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ABSTRACT 

Employing FVM, we have investigated numerically the rheological behavior of bifurcation phenomena of blood 

flow at various Reynolds numbers (𝑅𝑒) and at various values of contraction ratio (ℎ), defined as the ratio of the 

inlet to narrow sections width of a two-dimensional planner contraction-expansion channel. Blood flow 

bifurcation through a planar contraction-expansion channel is analogous to the case of regurgitation (i.e., 

abnormal leakage of blood) in the mitral valve. In this work, we have studied the blood flow bifurcation 

characteristics including the normalized axial velocity profile, velocity gradient, dimensionless pressure, 

dimensionless longitudinal pressure gradient, pressure and skin friction coefficients on both the channel walls 

and analyzed the pressure drop, excess pressure drop for different values of Re. Secondly, blockage in the mitral 

valve is studied for different values of h. Pressure drops for various values of h are also studied to measure 

blood pressure. Correlation analyses are presented for normalized vortex length in terms of critical values of 

Re and h. It is revealed that if Re goes on increasing to 14.4 or more, flow breaks the symmetry at ℎ = 15, and 

for each ℎ, recirculation length increases linearly with the increase in Re but decreases valve flaps that reduce 

blood flow to the heart muscles. 

 

Keywords: Contraction-expansion channel; Pressure drop; Pressure recovery factor; Bifurcation; Streamline; 

Numerical simulation. 

 

1. INTRODUCTION 

Through a leaking mitral valve, blood flow takes 

place in two ways. Firstly, due to contraction of the 

left ventricle, some amount of blood flows through 

the aorta from the ventricle, and then the rest of that 

returns to the atrium, which may cause cardiac arrest 

(Zhao et al. 2013). The phenomena of bifurcated 

blood flow in a sudden contraction-expansion 

channel have wide pragmatic applications in fluid 

mechanics; and that in the planer contraction channel 

causes many cardiovascular diseases. The 

proficiency of such channels is based on the channel 

contraction ratio, ℎ. Bifurcation of flow (Chedron et 

al. 1978) arises in electronic cooling equipment, 

blending vessels, etc. (Shamloo et al. 2016; Shamloo 

and Parast 2019; Boodaghi and Shamloo 2020; 

Verlinden et al. 2020; Ashkezari et al. 2022), and it 

occurs in the case of blood flow in mitral valve 

because of the irregular spillage of blood, (Fig. 2). 

For the first time, Abbot and Kline (1962) solved 

numerically the problems considering plane sudden 

expansion (Fig. 1a). Experimental studies have been 

done on the subsonic turbulent flow for single and 

double backward-facing steps (Hajji et al. 2021). 

They observed that three distinct flow separations 

exist, viz., i) two-dimensional flow separation, ii) 

three-dimensional flow separation, and iii) overall 

separation of length. Severe effects of the Re and 

turbulence intensities on both the flow patterns and 

reattachment length have been discussed in their 

work. Sobey and Drazin (1986) analyzed a two-

dimensional laminar flow in an indented channel 

(Fig. 1b) using analytical, numerical, and 

experimental methods. At a large value of Re, the 

time-periodic asymmetric flow was observed, 

whereas symmetric flow was noted for small values 

of Re. Their work also indicates the presence of a 

supercritical pitchfork bifurcation, and stable 

asymmetric flow if Re becomes too large. Shapira et 

al. (1990) studied the instability of symmetric, two-

dimensional viscous flows with semi-angle (𝛾), 100 

≤  𝛾 ≤ 900, and Re based on a small expansion ratio 

in a symmetric expansion channel (Fig. 1d). To study 

the stability limit, linear stability analysis has been 
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employed for the half-domain and a minimum value 

of Re (Recr) has been detected. It is observed that for 

Re ≥Recr, flow changes from symmetric to 

asymmetric. Using experimental and numerical 

methods, Fearn et al. (1990) analyzed how steady 

asymmetric flow arises in a sudden symmetric 

expansion channel and revealed that the flow 

becomes time-dependent at the large value of Re. 

Durst et al. (1993) provided a detailed study of 

velocity and predicted numerically that for Re>125 

flow symmetry in the walls of a two-dimensional 

duct having an expansion ratio of 1:2 is lost. They 

also observed that if Re>125, the upper corner vortex 

length remains almost the same. Chen et al. (1995) 

numerically studied the flow bifurcation past a 

cylinder (Fig. 1c) kept within a couple of parallel 

planes. They studied symmetry-breaking bifurcation 

and Hopf bifurcation, and concluded that if Re>Recr, 

the flow region loses its stability. Numerical 

simulations of their work revealed that the existence 

of steady flow perturbation, time-dependent motion, 

and the flow perturbation dies at small values of Re 

for blockage ratio = 0.2. It is also shown that the  

 

 
 

 
Fig. 1. Different types of flow geometries: (a) 

sudden expansion channel, (b) intended channel, 

(c) a cylinder between two parallel planes, (d) 

gradually expanded channel (Chedron et al. 

