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ABSTRACT 

In this study the mass transport through free turbulent liquid surfaces, or gas/liquid interfaces, is considered. 

The main direction of mass transfer is perpendicular to the interface, so that a one-dimensional point of view is 

followed. The equations for the interfacial gas/liquid transport are presented using the random square waves 

method (RSW), a statistical tool that models the fluctuations of physical variables as ideal signals. The method 

defines three statistical functions (partition, reduction, and superposition), related to fluctuations of 

concentration and velocity, which were introduced into the mass advection-diffusion equation generating a set 

of differential equations adequate for boundary layer problems. Solution profiles of the partition and reduction 

functions, and of turbulent fluxes across the boundary layer were obtained for transient situations. The solutions 

use Taylor series centered at the immersed border of the concentration boundary layer. For practical 

applications, the series were truncated and the coefficients were calculated in order to satisfy adequate physical 

conditions. The proposed procedure substitutes coefficients of the higher order parcels of the truncated series, 

enabling them to satisfy boundary conditions in the two borders of the domain of interest, which is the region 

of variation of the mass concentration. The theoretical profiles for concentration and turbulent fluxes close to 

the interface agree with measurements and predictions found in the literature.  

 

Keywords: Statistical turbulence; Random square waves; Turbulent interfaces; Turbulence modelling; Gas-

liquid interaction. 

NOMENCLATURE 

A complementary reduction function 

A1 reference value of A at z*=1 

E z position where n=0 and dn/dz=0 

F scalar field 

f scalar fluctuation 

H  dimensionless coefficient 

IJ  dimensionless turbulent flux 

IJ1  reference value of IJ at z*=1 

j mass flux 

K transfer coefficient of F 

KL mass transfer coefficient 

Re Reynolds number 

Sc Schmidt number 

Sh Sherwood number 

m partition function for velocity 

n partition function for scalar 

t time 

U x velocity 

u x velocity fluctuation 

V y velocity 

v y velocity fluctuation 

W z velocity 

w z velocity fluctuation 

z distance to interface (z=0) 

z* z/E, normalized depth 0 ≤ z ≤ 1 

z§ z*/δ*, normalized depth 0 ≤ z§ ≤ 1 

zBM normalized depth following [36] 

a reduction function, a =1-A 

b superposition function 

d concentration boundary layer thickness 

δ* characteristic length n(z*=δ*)=0.01 

q order of the statistical parameter 

1D one dimensional 

Subscripts 

C mass concentration  

B bulk liquid 

S surface 

p previous 

n next 
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1. INTRODUCTION 

The exchange of scalar properties through free 

surfaces has become an intense research topic, a 

result of the many industrial applications and its vital 

role in biogeochemical cycles, involving biological 

aspects related to climate change (Gulliver 1991; 

Donelan et al. 2002; Wanninkhof et al. 2009). For 

example, engineers and scientists agree about the 

fundamental role of gas exchanges in water bodies to 

guarantee life. In natural environmental conditions, 

exchanges of gases between water and atmosphere 

occur along oceans, estuaries, and other natural 

liquid extensions, totalizing very large horizontal 

dimensions (around 3/4 of the Earth’s surface). 

However, the atmosphere/water gas transfer process 

itself occurs mainly in the vertical direction, and 

through a very thin region (having a thickness of the 

order of millimeters) that characterizes the gas-liquid 

interface (Brumley 1984; Theofanous 1984; 

Brumley and Jirka 1987; Herlina and Jirka 2007). 

The studies in this thin region have inherent 

difficulties (Theofanous 1984; Jähne and Haussecker 

1998), like the influence of turbulence, surface 

distortions, waves, generation of bubbles, drops, 

splashes and sprays, rain, contamination, among 

other aspects.  

The gas transfer rate (or coefficient) KL, usually 

quantified as KL=j/(CS-CB), where j is the mass flux, 

CS and CB are respectively the gas concentrations at 

the water surface and in the bulk liquid, depends on 

interactions between turbulence and molecular 

processes in the near-surface region (Hunt 1984; 

Brumley and Jirka 1988). Many different models 

using different tools were proposed to predict KL 

(see, for example: Bennett and Rathbun 1971; Hunt 

1984; Jorgensen and Gromiec 1989; Turney and 

Banerjee 2013), including conceptual models 

(Brumley and Jirka 1987), models based on surface 

divergence (McCready et al. 1986), empirical 

correlations, and direct numerical simulations 

(Magnaudet and Calmet 2006; Herlina and Wissink 

2019), among others. Interfacial gas transfers may 

occur under a shared control between both the 

gaseous and the liquid phases. In general, the 

different models consider the liquid resistance as the 

dominant control mechanism for the mass flux of 

low soluble gases, which led Brumley and Jirka 

(1987) to present a structure in which the liquid in 

the near-surface region is composed by idealized 

hydrodynamic layers. Figure 1 shows these layers 

applied to both sides of the interface.  

Taking a downwards vertical axis with origin at the 

interface, a surface-influenced layer (S) is firstly 

defined having a vertical thickness compatible with 

the integral length scale L∞ obtained from turbulent 

velocity signals. The effects of the interface on the 

velocity due to the fluid viscosity are not significant 

outside of S (Bennett and Rathbun 1971; Brumley 

and Jirka 1987). Viscosity influenced layers are thus 

defined inside of S (vertical distances between the 

interface and the position S). For these viscous 

layers, the influence of the interface on large or small 

turbulence eddies are ideally considered, being the  

 

Fig. 1. BOKVS-BOKVS layers at gas-liquid 

interfaces. The heights of the vertical planes 

above and below the surface indicate thicknesses 

of the gaseous and liquid layers, respectively.  

 

scale of the eddies determined from the turbulence 

spectrum. With this in mind, the vertical distance 

where larger eddies are affected by the interface is 

named the viscous sublayer (V), and the vertical 

distance where smaller eddies are affected by the 

interface is called the Kolmogorov sublayer (K). 

