 

contacting discontinuity surfaces (𝑥𝑖𝑗
∗ ) is obtained, 

and its expression is: 

 * *

i

Ri
ij i j i ij

ji

i j

m

x x x x v t
mm



 

 
 
     
 

 
 

                       

(18)

 

Based on the volume average of two contacting 

particle support domains, the density (𝜌𝑖𝑗
∗ ) at the 

contacting discontinuous surfaces can be expressed 

as: 

* i j

ij

i j

m m

v v







                                                         
(19)

 

Through the particle mass arithmetic mean of two 

contacting particle support domains, the mass (𝑚𝑖𝑗
∗ ) 

at the contacting discontinuous surfaces is 

expressed as: 

 * 1

2
ij i jm m m 

                                                   (20) 

The normal velocity and pressure intensity at the 

contacting discontinuous surfaces are gained 

through Eq. (15) and Eq. (16), respectively. 

The physical properties of all SPH particles (j) in 

discrete expressions (11) - (13) gained through 

CSPM are replaced by physical properties at 

contacting discontinuous surfaces, which are 

obtained by introducing the Riemann solution. In 

this way, a group of new Godunov-type CSPM 

discrete control equation sets can be obtained, that 

is, GSPM discrete expressions: 
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5. CASE VERIFICATION AND 

COMPARISON OF RESULTS 

5.1 Discontinuous Function Problems 

A numerical verification of the GSPM was carried 

out by using the following discontinuous function. 

 
2

2

 1 0.5

0.5 0.5 1

x x
f x

x x

   
 

   

                       (24) 

The first-order derivative of the discontinuous 

function with respect to x is: 

    2 1 0.5

2  0.5 1

x xdf x

x xdx

  
 

  

                         (25) 

Discretization was implemented in Eq. (24) and Eq. 

(25) by using the traditional SPH method and 

GSPM, respectively. In addition, the SPH method 

and GSPM both apply the smoothed kernel function 

in cubic spline form. SPH particles are in uniform 

distribution on the problem domain [− 1, 1]. The 

volume (∆xi) of each particle is 0.05. In other 

words, there are a total of 40 SPH particles in the 

problem domain. To better show the advantages and 

disadvantages of various methods in boundary 

processing, the boundaries of the discontinuous 

function and its first-order derivative with respect to 

x were not processed in this study. 

The calculated results of the discontinuous function 

and the first-order derivative with respect to x after 

discretization by the two types of SPH methods are 

shown in Fig. 3 and Fig. 4. It can be seen that: 

The calculated results of the traditional SPH method 

at the discontinuous point of the discontinuous 

function and its first-order derivative with respect to 

x deviate significantly from accurate values. 

Moreover, there are obvious boundary defects at the 

boundaries. 

The GSPM not only obtains calculated results of the 

discontinuous point of the discontinuous function 

and its first-order derivative with respect to x in 

high accordance with accurate values but also 

solves boundary defects well. This indicates that the 

GSPM introduced in Riemann solutions into the 

traditional SPH method can not only solve 

discontinuous problems in the computational 

domain but also solve boundary defects caused by 

insufficient SPH particles near boundaries. 

Moreover, the calculated results have very high 

accuracy. 

 

 
Fig. 3. Discrete approximation results of the 

discontinuous function in Eq. (24). 

 

 
Fig. 4. Discrete approximation results of the 

first-order derivative of the discontinuous 

function with respect to x in Eq. (25). 

 

5.2 Discontinuous Shock Tube Problems 

In the above case, the calculated results of GSPM in 

processing discontinuous problems in the 

computational domain have very high accuracy. In 

this case, two types of SPH methods were applied 

to process 1D discontinuous shock tube problems. 

Now, there are exact solutions to the 1D 

discontinuous shock tube problems. Hence, this 

case is used to test the superiority of the GSPM in 

solving shock load problems. 

The 1D discontinuous shock tube refers to a long 

straight tube filled with gas. The gas in the tube is 

divided into two parts with different pressures and 

densities by a diaphragm. In each part, gas is in the 

equilibrium state in the beginning in terms of 

pressure, density and temperature (Fig. 5). When 

the diaphragm is removed suddenly, a shock wave, 

expansion fans and discontinuous contact region are 

produced in the shock tube. Specifically, the shock 

wave enters the region with a lower gas density, 

while the expansion fans move to the region with a 

higher gas density. Meanwhile, a discontinuous 

contact region will be formed near the center of the 

shock tube. Subsequently, this region follows the 
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shock wave continuously to move to the low-

density region (Fig. 6). 