1978). 

perturbation increases as Re increases beyond its 

critical value, and evidently, the flow settles for a 

new state that generates time-periodic motion. 

Balloch et al. (1995) considered incompressible 

Newtonian fluid flow in two and three-dimensional 

channels for very small values of Re only. To find 

the steady-state solutions, they employed time-

stepping techniques for small and large values of 

expansion ratios. Numerical simulations asserted the 

existence of lip vortices (Re = 2.5) and salient 

vortices (Re> 10) at the corners, which has a strong 

agreement with their experimental results. The flow 

fields in a two-dimensional channel were 

numerically studied by Battaglia et al. (1997) to 

understand the occurrence of symmetric and 

asymmetric flows with the change in expansion ratio. 

Their results show that the variation in expansion 

ratio and critical Re are of opposite characteristics 

(Drikakis 1997). Touzopoulos and Bergeles (1998) 

showed that the laminar flow in a plane sudden 

expansion channel becomes symmetric when Re ≥ 

Recr. Astarita and Greco (1968) calculated the excess 

pressure drop for contraction geometry 

experimentally and analytically and showed that the 

correlation between the Hagenbach and Couette 

corrections for pressure is lost. Ghosh et al. (2012) 

depicted flow patterns of different forms of core 

annular flow for high and low viscous oil-water 

emulsion through a sudden contraction and 

expansion channel. They also studied various types 

of interfacial distributions in the kerosene-water 

systems. In addition to that, the flow of lube oil-water 

has also been analyzed. It is observed that the 

pressure profiles and pressure loss coefficients are 

independent of the viscosity of the liquid and flow 

patterns for both lube oil-water and low viscous oil-

water flows. Saha et al. (2020); Saha (2021a, b); 

Saha et al. (2022) solved a few problems on flow 

phenomena in a horizontal expansion channel. 

Patlazhan et al. (2017) have studied the 

characteristics of bifurcated Newtonian-fluid flow in 

a two-dimensional sudden contraction-expansion 

channel and observed that if Re>Recr length of the 

lower corner vortex increases faster than that of the 

upper corner vortex. Moreover, if Re increases 

further new vortexes are generated, which 

characterizes that the flow is driven by pressure, 

(Boughamoura et al. 2003). Mishra and Jayaraman 

(2002) solved the problem of symmetry-breaking 

flow of the generalized Newtonian fluid through a 

sudden planner expansion (Saha et al. 2021; Saha 

and Das 2022). Asymmetry in Geometry is observed 

on a small scale for small values of Re. Moreover, 

when Re ≤ Recr two successive similar flow 

transitions are found. For laminar Newtonian flow, 

many authors (Tsai et al. 2007; Ternik 2010; 

Dhinakaran et al. 2013; Moallemi and Brinkerhoff 

2016) have determined the critical value of Re for 

various expansion ratios. Several authors have 

investigated the effect of expansion ratio (Oliveira et 

al. 2008; Saha and Das 2021) on non-Newtonian 

fluid flow. Pal and Hwang (1997) and Sanmigue et 

al. (2010) have also studied the nature of fluid flow 

through a two-dimensional 
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Fig. 2. (a) Location of Mitral Valve 

(https://myheart.net/articles/mitral-

regurgitation/), and (b) Blood leakage in mitral 

valve (https://en.wikipedia.org/wiki/ 

Mitral_valve). 

 

sudden contraction channel. The cardiovascular 

framework supplies oxygenated blood to the tissues 

and organs of the human body. It consists of three 

parts, viz., heart, pulmonary circulations, and 

microvasculature. The oxygenated blood through the 

living tissues (Wang and Parker 2004; Korakianitis 

and Shi 2006; Formaggia et al. 2009) is supplied to 

the left heart and non-oxygenated blood returns to the 

right heart through veins. In pulmonary circulation, 

non-oxygenated blood is catapulted by the right heart 

streams through the aspirator routes towards the 

lungs. After being oxygenated there, it returns to the 

left heart through the pulmonary veins, as shown in 

Fig. 2. The blood pressure wave propagation, and 

models of blood flow are discussed in the references 

(Bakirtas and Demiray 2005; Davies et al. 2006), 

which give a clear idea of the blood flow models. 