Both viscous sublayers (V and K) may coexist with 

two mass transfer sublayers also subjected to 

turbulence, and which are defined taking into 

account the diffusion of the gas in the liquid while 

entering or leaving the liquid medium through the 

interface. The vertical distance from the interface 

where diffusive effects interact with the large eddies 

is named the outer diffusive sublayer (O), and 

similarly, the vertical distance from the interface 

where diffusive effects interact with small eddies is 

named the Batchelor sublayer (B). In Fig. 1 the 

relative position of the different layers depends on 

the Schmidt number Sc. The transfer control of 

highly soluble gases occurs in the gaseous phase (set 

of layers above the surface in Fig. 1). The present 

study considers lower soluble gases, controlled by 

the liquid phase, and the relative positions in Fig. 1 

correspond to Sc numbers related to this case. 

Aiming to elucidate how the mass transfer process 

relates with the layers of Fig. 1, experimental studies 

were conducted in different sites (Chu and Jirka 

1992; Tamburrino and Gulliver 2002; Schulz and 

Janzen 2009; McCorquodale and Munro 2017; 

Lacassagne et al. 2017a,b) proposing transport 

equations involving powers of Reynolds (Re) and 

Schmidt (Sc) numbers, various time and length 

scales, among other relevant parameters. The 

experimental data indicated that there is still a lack 
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of understanding about the underlying mechanisms 

of transfer and its relations with the defined layers, a 

situation that hinders the establishment of a more 

complete model for the gas transfer through 

interfaces. In this scenario it is interesting to 

remember the comment of Turney and Banerjee 

(2013) for the gas exchanges that “remain difficult to 

predict or simulate due to the wide range of length 

and time scales and lack of experimental 

observations of near-surface fluid velocity and gas 

concentrations”. The B, O, K, V, S layers are among 

these length scales.  

From the previous paragraphs, it is clear that the 

main gap existing between measurements and 

predictions relies on the value to be used for the gas 

transfer coefficient KL in different agitation 

conditions. As mentioned, despite being possible to 

measure it experimentally, there is still no general 

correlation that allows explaining the effects of the 

different interferent phenomena on it. Among the 

many models that were proposed in the literature 

since the beginning of the 20th century, we mention 

the most referred, like the two films model described, 

for example, in Lewis and Whitman (1924); the 

penetration model of Higbie (1935), and the surface 

renewal model of Danckwerts (1951). Further, in the 

second half of the 20th century, the increasing use of 

river waters in a repetitive way while they flow to the 

ocean induced to study the self-aeration of the rivers. 

It helps to quantify the level of treatment of the 

wastewaters to be reintroduced into the rivers and 

which will be used again downstream. Empirical 

correlations were proposed, and so-called eddy 

models were suggested to encompass the influence 

of the turbulence (Lamont and Scott 1970, Luk and 

Lee 1986, for example). Large and small eddies were 

considered, and several proposals combining the 

different models may be found in the literature, like 

Toor and Marchello (1958). 

Interfacial mass transfers induced under restricted 

conditions and in controlled devices (packed bed 

columns, for example, like shown by Flagiello et al. 

2021) have empirical correlations for KL that may 

produce acceptable predictions. However, this is not 

the case of natural water bodies, as commented in 

several experimental studies (e.g., Mackinnon et al. 

2002). Empirical reaeration equations usually apply 

well only for the original set of data, being then used 

as approximate predictive tools only for very similar 

flow conditions. Predictive river quality tools like 

Qual 2E, for example, (EPA 1995) were built to 

consider different models for river stretches with 

different flow conditions. Even so, comparisons 

between measurements and predictions may present 

discrepancies (Cunha et al. 2011). Further, also 

semi-empirical and conceptual equations must have 

their coefficients and exponents adjusted for each 

new work condition, showing that the existing 

models still do not capture the entire phenomenon of 

interfacial mass transfer (Jähne 2020). These facts 

add practical limitations to the more conceptual 

scenario of the aforementioned multiplicity of scales 

(Turney and Banerjee 2013). 

It is understood that the details of the evolution of the 

mean parameters in the very near surface region are 

essential for attaining adequate predictions of mass 

transfer. Many studies have been conducted to 

measure the mean mass concentration and mean 

velocities profiles in the sub-surface layer (Janzen 

2006; Lacassagne et al. 2017a,b; Bongo et al. 2021). 

These studies are of paramount importance to link 

the conceptual models and theoretical assumptions to 

observed behaviors. In this sense, when considering 

the diffusive Fick law for continuous media in the 

turbulent case, the mass flux crossing the interface is 

proportional to the gradient (slope) of the mean 

concentration profile at that position. For slightly 

soluble gases it is generally assumed that the slope 

attains its maximum (in modulus) at the interface, so 

that the mass transfer models incorporate this 

assumption for any agitation condition. But it is still 

not possible to affirm that this is always the case. 

Results from optical techniques, like the Laser 

Induced Fluorescence (LIF), are linearized below the 

interface, suppressing unreal optical distortions (of 

course undesired) together with any eventual 

physical contribution to the concentration profile (a 

not quantified collateral effect of the linearization). 

As a consequence, a maximum slope is in fact 

“imposed” at the interface. The same effect occurs 

when adjusting predefined profiles having maximum 

slopes at the origin (surface). The description of the 

LIF optical technique, the linearization procedure 

and the use of semi-empirical profiles with 

unconditional maximum slope at the interface may 

be found, for example, in Herlina (2005), Herlina and 

Jirka (2004, 2007), among others. Considering the 

complete mass advection-diffusion equation, the 

mass flux at the interface is composed by the 

diffusive and the advective parcels, the last 

introduced as a mean product of velocity and 

concentration fluctuations (Hinze 1959) When 

applying the “Boussinesq mass flux equivalent 

hypothesis” (Hinze 1959), developed originally for 

momentum flux, it results that the turbulent parcel of 

the interfacial mass flux is also proportional to the 

gradient of the mean concentration at the interface. 

The previous paragraphs show that some usual 

procedures for turbulent flows concentrate effects of 

turbulence in a specific variable, which must then be 

correctly quantified. This is the case of the 

concentration profile, which derivative (slope) at the 

interface must be adequately defined in theoretical 

models, and precisely measured in experiments. Its 

modeling and measuring in the usually very thin 

superficial boundary layer emerge as fundamental to 

enable correct predictions of mass fluxes, and to 

substantiate the concepts built along the decades for 

the free shear transfer processes.  