 

 
Fig. 5. Shock tube diagram before breakage of 

the diaphragm. 

 

 
Fig. 6. Various physical phenomena are 

produced in the shock tube after breakage of the 

diaphragm. 

 

The specific model used in this case is x ≤ 0 m, ρ = 

1 kg/m3, v = 0 m/s, e = 2.5 J/kg, p = 1 Pa, ∆x = 

0.001875 m; x > 0 m, ρ = 0.25 kg/m3, v = 0 m/s, e = 

1.795 J/kg, p = 0.1795 Pa, and ∆x = 0.0075 m. 

Specifically, v, p, ρ and e are velocity, pressure, 

density and internal energy, respectively. ∆x refers 

to the distance between two adjacent SPH particles. 

In this case model, 320 SPH particles are distributed 

uniformly along [− 0.6 m, 0.0 m], and 80 SPH 

particles are distributed uniformly along [0.0 m, 0.6 

m]. In other words, there are 400 SPH particles in 

the model. Therefore, there are uneven distribution 

problems of SPH particles along the shock tube 

(positive direction of the x axis), and the mass of 

SPH particles is the same: mi = 0.001875 kg. The 

ideal gas state equation is used as the state equation 

of gas in the shock tube: 𝑝 =  (𝛾 − 1)𝜌𝑒, where 𝛾 = 

1.4. Two types of SPH methods both use the 

smoothed kernel function in the cubic spline form 

and the smooth length (h) is kept constant: the 

average distance between two adjacent SPH 

particles. Adjacent particles searching uses the full 

pairwise searching method, and the time integral 

calculation uses the leapfrog format calculation 

method [Eq. (26)]. Curve distribution patterns of 

velocity, pressure intensity, density and internal 

energy of SPH particles in shock tube along the 

shock tube (positive direction of x axis) at t = 0.2 s 

are shown in Fig. 7, Fig. 8, Fig. 9 and Fig. 10, 

respectively. 
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    

                  

(26)

 

where 𝐷 = 𝜕 𝜕𝑡⁄ . 

 
Fig. 7. Velocity distribution for the discontinuous 

shock tube problem obtained using two versions 

of the SPH formulation. 

 

 
Fig. 8. Pressure intensity distribution for the 

discontinuous shock tube problem obtained 

using two versions of the SPH formulation. 

 

 
Fig. 9. Density distribution for the discontinuous 

shock tube problem obtained using two versions 

of the SPH formulation. 

 

 
Fig. 10. Internal energy distribution for the 

discontinuous shock tube problem obtained 

using two versions of the SPH formulation. 
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It can be seen from the above curve distributions 

that the shock wave surface (shock wave array) is 

near x = 0.3 m and the expansion fans are between x 

= − 0.3 m and x = 0. The discontinuous distribution 

region of SPH particles is between x = 0.1 m and x 

= 0.2 m. 

For the traditional SPH method, if SPH particles in 

the computational domain are not uniformly 

distributed in the beginning and the smoothed 

kernel function or its first-order derivative with 

respect to x is not sufficiently smooth, the 

calculated results of the corresponding physical 

properties in the domain may show serious 

nonphysical fluctuations. The above curve 

distributions show that in the computational domain 

(discontinuous contact region) with uneven SPH 

particle distributions, the calculated results of the 

traditional SPH method in the domain present 

obvious nonphysical fluctuations. 

It can also be seen from the above curve 

distributions that the calculated results of the GSPM 

in the computational domain (discontinuous contact 

region) within uneven SPH particle distributions 

and at the strong discontinuity point are more 

stable. GSPM solves the numerical fluctuation of 

the traditional SPH method in the computational 

domain with uneven SPH particle distributions well. 

Moreover, the calculated results of the GSPM at the 

strong discontinuity point are closer to an accurate 

solution. 

Based on a comparison of the above two types of 

SPH methods, the GSPM can effectively solve the 

numerical simulation difficulties of the traditional 

SPH method in computational fluid dynamics 

fields, such as in the computational domain 

(discontinuous contact region) within uneven SPH 

particle distributions and at strong discontinuity 

points. Moreover, the calculated results are closer to 

the accurate solution. Therefore, the GSPM 

promotes the accuracy of the traditional SPH 

method in strong discontinuity capture. 

5.3 Slatted TNT Detection Problems 

The specific model used in this case study is 

introduced as follows: the 1D slatted TNT explosive 

is approximately 0.2 m long, and the slatted TNT 

explosive is detonated from the middle to two ends. 