Here, we have considered the sudden contraction-

expansion channel like the geometric features of 

mitral regurgitation. SIMPLEC algorithm (Van 

Doormaal and Raithby 1984) is applied for solving 

the governing equations, while the numerical 

simulations are performed using fluent software. The 

study includes the determination of Recr, needed for 

symmetry-breaking bifurcation at h = 15, and 

observation of the asymmetric flow patterns, which 

arise after a certain value of Re. The effect of 

different values of h (4 ≤ ℎ ≤ 15) is also 

investigated at Re = 29. Moreover, eight basic 

characteristics including the normalized axial 

velocity profile, normalized axial velocity gradient, 

 
Fig. 3. Schematic diagram of sudden 

contraction-expansion channel: 𝒅𝟏 = 𝟎. 𝟏𝟓 𝒎,
𝒅𝟐 =  𝟎. 𝟒𝟓 𝒎, 𝒅𝟑 = 𝟎. 𝟎𝟏 𝒎 , 𝜷 = 𝟎. 𝟎𝟎𝟐 𝒎, 𝜶 =

𝟎. 𝟎𝟑 𝒎. 
 

dimensionless pressure, dimensionless longitudinal 

pressure gradient, pressure coefficients, skin friction 

coefficients on both lower and upper walls, kinetic 

energy, as well as the pressure drop are also 

calculated to investigate the flow bifurcation 

phenomenon. Furthermore, variation in pressure 

drop is plotted for the above set of values of h to 

examine the blood pressure categories.  

2. PHYSICAL DOMAIN 

In this work, we have considered 2-D viscous 

laminar flow to study the behavior of blood flow 

through a mitral valve, as shown in Fig. 3. The 

domain of interest is made of the inlet and outlet 

sections of equal width α, and a thin section of width 

β, h = 
𝛼

𝛽
, is defined as the contraction ratio. 

3. PROBLEM FORMULATION AND 

NUMERICAL METHODS 

Here, fluid flow is considered two-dimensional 

laminar, unsteady, Newtonian, and viscous. In this 

analysis, momentum and continuity equations are 

considered as follows: 

𝜕𝑈

𝜕𝑡
 +  (𝑈. 𝛻)𝑈 =  −

1

𝜌
𝛻𝑃 +  𝜂𝛻2𝑈                       (1) 

𝛻. 𝑈 =  0                                                                         (2) 

, where ρ, and η denote density and kinematic 

viscosity respectively. Here, U(x, t) and P(x, t) are 

defined as velocity vector and pressure. Blood is 

taken as Newtonian fluid in the present analysis with 

𝜌 =  1.06 ×  103 kg/m3, µ (dynamic viscosity)= 

0.005 Pa-s.  

The Boundary conditions of the proposed problems 

are as follows: 

• Inflow velocity, 𝑈𝑖𝑛 = 𝑈0 (Table 1). 

• In the outlet section, we have assumed  
𝜕𝑈

𝜕𝑥
= 0. 

• At the boundary walls, we have prescribed  
𝜕𝑈

𝜕𝑥
= 0 

(no slip occurs), and 
𝜕𝑈

𝜕𝑦
= 0 (no penetration occurs). 

SIMPLEC algorithm is employed to solve equations 

1 and 2, and the convergence criteria of the 

simulation are considered as ||𝑈𝑛+1 − 𝑈𝑛 ||≤ ∊ and 
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Table 1 Inflow velocity for different Re 

Re 𝑈0 Re 𝑈0 

0.1 0.000235849 29 0.068396226 

0.9 0.002122642 32 0.075471698 

12 0.028301887 39 0.091981132 

14 0.033018868 42 0.099056604 

14.4 0.033962264 52 0.122641509 

23 0.054245283 62 0.146226415 

72 0.169811321 120 0.283018868 

82 0.193396226 145 0.341981132 

92 0.216981132 160 0.377358491 

98 0.231132075 180 0.424528302 

 

||𝑃𝑛+1 – 𝑃𝑛|| ≤∊ with ∊ = 10−6. Dimensionless 

variables are defined as: 

𝑈∗ = Uβ/η, x∗ = x/β, P∗= Pρβ2 /µ2, Lv = lv /α (where 

v = 1, 2, 3, 4), Re= Umaxβ/η, where Umax denotes the 

maximum velocity. 