Statistical tools that allow this more detailed analysis 

are thus necessary. An alternative way to quantify 

turbulent scalar profiles (concentration profiles 

among them) and statistical parameters in boundary 

layer regions was searched by Schulz (1985) and 

Schulz and Schulz (1991), with the pioneering 

proposal to model the turbulent signals as square 

waves, a procedure named Random Square Waves 

method (RSW). The procedure followed in the 

proposal was to avoid the use of secondary models 

in the statistical problem of turbulence, like the 

Boussinesq hypothesis, when quantifying the mean 
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scalar profiles. The Boussinesq hypothesis evolved 

from the need to surpass the unknown average 

products of fluctuations in the statistical equations 

(Hinze 1959). As consequence, it introduces the so-

called turbulent viscosities and diffusivities, which 

naturally need further models. The new conceptual 

point of view adopted in the RSW method was to 

take “turbulence” itself as the main initial “object” to 

be converted to a mathematical form, working with 

measured data of the scalar and vectorial variables 

under study (mass and velocity, in the present case). 

This is aligned with a more general formulation for 

turbulence obtained in this line of research and 

described by Schulz (2022), based on consolidated 

empirical results. 

Theoretical improvements (Janzen 2006; Schulz et 

al. 2010; Lopes Jr 2012) gradually empowered the 

formulation, so that the statistical functions defined 

in the RSW method could be adequately used in the 

scalar advection-diffusion equation. Normalized 

analytical solutions were then obtained for the 

interfacial mass transport (Gonçalves and Schulz 

2013; Gonçalves 2014; Schulz et al. 2018), firstly 

for the stationary regime (steady state) and a 

constant reduction function (a basic statistical 

element of the RSW method). In the sequence, for 

more general situations (transient flows with 

variable reduction function), the possibility of using 

Taylor series to obtain adequate concentration 

profiles and related statistical parameters was 

introduced (Lavín and Schulz 2019; Lavín 2020). 

Taylor series allow managing boundary conditions 

at different points of the domain of interest, like, for 

example, the contours of the region of variation of 

concentration. The present study shows the 

adequacy of this proposal, describing the main steps 

of the RSW method and the application of Taylor 

series. The results described in this study are more 

focused on the concentration profiles not subjected 

to implicit assumptions of maximum slopes at the 

air-water interface.  

The solution for interfacial profiles is presented here 

as a nonlinear boundary value problem that is 

composed by three nonlinear differential equations 

subjected to six physically justified boundary 

conditions in two points of the domain of interest 

(contours). Three control parameters are relevant: 1) 

the modified Sherwood number, 2) the turbulent flux 

at a fixed position, and 3) the value of the mentioned 

reduction function at a fixed position. The method 

allows a more comprehensive view of interfacial 

mass transfer phenomena, and the relevant 

parameters for their quantification. The use of three 

control parameters is a novelty in the field of 

interfacial mass transfer, allowing obtaining profiles 

of normalized mass concentrations, turbulent mass 

fluxes, and reduction functions which follow the 

main aspects of measured profiles (comparisons with 

experimental data are shown along the text). As 

mentioned, the focus in the present study was to 

obtain the evolution of the mean statistical profiles 

close to the interface, evidencing details that are 

relevant for the quantification of the interfacial mass 

transfer, like the slope of the concentration gradient 

at this position.  

2. STATISTICAL FUNCTIONS IN THE 

RSW METHOD 

2.1 Basic Used Equations 

The mass transfer in the subsurface region of a 

gas/liquid interface subjected to a velocity field U = 

(U, V, W) is generally quantified through the 

advection–diffusion equation, Eq. (1), which relates 

changes of the scalar field F to the movement of the 

liquid (velocity field) and to diffusion, expressed by 

the molecular diffusion coefficient D. 

𝜕𝐹

𝜕𝑡
+ 𝑼 ∙ ∇𝐹 = 𝐷 ∙ ∇2𝐹 (1) 

For turbulent liquids it is usual to adopt the Reynolds 

decomposition of the variables in the form U = ( 𝑈̅ +
𝑢, 𝑉̅ + 𝑣, 𝑊̅ + 𝑤) and 𝐹 = 𝐹̅ + 𝑓, and to apply a 

time average operator over the resulting equation. 

Uppercase and lowercase letters are instantaneous 

and fluctuating variables, respectively, and overbars 

indicate time averaged variables. Following Schulz 

et al. (2010), after using the Reynolds decomposition 

Eq. (1) was multiplied by f θ=[F-𝐹̅]θ, the scalar 

fluctuation f elevated to ϴ and then averaged in time 

to obtain Eq. (2). 𝑓𝜃̅̅̅̅ is named the θth moment of the 

concentration field, and Eq. (2) expresses its 

variation in time and space, also involving 𝐹̅ (see 

Schulz et al. 2011; Gonçalves 2014). 

For interfacial mass transfer, mean physical variables 

like concentration, velocity, and related statistical 

parameters vary mainly perpendicularly to the 

interface (z axis). A one-dimensional (1D) point of 

view was thus adopted, taking Eq. (2) for the z axis, 

and applying it in the concentration boundary layer 

below the interface. The free surface is shear-free; 

and the mean velocity in the liquid is zero. These 

conditions reproduce laboratory experiments done in 

water tanks, where only the turbulent movements are 

studied. Eq. (3) expresses the 1D case along z. 