Before detonation, SPH particles distribute 

uniformly along the geometric model of the 1D 

slatted TNT explosive, and there are 1,000 SPH 

particles. The initial density of the TNT explosive is 

ρ0 = 1630 kg/s. In this study, the Jones–Wilkins–

Lee (JWL) state equation [Eq. (27)] was used as the 

state equation of TNT explosive products, while the 

state equation of air uses the ideal gas state 

equation. Two types of SPH methods used the 

smoothed kernel function in the cubic spline form, 

and the initial smooth length (h0) was 1.5 times that 

of the average distance between two adjacent SPH 

particles. Iterative updating was carried out through 

Eq. (28), and the full pairing searching method was 

applied for nearby particle searching. The time 

integral calculation uses the leapfrog mesh 

computing method, and the time step length is ∆t = 

1.0×10−9 s. At the moment of slatted TNT explosive 

denotation, the denotation products diffuse from the 

middle, and the detonation wave array in the 

spherically asymmetric distribution is produced. 

The kinematic velocity was 6930 m/s, and the 

whole detonation process ended after approximately 

14.4 μs (Fig. 11). 
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where p is the pressure of detonation products of the 

TNT explosive and V is the relative specific volume 

of detonation products of the TNT explosive. A, B, 

R1, R2 and ω are fitting coefficients related to the 

state of TNT explosives. e refers to the specific 

thermodynamic energy. ℎ𝑖
𝑛 , 𝜌𝑖

𝑛 , 𝑣𝑖
𝑛  and ∇𝑖

𝑛𝑊𝑖𝑗  are 

the smooth length, density, and velocity of SPH 

particle i in the nth time step as well as the gradient 

of the smoothed kernel function, respectively. 

 

 
Fig. 11. Detonation process of the 1D slatted 

TNT explosive detonation model. 

 

Curve distributions of numerical simulation results 

of pressure and density of each SPH particle along 

the geometric model (positive direction of x-axis) at 

t = 4 μs and t = 12 μs during detonation of the 1D 

slatted TNT explosive are shown in Fig. 12 and Fig. 

13, respectively. In this case, the pressure and 

density of the products after detonation of the 1D 

slatted TNT explosive at the Chapman–Jouguet (C–

J) point have theoretical approximate analytical 

solutions of 19.57 GPa and 2173 kg/m3, 

respectively. The C–J peak of detonation product 

pressure was calculated to be 21 GPa by Liu et al. 

(2003b) through an experimental method. 

For the traditional SPH method, it can be seen from 

the numerical simulation results that the pressure 

and density of detonation products from the 1D 

slatted TNT explosive at the C–J point are very 

close to the theoretical values or experimental 

values. In addition, the pressure value of detonation 

products on the C–J point at t = 12 μs is between the 

experimental value and theoretical value, which is 

enough to elaborate that in the processing 

detonation problem of a 1D slatted TNT explosive, 

the calculated results of the traditional SPH method 

conform to the practical variation law. The 

traditional SPH method can accurately predict the 

shape and size of the detonation wave as well as the 

pressure peak on the C–J point and pressure 

distribution during detonation of a 1D slatted TNT 

explosive. However, after finishing detonation of a 

one-dimensional slatted TNT explosive, numerical 

values of pressure and density of detonation 

products fluctuate slightly within the computational 

domain. 
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Compared with the traditional SPH method, the 

numerical simulation results of the pressure and 

density of detonation products on the C–J point in 

the GSPM method are also very close to the 

experimental values or theoretical values. In 

addition, the pressure peak of detonation products 

on the C–J point is closer to the experimental or 

theoretical results. After finishing the detonation of 

the 1D slatted TNT explosive, the small fluctuation 

of numerical pressure and density values of 

detonation products within the computational 

domain is relieved effectively (Fig. 12 and Fig. 13). 

Therefore, the GSPM method is also applicable to 

solving the shock wave of detonation, and 

numerical simulation results could achieve higher 

accuracy. 

 

 
Fig. 12. Pressure intensity distributions at 4 μs 

and 12 μs obtained using two versions of the SPH 

formulation. 

 

 
Fig. 13. Density distributions at 4 μs and 12 μs 

obtained using two versions of the SPH 

formulation. 