 

3.1. Numerical Procedures 

Ansys Fluent has been used for simulation and 

visualization purposes. Variables defined at the 

center of the control volume populating the physical 

domain have been considered for solving the 

governing equations using FVM. Integration of each 

equation over each control volume provides a 

discrete equation that links the variable at the center 

of the volume to its neighbors. Despite some 

compelling features of FVM, the lower-order 

interpolation of the convective terms in the 

governing equations causes several unwanted 

numerical effects. To avoid those, the QUICK 

scheme (Leonard 1979) has been utilized for spatial 

discretization of convective terms in the momentum 

equation. It is a differencing system in computational 

fluid dynamics that considers a three-point upstream 

weighted quadratic interpolation for the cell face 

values. For the phenomena of flow characteristics, 

the Quick-scheme is used for the interpolations, and 

a second-order upwind scheme is applied for the 

pressure terms. Moreover, it is a three-point 

technique, which is third-order accurate on uniform 

meshes and is based on quadratic polynomial 

interpolation. It is an upwind scheme, and accurate 

up to the 3rd order for the advection terms, but the 2nd 

order for the rest of the terms (diffusion terms). 

SIMPLEC algorithm (Van Doormaal and Raithby 

1984; Ternik et al. 2006) resolves the coupling 

between velocity and pressure. As a result, using the 

SIMPLEC technique (Van Doormaal and Raithby 

1984; Ternik et al. 2006), updated velocity and 

pressure field satisfying exactly mass balance and 

essentially discrete momentum equations have been 

found. The convergence measure is set as 10−6, and 

10−6 for the considered equations. 

 

3.2. Mesh Study 

A qualitative solution at low computational cost can 

be found through mesh study. The Meshing of the 

whole domain has been divided into three different 

zones with three types of uniform rectangular meshes 

for inlet, narrow, and outlet sections as shown in Fig. 

4. Taking Re = 23 and h = 15, flow 

 
Fig. 4. Mesh geometry at h = 15. 

 

Fig. 5. Number of elements vs. average outlet 

velocity at Re = 23, h = 15. 

 

bifurcation is analyzed with the aid of a pressure-

based solver. Figure 5 depicts that for efficient and 

quantitative simulation the optimum number of cells 

is 82,942. 

 

3.3. Validation 

The Numerical results of this work have been 

validated with those of Patlazhan et al. (2017), and 

have been depicted in Fig. 6 (a-b). For the same input 

parameters, Fig. 6(a) and Table 2(a-b) show the 

closeness of the outcomes of this work with those of 

Patlazhan et al. (2017). 

The bifurcation diagram is presented in the x-y plane 

with Re along the x-axis and normalized vortex 

length along the y-axis. Figure 6(a) depicts that for 

both the corner vortices, the bifurcation length 

remains the same for a certain value of Re (Recr). 

However, when Re>Recr both the corner vortices 

break the symmetry. It can be seen that bifurcation 

starts at a particular time (Fig. 6b). In Table 2, the 

percentage error is calculated as, % error= | 

[(Patlazhan et al. 2017)-present study)/Patlazhan et 

al. (2017)] | ×100%. 

 

Table 2 (a-b) % error of Patlazhan et al. (2017) 

vs. present work. 

a. lower corner vortex 

length, L1 

b. upper corner vortex 

length, L2 

Re  Patlaz

han et 

al. 

(2017) 

Pres

ent 

stud

y 

Re Patlazhan 

et al. 

(2017) 

Pres

ent 

stud

y 

0.77

9  

0.217 0.21

59 

0.7

79 

0.217 0.21

59 

16.5 1.01 0.99 16.

5 

1.01 0.99 

25.6 2.04 2.03 25.

6 

0.873 0.86

3 

30.8 2.24 2.22 30.

8 

0.885 0.88

25 

total percentage 

error= 0.25 

total percentage error= 

0.25 
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Fig. 6. (a) Bifurcation diagram at various Re, (b) 

normalized vortex length vs. different time at 

𝑹𝒆 =  𝟐𝟖. 𝟔. 

 

4. RESULTS AND DISCUSSIONS 

For different values of Re, the separation and 

reattachment of corner vortices have been discussed 

in this sub-section. 