𝑓𝜃̅̅̅̅
𝜕𝐹̅

𝜕𝑡
+

1

𝜃 + 1

𝜕𝑓𝜃+1̅̅ ̅̅ ̅̅

𝜕𝑡
+ 

+𝑓𝜃̅̅ ̅̅ ̅̅ [(𝑈̅, 𝑉̅, 𝑊̅) ∙ 𝛻𝐹̅] + 

+
1

𝜃 + 1
[(𝑈, 𝑉̅, 𝑊̅) ∙ 𝛻𝑓𝜃+1̅̅ ̅̅ ̅̅ ] + 

+(𝑓𝜃𝑢̅̅ ̅̅ ̅, 𝑓𝜃𝑣̅̅ ̅̅ ̅, 𝑓𝜃𝑤̅̅ ̅̅ ̅̅ ) ∙ 𝛻𝐹̅ + 

+
1

𝜃 + 1
𝛻 ∙ [(𝑢, 𝑣, 𝑤)𝑓𝜃+1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 

= 𝐷[𝑓𝜃̅̅̅̅ 𝛻2𝐹̅ + 𝑓𝜃𝛻2𝑓̅̅ ̅̅ ̅̅ ̅̅ ] 

(2) 

𝑓𝜃̅̅̅̅
𝜕𝐹̅

𝜕𝑡
+

1

𝜃 + 1

𝜕𝑓𝜃+1̅̅ ̅̅ ̅̅

𝜕𝑡
+ 𝑓𝜃𝑤̅̅ ̅̅ ̅̅ ∙ 𝛻𝐹̅ + 

+
1

𝜃 + 1
𝛻 ∙ [𝑤𝑓𝜃+1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 

= 𝐷 [𝑓𝜃̅̅̅̅
𝜕2𝐹̅

𝜕𝑧2
+ 𝑓𝜃

𝜕2𝑓

𝜕𝑧2

̅̅ ̅̅ ̅̅ ̅̅ ̅
] 

(3) 

So far, the procedures are in the realm of the 

traditional statistical treatment of turbulence. From 

this point on, the procedures consider each statistical 

parameter of Eq. (3) as an object to be converted to 

the  RSW  format  (Schulz et al. 2010, 2011). An a 
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Fig. 2. The RSW method used to model concentration and velocity signals to square waves, keeping the 

mean values of the original signals. The proposed statistical functions have clear physical meanings 

 

priori modeling of the turbulent signals is made, and 

proper functions with clear physical meaning are 

defined. Figure 2 sketches the a priori modeling of a 

mass concentration turbulent signal and a velocity 

turbulent signal into correspondent square waves, 

and shows the mentioned functions. Independent and 

“cooperative” functions (in the sense that they are 

defined considering both concentration and velocity 

signals) are needed, because the two signals have 

superposed parcels.  

Aspects of the RSW functions of Fig. 2 are shown in 

Table 1 (see also Schulz et al. 2011), and the 

different statistical objects of Eq. (3) are listed in 

Table 2 in the RSW form. It can be observed in Table 

2 that all objects of Eq. (3) are expressed using 4 of 

the 5 functions of Table 1, because the function m  

depends on the functions n and , in the form m=1-

(+n-2n). The RSW forms are bimodal versions of 

the statistical objects. The functions n and  

reproduce the first two central statistical moments of 

the scalar mass concentration signal, and the 

functions m and √𝑤2̅̅ ̅̅  are the first two central 

statistical moments of the velocity signal. With this 

arrangement, the 4 unknown functions need only 4 

equations to generate a closed system, that is, the 

closure problem of statistical turbulence is surpassed 

using this scheme for scalar boundary layers. In the 

practical sense, the a priori definition of basic 

functions implies in using them in the whole set of 

statistical objects. As a very positive consequence, it 

avoids the a posteriori search of new physical 

principles to justify guesses for a posteriori defined 

variables, like the turbulent viscosities and 

diffusivities. Such additional variables are usually 

modelled following ad hoc proposals (see, for 

example, Rodi 2000). In table 2, Fp and Fn are the 

mass concentrations on both sides of the boundary 

layer (spatial domain of interest). 

Table 1 Details of the RSW functions 
 

Function n m α β √𝑤2̅̅ ̅̅  

Dimension ND ND ND ND m/s 

Physical 
meaning 

P P R S RMS 

Maximum 

value 
1 1 1 1 

+/-not 

settled 

Minimum 

value 
0 0 0 0 

+/- 

0 

ND: nondimensional; m=1-(+n−2n) P: partition; S: 

superposition; R: reduction; RMS: root mean square. 

 

Table 2 Statistical objects in RSW form 

Object RSW representation  

𝐹̅ 𝑛𝐹𝑝 + (1 − 𝑛)𝐹𝑛 (4) 

𝜕𝐹̅/𝜕𝑡 𝐾(1 − 𝑛)(𝐹𝑝 − 𝐹𝑛) (5) 

𝑓𝜃̅̅̅̅  

𝑛(1 − 𝑛)(𝐹𝑝 − 𝐹𝑛)
𝜃

∗ [
(1 − 𝑛)𝜃−1 +

(−1)𝜃(𝑛)𝜃−1
] (1 − 𝛼)𝜃 

(6) 

𝑓𝜃𝑤̅̅ ̅̅ ̅̅  

√

𝑛(1 − 𝑛)

𝑛(1 − 𝑛) +
𝛽(1 − 𝛽)
(2𝛽 − 1)2

∗

[
(1 − 𝑛)𝜃 −

(−𝑛)𝜃
]√𝜔2̅̅ ̅̅   𝑓2𝜃̅̅ ̅̅ ̅

√[
(1 − 𝑛)2𝜃−1 +

(−1)2𝜃(𝑛)2𝜃−1
]

 

(7) 

𝑓𝜃
𝜕2𝑓

𝜕𝑧2

̅̅ ̅̅ ̅̅ ̅̅ ̅
 

 

𝑛(1 − 𝑛)(1 − 𝛼)𝜃(𝐹𝑝 − 𝐹𝑛)
𝜃+1

 

.

[
 
 
 
(1 − 𝑛)𝜃−1𝜕2[(1 − 𝑛)(1 − 𝛼)]

𝜕𝑧2

+(−𝑛)𝜃
𝜕2[−𝑛(1 − 𝛼)]

𝜕𝑧2 ]
 
 
 

 
(8)  

 

In Table 2 “p” denotes “previous” to the domain, 

being the interface in this study; and “n” denotes 
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“next” to the domain, being the bulk liquid in this 

study. Fp is defined by environmental conditions 

(pressure and temperature, for example), mainly 

constant along the experiments. 