 

The variations in total internal energy per unit mass, 

total kinetic energy per unit mass and initial total 

energy per unit mass in the GSPM with detonation 

time are shown in Fig. 14. Obviously, as the 

detonation continues, the total kinetic energy per 

unit mass increases gradually, while the total 

internal energy per unit mass declines. However, 

the initial total energy per unit mass is kept as an 

approximate constant, approximately 6.9927 MJ/kg. 

The relative error of total energy per unit mass has 

been kept lower than 0.01%, indicating that the 

GSPM method has very good numerical stability. 

 
Fig. 14. Time history of energy balance. 

 

Finally, to further discuss the influences of the SPH 

particle distribution density (total number of SPH 

particles) on the calculated results of the GSPM, the 

number of SPH particles was set as 250, 500, 1000, 

2000 and 4000 in the numerical simulation in the 

0.2 m long 1D slatted TNT explosive detonation 

model, which detonates from the middle. According 

to the different distribution densities of SPH 

particles, the time step length for the calculation of 

the numerical integral was adjusted accordingly. 

Finally, the influences of the SPH particle number 

on the pressure peak, energy peak, density peak and 

velocity peak of detonation products from the 1D 

slatted TNT explosive during 1 μs and 14 μs were 

acquired. For convenient observation, a diagram 

was plotted according to the peak points of several 

physical properties every 1 μs from 1 μs to 14 μs, 

which can intuitively reflect the influences of the 

SPH particle number on the calculated results of the 

GSPM. The results are shown in Figs. 15, 16, 17 

and 18. 

It can be seen from numerical simulation results that 

the pressure peak, velocity peak and density peak of 

detonation products when finishing detonation 

approach the experimental value or theoretical value 

with the increase in the SPH particle number 

(among them, the density peak agrees best with the 

theoretical value). This reveals that the distribution 

density of SPH particles has a direct influence on 

the accuracy of the numerical simulation results. 

Theoretically, the detonation model of a 1D slatted 

TNT explosive can reflect the internal structure of 

materials more accurately when there are more SPH 

particles (smaller distance between two adjacent 

SPH particles). Hence, the fluctuation in the 

numerical shock wave pressure generated by the 

detonation of explosives during spreading among 

SPH particles is smaller, and the calculated results 

are more accurate. This is verified by the above 

numerical simulation results. Nevertheless, 

increasing the number of SPH particles introduces a 

disadvantage to numerical simulation while 

increasing the calculation accuracy: it must make 

one nearby particle search for all SPH particles in 

the computational domain within each time step. As 

a result, this method is applicable when there are 

few SPH particles. With the gradual growth of SPH 

particles, it takes a longer time for numerical 

simulation, thus decreasing computational 

efficiency. Obviously, selecting the density of SPH 

particles is recommended when using the GSPM  
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Fig. 15. Influences of the SPH particle number 

on the pressure peak of products after 

detonation of a 1D slatted TNT explosive. 
 

 
Fig. 16. Influences of the SPH particle number 

on the velocity peak of products after detonation 

of a 1D slatted TNT explosive. 
 

 
Fig. 17. Influences of the SPH particle number 

on the density peak of products after detonation 

of a 1D slatted TNT explosive. 
 

 
Fig. 18. Influences of the SPH particle number 

on the energy peak of products after detonation 

of a 1D slatted TNT explosive. 

method to solve shock wave problems. This not 

only can predict the characteristics of the shock 

wave and pressure distribution in the detonation 

process relatively accurately but can also improve 

the computational efficiency. 

6. CONCLUSIONS 

This study mainly corrected the kernel particle 

approximation of the traditional SPH method and 

thereby obtained the CSPM after normalized 

correction of the kernel particle approximation and 

particle approximation. Later, a new SPH method is 

developed based on a combination of the Godunov 

discontinuous decomposition idea and the discrete 

form of CSPM (introducing the Riemann solution 

into the discrete control equation set of CSPM), 

which is known as the GSPM. Moreover, the 

GSPM is applied to solve the discontinuous 

function problem, 1D shock tube problem and 

detonation shock wave problem. It can be seen from 

numerical verification and comparative calculation 

that the GSPM is significantly superior to the 

traditional SPH method in terms of calculation 

accuracy and numerical fluctuation in processing 

discontinuous problems. Moreover, the GSPM can 

well solve the numerical simulation difficulties of 

the traditional SPH method in the computational 

domain (discontinuous contact area) with uneven 

SPH particle distributions and at the strong 

discontinuity point. As a result, the GSPM increases 

the accuracy of the traditional SPH method in 

strong discontinuity capture. It provides a new 

method to study discontinuity phenomena such as 

shock waves. 
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