 

4.1. Flow Structure and Recirculation 

Characteristics at Various Re 

It is shown that three different types of flow 

configuration, viz., creeping flow, symmetric jet, and 

asymmetric jets evolve with the increase in Re. For 

small values of Re, creeping flow arises and the flow 

becomes symmetric for sufficiently large values of 

Re, and due to further increase in Re the flow losses 

its’ symmetry. The streamlines for the contraction 

ratio, and various values of Re from 0.1 to 42, have 

been presented in Fig. 7. It is clear that for creeping 

flow (Fig. 7(a-b)), bifurcation occurs on a small scale 

at the corner of both the walls for Re< 10, but if the 

value of Re crosses 10, two vortices of the same 

length occur at the corner walls of the channel as 

shown in the Fig. 7(a-c). Moreover, if Re goes on 

increasing to 14.4 or more, the flow breaks the 

symmetry as shown in Fig. 8(d). It is observed that 

the number of vortices increases as Re increases. In 

Fig. 7(e-g), it is depicted that the flow becomes 

asymmetric with the increase in Re, and as a result, 

circulation becomes more complex, which causes a 

decrease in blood flow in the valve. 

 

4.2. Bifurcation Diagram for Different Re at h= 15 

Figure 8 presents the bifurcation diagram, which 

 
Fig.7 (a-g). Streamlines of blood flow at various 

Re. 

 

depicts normalized vortex lengths at different values 

of Re at the corner walls of the channel. From Fig. 7 

and 8, it is clear that at 𝑅𝑒 =  0.1, the first 

bifurcation of the flow occurs at both the corner 

walls, and for 𝑅𝑒 <  14.4, the flow patterns remain 

symmetric (i.e., the vortices remain of uniform 

sizes). It is also found that for the values of Re 

satisfying 0.1≤ 𝑅𝑒 ≤14.39, corner vortices are 

developed consistently and linearly (𝐿1 ≈ 𝐿2). But, 

for 𝑅𝑒 ≥  14.4 one corner vortex increases in size, 

while that of the other corner vortex starts to reduce 

showing that the symmetry of the flow changes to a 

stable one (Fig. 7(d-g), 8). With the increase in Re, 

more than two separate zones arise at the corner 

walls of the channel as shown in Fig. 7(e-g) and 8. 

Similar flow patterns occur for different contraction 

ratios and different widths of the narrow section, as 

shown in Fig. 8.  

 

4.3. Effects of h 

For different values of ℎ ∈ [4, 13.5], and a fixed 

value of 𝑅𝑒 (=  29), details of the flow patterns are 

discussed in this subsection, and the downstream of 

the sudden contraction expansion channel, flow 

bifurcation phenomena are presented. Figure 10 

depicts that for the values of h ∈ [10, 13.5], the  

 

(a) 

(b) 

  

(a) (b) 

(c) (d) 

(e) 

(f) 

(g) 
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Fig. 8. Effect of Re. 

 

flow symmetry is lost. It is also studied that the 

length of the recirculation zones increases as the 

channel depth increases from 4 to 13.5. 

Consequently, the strength of the secondary flow 

reduces and gives a stable flow pattern in the corner 

walls, preventing asymmetries from the start of the 

flow. From Fig. 9(a, b), it is evident that for h = 4,5, 

the flow remains symmetrical with its length equal to 

vortex lengths (L1 = L2) nearly, and the flow 

symmetry disappears as the value of contraction ratio 

increases. However, at h = 7.5, it is found that two 

different corner vortices appear (Fig. 10(c)), but for 

h ≥ 10 more than two corner vortices exist at the 

corner walls of the channel (Fig. 10(d-f)]. Figures 

(10-11) depict various normalized vortex lengths 

with different values of Re and contraction ratios. 

From these figures, it is clear that for 𝑅𝑒 < 𝑅𝑒𝑐𝑟, 

flow breaks the symmetry and the vortices at the 

upper corner wall are shrinking, but those in the 

lower corner wall grow sharply. For this, the flow 

changes from symmetric to asymmetric due to small 

disturbances. Equation 3 represents a function of Re 

for various contraction ratios, h ∈ [4, 15], which is 

fitted to generate a linear relationship between 

normalized vortex length and Re. It is found that an 

increase in Re increases recirculation length for each 

h (Fig. (10-11)).  

𝐿𝑣 =  0.1471 + 0.00421ℎ − 0.00035𝑅𝑒
− 0.00021 𝑅𝑒 ℎ                     (3)

+ 0.001𝑅𝑒√ℎ                          

For a sufficiently large value of Re, the flow becomes 

asymmetric with the increase in contraction ratio, 

and the correlation function generates an inverse 

relationship between Recr and h (Fig. 12). The flow 

bifurcation was computed at Re <Recr until a steady 

state mode is achieved. The sudden expansion can 

amplify the small disturbance existing in the 

incoming laminar flow (Castillo et al. 2014). 