Figure 2 and Table 1 show the partition functions n 

and m; the reduction function ; the superposition 

function  (being m, n, and  related), and the RMS 

of the velocity, √𝜔2̅̅ ̅̅ . These are the only functions 

needed for 1D scalar transfers. It is possible to 

represent the statistical objects using different 

schemes (Janzen 2006). The bimodal RSW scheme 

models the turbulent signals as shown in Fig. 2, and 

the use of Taylor series to obtain solutions of the 

concentration profiles and of the main interferent 

variables represents a novelty in this field of study. 

Other ways of modelling the original turbulent 

signals can be proposed, a theme that is not 

developed in the present study.  

 

2.2 RSW Equation 

Applying the RSW objects of Table 2 into Eq. (3), 

and taking =1 (first statistical moment), Eq. (9) is 

obtained. It is the usual one-dimensional advection 

diffusion equation in RSW format. For  ≥ 2, the 

subsequent RSW moments are given by Eq. (10). 

1 − 𝑛 =
1

𝑆ℎ

𝑑2𝑛

𝑑𝑧∗2
−
𝑑𝐼𝐽

𝑑𝑧∗
 (9) 

Sh={KE2}/D is a modified Sherwood number, being 

K=KL/E, and z*=z/E the normalized distance to the 

interface. E is the characteristic length that limits the 

domain of interest (region of variation of 

concentration, see Fig. 3). 

−𝑛(1 − 𝑛) [
(1 − 𝑛)𝜃−1 +

(−1)𝜃(𝑛)𝜃−1
] 𝐴𝜃 

+𝑛(1 − 𝑛)2[(1 − 𝑛)𝜃−2

+ (−1)𝜃−1(𝑛)𝜃−2]𝐴𝜃−1 

𝐼𝐽[(1 − 𝑛)𝜃−1 − (−𝑛)𝜃−1]𝐴𝜃−2
𝑑𝑛

𝑑𝑧∗
+ 

1

𝜃

𝑑

𝑑𝑧∗
{𝐼𝐽[(1 − 𝑛)𝜃 − (−𝑛)𝜃]𝐴𝜃−1} = 

𝑛(1 − 𝑛)𝐴𝜃−1

𝑆ℎ

[
 
 
 
 
 
 [
(1 − 𝑛)𝜃−2 +

(−1)𝜃−1 ∙ 𝑛𝜃−2
]
𝑑2𝑛

𝑑𝑧∗2
+

(1 − 𝑛)𝜃−2𝑑2[(1 − 𝑛)𝐴]

𝑑𝑧∗2

+
(−𝑛)𝜃−2𝑑2[(−𝑛)𝐴]

𝑑𝑧∗2 ]
 
 
 
 
 
 

 

(10) 

IJ is the dimensionless turbulent flux, which is 

related to the superposition function β and to the 

RMS velocity √𝑤2̅̅ ̅̅  through Eq. (11). 

𝐼𝐽 =

𝑛(1 − 𝑛)𝐴 (
√𝑤2̅̅ ̅̅

𝐾𝐸 )

√𝑛(1 − 𝑛) +
𝛽(1 − 𝛽)
(2𝛽 − 1)2

 (11) 

Fig. 3. Boundary conditions that define E and δ, 

conditioned by the partition function n. 

 

Equation 10 shows that each moment (θ=2,...,∞) 

generates one differential equation. A set of infinite 

equations is thus possible, resembling the closure 

problem of turbulence. However, as already 

mentioned, because only four unknown functions are 

used (n, f,  and √𝑤2̅̅ ̅̅ ), only four equations are 

needed. This finite possibility is improved further 

because the variables  and √𝑤2̅̅ ̅̅  appear always 

connected through IJ (see Eq. 11). It is then possible 

to consider IJ an unknown variable, and to use only 

θ=1, 2, and 3, that is, there are only three function to 

determine (n, αf, and IJ). For θ=2 and 3 Eqs. (12), 

and (13) are then obtained, respectively. 

−𝑛(1 − 𝑛)𝐴2 + 𝐼𝐽
𝑑𝑛

𝑑𝑧∗
+
𝑑[𝐼𝐽A(1 − 2𝑛)]

2𝑑𝑧∗
 

=
1

𝑆ℎ
𝑛(1 − 𝑛)𝐴

𝑑2[(1 − 2𝑛)𝐴]

𝑑𝑧∗2
 

(12) 

𝑛(1 − n)𝐴2{−(1 − 2n)𝐴 + 1 − 𝑛} + 

(1 − 2n)𝐼𝐽𝐴𝑑n

𝑑𝑧∗

+
𝑑[𝐼𝐽A2(1 − 3𝑛 + 3n2)]

3𝑑𝑧∗
 

=
𝑛(1 − 𝑛)A2

𝑆ℎ

[
 
 
 
 
 
 {1 − 𝐴(1 − 2𝑛)}

𝑑2𝑛

𝑑𝑧∗2
+

{1 − 2𝑛 + 2𝑛2}
𝑑2𝐴

𝑑𝑧∗2
+

2{2𝑛 − 1}
𝑑𝑛

𝑑𝑧∗
𝑑𝐴

𝑑𝑧∗ ]
 
 
 
 
 
 

 

(13) 

Eqs. (9), (12) and (13) form a closed set that, with 

proper boundary conditions, is enough to obtain 

the one-dimensional evolution of scalar variables 

and related functions. It is interesting to note that 

Eq. (11), although having being used to generate 

the three set of equations, is not a part of this set. 

This fact is used in the sequence to relax the value 

of IJ at the boundary z*=1, which may then assume 

nonzero values without imposing the condition 

β(z*=1)=0, which would generate an 

indetermination. 

The closed set of three equations was obtained by 

defining the three functions to be calculated by the 

equations, and not by imposing ad hoc models.  
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2.3 Boundary Conditions 

The interfacial turbulent mass transfer is thus 

converted to a nonlinear boundary value problem, 

with values of functions and derivatives to be given 

at several points of the domain of interest (borders of 

the region of variation of the mass concentration). 