𝑅𝑒𝑐𝑟 =  
50.63

𝑒0.0916ℎ
                                                        (4)  

Thus, Recr has been noted as the minimum value of 

Re at which the bifurcation occurs, as shown in Fig. 

12. The square of the regression coefficient (R2) is 

found to be equal to 0.7265 for the contraction 

ratio, h = 4, 5, and 7.5, while the same is equal to 

 
Fig. 9. Streamlines for different h at Re = 29. 

 

 

(a)  

 
(b) 

 
(c) 

Fig. 10. Bifurcation diagram for various Re at (a) 

h = 4, (b) h= 5 and (c) h= 7.5. 

 

(

a

) 

 

  

(a) (b) 

(c) (d) 

(e) (f) 
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0.9965 for h = 12, 13.5, and 15. Thus, an increase 

in f causes an increase in the regression coefficient. 

Moreover, from the Fig. (10-12) it is found that 

45.4 is the critical value of Re at h = 4, while Recr is 

equal to 28.9 at h = 5. However, for h = 7.5, 10, 

12.5 and 13.5, the values of Recr are 21.4, 17.9, 

16.2, and 15.2 respectively. Furthermore, 

normalized vortex length increases with the 

decrease in contraction ratio as can be seen in the 

Fig. (10-11). For different values of contraction 

ratio, Fig. 13 shows the variation in asymmetry 

parameter with Re. Here 𝐴𝑠 is defined as, 𝐴𝑠  =
 2𝐿𝑠  −  (𝐿1  +  𝐿2), where 𝐿𝑠 denotes the larger 

value of vortex length. Moreover, it is seen that at a 

particular value of h, the asymmetry parameter 

linearly increases with the increase in Re (Fig. 10(a-

c) and 11(a-c)).  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 11. Bifurcation diagram for various Re at (a) 

h = 10, (b) h= 12 and (c) h= 13.5. 

 
Fig. 12. Plots of h vs Recr. 

 

 
Fig. 13. Variation of asymmetry parameter with 

Re at various h. 

 

4.4. Velocity and Pressure Profile at h = 15 

Figures 15(a-b), 16 and 17(a-b) depict the sudden 

variation in the velocity and pressure due to the 

change in the channel width. Consequently, the axial 

velocity is increased unusually and causes a pressure 

drop. The mechanism of bifurcation is based on the 

propagation of velocity disturbance, which depends 

on Re. In Fig. 7, 9, and 15, it is shown that velocity 

increases in the region close to the channel walls. It 

is seen that centerline velocity decreases when the 

fluid moves downstream of the channel. The 

variations in the horizontal component of axial 

velocity and longitudinal velocity gradient for 

various Re are presented in Fig. 15(a-b) and 16. 

Variations in the velocity are mainly observed in the 

inlet of the narrow segment. For a small value of Re 

(Re = 0.9), the axial velocity is found to rise 

moderately, and becomes constant (Fig. 14(a) and 

15). Figures 14(b-d) and 15(a-b) show that a further 

increase in Re (Re = 14, 32, and 42), causes axial 

velocity to decrease along the narrow section of the 

channel. Figure 15(b) shows that the fluctuation of  

the longitudinal velocity gradient at the inlet of the 

narrow channel is caused by the a sudden decrease in 

pressure at the channel outlet. Figure 17 shows that 

the longitudinal velocity gradient corresponds to the 

null velocity gradient, which asserts the linearity of 

( 
𝜕𝑈∗

𝜕𝑥∗
 )max. In the narrow section of the channel, 

longitudinal velocity is found to exist, which 

suggests a deviation of velocity profile from the 

Poiseuille flow.  
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Fig. 14. Velocity vector fields for various Re.  

 

Fig. 15. Profiles of (a) U∗ & its gradient (b) 
𝝏𝑼∗

𝝏𝒙∗
 at 

various Re. 

 

4.5. Effect of Skin Friction and Pressure 

Coefficients 

In this section, the effects of the pressure coefficient 

are defined by Cp = 2(pw−pin)/(ρuin
2) and the skin 

friction coefficient is defined by Cf= 2τw/(ρuin
2) 

(Kadja et al. 2002; Dhinakaran et al. 2013) on flow 

patterns along the lower and corner walls have been 

discussed and presented in the Fig. (18-19) at h = 15. 

Here, pw, pin, uin, and τw = µ ∂u/ ∂y |y=0 denote the  

 
Fig. 16. Profile of longitudinal velocity gradient 

(
𝝏𝒖∗

𝝏𝒙∗
) max at various Re. 

 

 
Fig. 17. Variations of (a) P∗ and its longitudinal 

gradient (b) 
𝝏𝑷∗

𝝏𝒙∗
  with non-dimensional length x∗ 

at various Re. 