The six boundary conditions for the three second 

order differential equations are: 

i) n=1 at z*=0.0 (the normalization leads to the 

unitary n at the interface). 

ii) A=0 at z*=0.0 (diffusive effects are dominant 

close to the interface). 

iii) IJ=0 at z*=0.0 (diffusive effects are dominant 

close to the interface). 

iv) dIJ/dz*=0 at z*=0.0 (turbulence is damped when 

approaching the surface, not only at the surface). 

v) n=0 at z*=1.0 (for z ≥ E or z* ≥ 1.0 the condition 

of the bulk liquid prevails). 

vi) dn/dz*=0 at z*=1.0 (for z* ≥ 1.0 no variations of 

n occur along z in the bulk liquid and its boundary). 

These are physically justified boundary conditions 

assumed for the present study. Further studies on the 

theme may consider different positions along z*, 

involving other assumptions, related to the situation 

under study. Conditions v) and vi) occur at z*=1 (or 

z=E), and define the immersed border of the region 

of variation of concentration. Because n=0 in this 

position, the length E is always longer than the length 

 of the boundary layer, conditionally defined as the 

position where the normalized concentration profile 

attains the value n=0.01 (Fig. 3). The profile n thus 

allows obtaining the length of the boundary layer .  

 

2.4 The Solution Through Taylor Series 

The center of attention of the study was the 

normalized concentration profile, or partition 

function, n. The solution was obtained by applying 

Taylor series centered at the position z*=1.0, where 

two boundary conditions for n are known. The 

Taylor series were built for n, A, and IJ. The 

definition of IJ of Eq. (11). was relaxed by using 

truncated series, being solved as part of the set given 

by Eqs. (9), (12) and (13) Coefficients of Taylor 

series involve successive derivatives applied at the 

center of the expansion (z*=1 in the present case), 

which may be viewed as an “infinite number” of 

boundary conditions at this position. An algorithm to 

generate the successive derivatives (boundary 

conditions) was elaborated in symbolic MATLAB®, 

facilitating this task, as described by Lavín (2020). 

The coefficients of the series were calculated 

sequentially. Firstly, by applying conditions v) and 

vi) into Eqs. (12) and (13) generates the system of 

Eqs. (14), which solution for Az*=1≠0 and IJz*=1≠0 

(relaxing IJz*=1) furnishes dIJ/dz*z*=1=0 and 

dA/dz*z*=1 = 0. 

{
 

 𝐴𝑧∗=1 ∙
𝑑𝐼𝐽

𝑑𝑧∗𝑧∗=1
+ 𝐼𝐽𝑧∗=1 ∙

𝑑𝐴

𝑑𝑧∗𝑧∗=1
= 0

𝐴𝑧∗=1 ∙
𝑑𝐼𝐽

𝑑𝑧∗𝑧∗=1
+ 2𝐼𝐽𝑧∗=1 ∙

𝑑𝐴

𝑑𝑧∗𝑧∗=1
= 0

 (14) 

In the sequence, by applying dIJ/dz*z*=1=0 into Eq. 

(9) furnishes d2n/dz*2
z*=1=Sh. The further step 

consists in obtaining the derivatives of Eqs. (9), (12), 

and (13), generating higher order derivatives of the 

auxiliary functions, and reapplying the already 

known boundary conditions at z*=1. In successive 

similar steps, higher order boundary conditions are 

obtained. For example, the set of second derivatives 

of A and IJ at z*=1 is: 

 {

𝑑2𝐴

𝑑𝑧∗2𝑧∗=1
= −𝑆ℎ ∙ (1 − 𝐴𝑧∗=1)

𝑑2𝐼𝐽

𝑑𝑧∗2𝑧∗=1
= −

𝐼𝐽𝑧∗=1

𝐴𝑧∗=1
𝑆ℎ ∙ (1 − 𝐴𝑧∗=1)

 
(15) 

The whole set of Taylor series coefficients (boundary 

conditions at z*=1) depends only on the three 

parameters, Az*=1, IJz*=1, and Sh. For simplification 

of notation, the substitutions A1=Az*=1, and IJ1=IJz*=1 

are used in the sequence of the text. The symbolic 

MATLAB® code described by Lavín (2020) 

furnishes the vector [n(p), A(p), IJ(p)], where p 

indicates the pth order derivative. 

3. APPLYING THE TAYLOR SERIES  

3.1 The Calculation Domain 0 ≤ z*≤ 1 

The nonlinear boundary value problem needs to obey 

the physically justified boundary conditions at z*=0, 

even being centered, in the present study, at z*=1.0. 

The region 0≤z*≤1.0 is the domain of calculation of 

this study, and the series for n, A, and IJ need to be 

adequately truncated and subjected to the boundary 

conditions at z*=0. This is accomplished through 

substitution of coefficients of the truncated series 

(replacing boundary conditions that change those 

coefficients). 

 

3.2 Truncated Series and Substitution of 

Coefficients 

Taking N(z*) as a common representation of any of 

the functions n(z*), A(z*), and IJ(z*), the related 

truncated Taylor series is written as: 

𝑁(𝑧 ∗) = 𝑁𝑧∗=1 +
(𝑧∗ − 1)

1!

𝑑𝑁

𝑑𝑧∗𝑧∗=1
+ 

(𝑧∗ − 1)2

2!

𝑑2𝑁

𝑑𝑧∗2𝑧∗=1
+ 

(𝑧∗ − 1)3

3!

𝑑3𝑛

𝑑𝑧∗3𝑧∗=1
+ 

…+
(𝑧∗ − 1)𝑡

(𝑡 + 1)!