 

 

 (a) (b) 

(c) 

(d) 

 

 

(a) 

(b) 
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Fig. 18. Plots of (a-d) pressure and (e-h) friction coefficients for 0.1≤ 𝑹𝒆 ≤ 14.4. 

 

wall pressure, inlet centerline pressure, inlet velocity, 

and the shear stress on the walls respectively 

(Dhinakaran et al. 2013). The detachment and 

reattachment points of flow along the corner walls 

(Fig. 18, 19), where it is also revealed that 

streamwise velocity changes sign as the sign of the 

parameter changes. From Fig. 19(a-h), we see that 

the Cp and  Cf curves ensure that pressure and skin 

friction coefficients are equal at both walls. It is also 

shown in Fig. 19(a-h) that pressure fluctuates at the 

face of the outlet section as Re increases and after 

attaining an extreme value it starts to fall when the 

central core flow strikes the corner walls of the 

channel. The upper wall curves of Cp  show the 

discontinuity at the reattachment point, and the lower 

wall curves of Cp  indicate a rise in pressure 

monotonically. For the change in the flow patterns, 

the upper and lower curves of Cp show discontinuity 

at the reattachment points. It should be noted that 

discontinuity at the reattachment points is caused due 

to the increase in the recirculation zone vertically. 

Consequently, the jet exit ratio increases due to the 

increase in pressure. The Cp curves often show 

discontinuities when more than two (Re > 14.4) 

recirculation zones occur at the corner walls of the 

channel (Fig. 19(a-h)). 

 

4.6. Pressure Drop 

The Fig. (22-24) present the drop in pressure 

between the inlet and outlet sections of the channel,  
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Fig. 19. Plots of (a-d) pressure and (e-h) friction coefficients for 23 ≤ 𝑹𝒆 ≤ 42. 

 
which shows pressure drop varies linearly with Re. It 

is found that pressure drop increases with the 

increase in Re. Transmission of blood occurs from 

the heart into the arteries in discrete pulses, i.e., 

throughout the body occurs due to blood pressure, for 

more details see. An increase in blood pressure 

through narrow arteries (which can be compared 

with the narrow section of the channel) results in the 

rupture of arteries and internal bleeding in the mitral 

valve )Alves et al. 2004). Tables 3a, 3b, and Tables 

4a, 4b describe the blood pressure for various 

contraction ratios that depend on the distribution of 

Re. It is observed that blood pressure strictly depends 

on h. From Table (3-4) and Fig. (21-23), it is also 

found that blood pressure becomes normal at a small 

value of Re when the contraction ratio is high as 

expected. Furthermore, it is shown in Tables (3, 4) 

that there exists an inverse relationship between the 

contraction ratio and Re. To work with flow 

phenomena, it is very important to know the trend of 

the pressure recovery factor (prf), which reflects a 

sudden expansion effect on the downstream flow. It 

is observed that fluid static pressure increases when 

the fluid flows through a valve through the narrow 

section (vena contracta) to the valve’s outlet section. 

Mathematically, prf is defined as √(𝑝2 − 𝑝1), where 

p1, p2 are the inlet and outlet pressures respectively. 

The following two trends are observed in Fig. 23. 

i) For a sufficiently large value of Re, the pressure 

recovery factor becomes higher.  

ii) For each value of h, prf increases at the higher 

value of Re. 
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Table 3 (a-b) Blood pressure categories on the 

distribution of Re and h 

a. normal pressure (< 

120 mm=Hg) 

b. pressure elevated 

[120 - 130] mm=Hg 

h Re h Re 

4 
0.1 <

𝑅𝑒 ≤149.6 
4 

149.6 <
𝑅𝑒 ≤155.2 

5 
0.1 < Re ≤ 

119.4 
5 

119.4 < Re ≤ 

122 

7.5 
0:1 < Re ≤ 

80.5 
7.5 

80.5 < Re ≤ 

81.9 

10 
0.1 < Re ≤ 

50.7 
10 

50.7 < Re ≤ 

52.2 

12 
0.1 < Re 

≤36.7 
12 

36.7 < Re 

≤39.2 

13.5 
0.1 < Re ≤ 

34.3 
13.5 

34.3 < Re ≤ 

35.5 

15 
0.1 < Re 

≤23.9 
15 

23.9 < Re ≤ 

25.2 

 