𝑑𝑡𝑛

𝑑𝑧∗𝑡𝑧∗=1
+⋯ = 

𝑁0 +𝑁1(𝑧
∗ − 1) + 𝑁2(𝑧

∗ − 1)2 +⋯
+𝑁𝑡(𝑧

∗ − 1)𝑡 +⋯ 

(16) 

The derivatives calculated at z*=1 (boundary 

conditions) are present in the coefficients of the 

series. Further, the highest order coefficients of the 

already truncated series are recalculated (replaced) to 

guarantee the boundary conditions at z*=0. In this 

sense, Eq. (16) has t known derivatives and t+1 

coefficients. The (t+1)th coefficient (denoted as Nt) is 
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recalculated applying one of the boundary conditions 

at z*=0 into the truncated series, and obtaining Nt as:  

𝑁𝑡 =
𝑁𝑧∗=0 − ∑ 𝑁𝑖

𝑡−1
𝑖=0 (−1)𝑖

(−1)𝑡
 

(17) 

The series for n and A use directly this procedure, 

with the previous boundary conditions “i” for n, and 

“ii” for A. However, the normalized turbulent flux IJ 

is subjected to the two boundary conditions “iii” and 

“iv” at z*=0. In this case two coefficients Nt-1 and Nt 

are recalculated for the truncated Eq. (16) and its 

derivative, generating a system of two equations and 

two unknowns (Nt-1 and Nt). The solution of the 

system is given by Eqs. (17) and (18). 

𝑁𝑡−1 = 

∑ 𝑁𝑖
𝑡−2
𝑖=1 𝑖(−1)𝑖−1 − 𝑡 [

𝑁0 −

∑ 𝑁𝑖
𝑡−2
𝑖=0 (−1)𝑖

]

(−1)𝑡−2
 

(18) 

Note that:1) the Taylor series are centered at z*=1, so 

that the coefficients given by Eqs. (17) and (18) 

involve A1 and Φ1, boundary values at z*=1; 2) the 

Taylor series are applied at z*=0, so that the 

coefficients also involve boundary values of n, A, 

and IJ at z*=0. Further, the coefficients depend on 

the physical characteristics that define Sh=(KE2)/D, 

composed by molecular and turbulent factors. As 

example, Table 3 presents the seven first coefficients 

(derivatives) of the Taylor series for n. Calculations 

were performed in the present study using 24 

coefficients for the n and A profiles, and with 25 

coefficients for the IJ profiles. 

4. EXPERIMENTAL LITERATURE 

PROFILES AND CALCULATED 

PROFILES  

In this section, literature examples are compared 

with calculations of the RSW method. Because there 

are three unknowns n, A, and IJ in the system of 

equations, the dependence of each unknown on the 

control parameters A1, IJ1 and Sh is discussed. The 

literature data show that adequate values of the 

control parameters generate profiles in the range of 

the observed behaviors. 

 

4.1 Profiles of the Partition Function n 

In the literature of interfacial air-water mass transfer 

in laminar flows the concentration profile for slightly 

soluble gases at the liquid phase may have the form 

shown in Fig. 4a, adapted from Boyadjiev and Mitev 

(1977). The figure shows the zBM normalized 

distance to the surface as defined by Boyadijev and 

Mitev (1977). As seen, the concentration profile may 

have a smaller slope or gradient at the interface (in 

absolute value) than at deeper segments of the 

profile. Mathematically it is expressed as  

|
𝑑𝑛

𝑑𝑧
|
𝑧=0

< |
𝑑𝑛

𝑑𝑧
|
0<𝑧<𝑏𝑢𝑙𝑘 𝑙𝑖𝑞𝑢𝑖𝑑 𝑟𝑒𝑔𝑖𝑜𝑛

 
(19a) 

However, for turbulent flows it is generally accepted 

that the maximum slope (in absolute value) occurs at 

the interface (zBM =0). Mathematically it is then 

accepted that 

|
𝑑𝑛

𝑑𝑧
|
𝑧=0

> |
𝑑𝑛

𝑑𝑧
|
0<𝑧<𝑏𝑢𝑙𝑘 𝑙𝑖𝑞𝑢𝑖𝑑 𝑟𝑒𝑔𝑖𝑜𝑛

 

(19b) 

Taking this into consideration, observed smaller 

local slopes in turbulent cases are justified as optical 

distortions of the measurement techniques (Jähne 

and Haussecker 1998; Herlina and Jirka 2004; 

Herlina 2005; Friedl 2013), which are then corrected 

for example by extending a straight line from the 

point of the profile having maximum slope until the 

surface, and substituting this segment of the original 

profile by the line. A second used procedure is to  

 

Table 3 p-th derivative of the partition function n at z*=1 

Order p p-th derivative  

0 0 

1 0 

2 𝑆ℎ 

3 −
𝐼𝐽1
𝐴1

𝑆ℎ2(1 − 𝐴1) 

4 (
𝐼𝐽1
𝐴1

)

2

𝑆ℎ3(1 − 𝐴1)
2 − 𝑆ℎ2(3𝐴1 + 2) 

5 −(
𝐼𝐽1
𝐴1
)
3

𝑆ℎ4(1 − 𝐴1)
3 − 2

𝐼𝐽1
𝐴1

𝑆ℎ3(1 − 𝐴1)(1 − 9𝐴1) − 3
𝐴1
𝐼𝐽1
𝑆ℎ2(1 − 3𝐴1)

 

6 (
𝐼𝐽1
𝐴1
)
4

[
𝑆ℎ5 ∗

∗ (1 − 𝐴1)
4] + (

𝐼𝐽1
𝐴1
)
2

[
𝑆ℎ4 ∗

∗ (1 − 𝐴1)
2 ∗

∗ (61𝐴1 − 20)
] + [

𝑆ℎ3 ∗

(
156𝐴1

2

−124𝐴1
+199

)
] − 18 (

𝐴1
𝐼𝐽1
)
2

[
𝑆ℎ2 ∗

∗ (1 − 3𝐴1)
]

 

7 −(
𝐼𝐽1
𝐴1
)
5

[
𝑆ℎ6 ∗

∗ (1 − 𝐴1)
5] + (

𝐼𝐽1
𝐴1
)
3

[
𝑆ℎ5 ∗

∗ (1 − 𝐴1)
3 ∗

∗ (17 − 41𝐴1)
] + (

𝐼𝐽1
𝐴1
)

[
 
 
 
 
 

𝑆ℎ4 ∗

∗

(

 
 
1445𝐴1

3

−2624𝐴1
2

+2814𝐴1
−1635

)

 
 

]
 
 
 
 
 