Table 4 (a-b) Blood pressure categories on the 

distribution of Re and h 

a. hypertensive 

criteria [130 - 140] 

mm=Hg 

b. high pressure [140- 

160] mm=Hg 

h Re h Re 

4 
155.2 < Re 

≤161.4 
4 

161.4 <
𝑅𝑒 ≤171.2 

5 
122 < Re ≤ 

127.2 
5 

127.2< Re ≤ 

138 

7.5 
81.9 < Re ≤ 

83.5 
7.5 

83.5 < Re ≤ 

91.9 

10 
49.2 < Re ≤ 

50.7 
10 50.7< Re ≤ 51.9 

12 
39.2 < Re 

≤41.32 
12 

41.32< Re ≤
47.5 

13.5 
35.5 < Re ≤ 

39.9 
13.5 

39.9 < Re ≤ 

42.2 

15 
25.2< Re ≤ 

26.7 
15 26.7< Re ≤ 31.9 

 

In the considered geometry, many authors (Kang et 

al. 2006; Cantwell et al. 2010) investigated that the 

fluid flow through a narrow sections causes excess  

pressure drop (𝛥pexc). Moreover, they stated that 

excess pressure drop is a common tool to know the 

effect of flow inertia. Here, an excess pressure drop 

is evaluated using the formula given by equation 7, 

and is accepted by many researchers (Kang et al. 

2006; Castillo et al. 2014): 

𝛥𝑝𝑒𝑥𝑐  = 𝛥𝑝𝑖0 − 𝛥𝑝𝑖𝑛1 × 𝑑1 − 𝛥𝑝𝑛1𝑛2
× 𝑑3        (7)

− 𝛥𝑝𝑛20
× 𝑑2,                          

where 𝛥𝑝𝑖0, 𝛥𝑝𝑖𝑛1, and 𝛥𝑝𝑛1𝑛2
 are denoted as global 

pressure drop between inlet and outlet sections, inlet 

pressure at the entry of the narrow section, at the 

narrow section and at 𝛥𝑝𝑛20
 described as pressure  

drop in the outlet section respectively. It is seen that 

with the increase in Re, excess pressure drop 

increases at the onset for each contraction ratio (h= 

4, 15) as shown in Fig. 24. 

 
Fig. 20 (a-c): Plots of Re vs. pressure drop at 

various h = 4; 5 and 7.5. 

 

5. CONCLUSION 

In this study, numerical modeling of unsteady 

viscous laminar flow in a sudden contraction-

expansion channel has been considered for various 

values of Re and compared the same with the flow of 

blood in the regurgitated mitral valve to anticipate 

cardiac arrest. The streamlines at various values of 

Re, and the bifurcation diagram presented in this 

work have a strong agreement with those of 

Patlazhan et al. (2017). Keeping the importance of 

the common problem of our life in mind, an attempt 

has been made to solve the above problem 

numerically. The method employed to solve the 

problem has been presented in section 4 and a  

detailed analysis of the numerical results of the 

problem considered here for variations in the values 

of various parameters associated with the model have 

been presented in the form of tables and graphs. The 

concluding remarks are as follows:  
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Fig. 21 (a-c): Plots of Re vs. pressure drop at 

various h = 10, 12 and 13.5. 

 

 
Fig. 22. Plot of Re vs. pressure drop at h = 15. 

 

a. It is observed that an increase in Re increases the 

number of vortices, changes the flow symmetry 

for which recirculation becomes more complex, 

and decreases the rate of blood flow in the valve. 

b. It is also observed that recirculation length 

increases as the channel depth increases. It has 

also been observed that an inverse relationship 

exists between Recr and h.  

c. It is concluded that the value of the regression 

coefficient increases with the increase in h. It is 

also examined that blood pressure becomes 

normal at a small value of Re, when the 

contraction ratio is high as expected.  

d. It is observed that fluid static pressure increases 

when the fluid flows through a valve from the 

narrow section (vena contracta) to the valve’s 

outlet section. It is seen that with the increase in 

Re, the pressure recovery factor and excess 

pressure drop increases linearly at each 

contraction ratio. 

In the end, we say that this work is analogous to the 

study of the flow of blood in the regurgitated mitral 

valve, and can be helpful to anticipate cardiac arrest. 

We have just attempted to show the way to solve a 

common problem in our real life through different 

numerical results. We hope that the results presented 

  

 
Fig. 23. Plot of Re vs. pressure recovery factor at 

various h. 
 

 
Fig. 24. Plots of ∆𝒑𝒆𝒙𝒄 vs. 𝑹𝒆. 

 

graphically in this paper would be helpful to the 

whole-mankind. 

(a) 

(b) 

(c) 
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