− (
𝐴1
𝐼𝐽1
) [

𝑆ℎ3 ∗

(
78𝐴1

2

+2101𝐴1
+191

)
] − 180(

𝐴1
𝐼𝐽1
)
3

[
𝑆ℎ2 ∗

∗ (1 − 3𝐴1)
]
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adjust, through least square methods, a semi-

empirical model with an a priori defined maximum 

slope at the interface. Several functions can be 

adjusted to measured data, as shown by Friedl 

(2013), and Schulz and Gonçalves (2015), being the 

exponential function the most usual. Undoubtedly, 

profiles for turbulent conditions tend to be steeper 

than laminar profiles. But the possibility of having a 

turbulent concentration profile that evolves from a 

smaller slope to a steeper slope from the interface to 

a subsurface position (in the sense of Eq. 19a) is still 

an open question. If smaller slopes are possible at 

z*=0, then to impose a straight line or an a priori 

function with the highest gradient at z*=0 may 

camouflage the effect of turbulence in different 

scalar transfer events, pointing to the importance of 

studies on this theme. 

Literature results use different characteristic lengths 

to normalize the z distance, shortly described or 

indicated in this study when needed. Many data are 

normalized with the traditional boundary layer 

thickness  (position for n=0.01). When needed for 

comparisons, this procedure was also followed here, 

being the normalized z axis then presented as z§=z/.  

Fig. 4b shows the envelope region of experimental 

data obtained by Friedl (2013). The normalized axis 

z/f involves a characteristic length f obtained by the 

mentioned author from best adjusted functions. 

Close to n=1 (or z/f=0) the gray envelope shows a 

trend to smaller slopes (Eq. 19a), and the data split 

in two functions at larger distances from the surface, 

depending on the induced or imposed agitation 

intensity. The existence of different functions that 

describe n profiles for different turbulent conditions 

was also discussed by Schulz and Gonçalves 

(2015), who showed that several solutions are 

obtained from the single basic governing 

differential Eq. (20), where H is a nondimensional 

integration constant. 

𝑑𝑛

𝑑𝑧∗
= 𝐻 (

1 + 𝜃2
1 − 𝜃2

)

𝜃1
2

[
 
 
 
 

(
1 −

𝜃3𝑛
1 + 𝜃2

1 +
𝜃3𝑛
1 − 𝜃2

)

𝜃1
2

− 1

]
 
 
 
 

 

𝜃1 = 2(1 − 𝐴)/ (𝐴√4𝐴
2 + 1) 

𝜃2 = (2𝐴 − 1)/√4𝐴
2 + 1 

𝜃3 = 4𝐴/√4𝐴
2 + 1 

(20) 

The solutions express explicitly z* as a function of n 

(and not n as function of z*). For example, the pair  

θ1=2, H=2.6980 and the pair θ1=4, H=6.6779 

produced Eqs. (21a) and (21b), respectively. 

𝑧∗ = −0.20470[𝑛 + 0.84587 ln(𝑛) − 1] (21a) 

𝑧∗ = −0.19690 [
068076 ln(𝑛) −

5.7913 ln(2.509 − 𝑛)
−𝑛 + 3.3517

] (21b) 

The procedures to define the values of A and H are 

shown in Schulz and Gonçalves (2015). The 

different functions obtained from the integration of 

Eq. (20) for different turbulent conditions give 

support to experimental results like Friedl (2013).  

Figure 4c shows profiles of n obtained for transient 

regime and variable A (present study) together with 

the profiles obtained by Schulz et al. (2018) for 

steady state and constant A. The parameters A1, IJ1, 

Sh were varied in such a way to produce results that 

follow independently Eq. (19a) or Eq. (19b). The 

present profiles were obtained for A1=0.76, IJ1= 7, 

and Sh=0.56, and for A1=0.80, IJ1= 5, and Sh=0.01. 

It was observed that Sh has an upper limit to obtain 

adequate profiles, and that this limit depends on IJ1 

and A1. Above this limit the profiles of n, A, and/or 

IJ show nonrealistic values (for example n > 1, A>1 

and/or IJ<0 for 0≤ z* ≤1). Care was taken to use 

realistic combinations of A1, IJ1, and Sh. Profiles of 

n obtained by Schulz et al. (2018) for A=0.43099 and  

 

 

Fig. 4. n profiles: a) Laminar flows adapted from Boyadjiev and Mitev (1977); b) Envelope of measured 

data of Friedl (2013), turbulent flows; c) RSW results: black and gray tones from literature for steady 

state and constant A. Colored red and blue profiles are results of the present study. 
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here for A1=0.76, IJ1= 7, and Sh=0.56 followed Eq. 

(19a), that is, smaller slopes at the interface, similarly 

to the proposal of Boyadijev and Mitev (1977) for 

laminar flows. Further, profiles obtained by Schulz 

et al. (2018) for A=0.30007 and 0.56900, and here 

for A1=0.80, IJ1= 5, and Sh=0.01 followed Eq. (19b), 

the most usual observation and assumption 

encountered in the literature. Additionally, the 

profiles of Schulz et al. (2018) for A=0.56900, and 

of this study for A1=0.80, IJ1= 5, and Sh=0.01 

showed similar behaviors. 

Figure 5 allows observing in detail that the curve for 

A1=0.76, IJ1= 7, and Sh=0.56 follows Eq. (19a). 

Figures 4 and 5 show that different behaviors of 

dn/dz* at the interface are obtained both for the 

stationary condition of the scalar field with constant 

A and for the non-stationary condition with variable 

A. The slope depends on the agitation of the liquid 

and the physical properties of the fluids into contact 

(gas and liquid).  

In the practical sense, it remains to determine how to 

combine A1, IJ1, and Sh as design parameters, that is, 

to use them adequately to obtain real profiles and 

mass fluxes. Because maximum or lower slopes of n 

may occur at the interface, measured lower values of 

the literature may be reproducing part of the physical 

reality, so that optical distortions may be only partly 

affecting the measurements. This shows that further 

studies on the RSW method together with 

experiments will be very welcomed. Figures 6a, b 

compare RSW and measured profiles of n. The 

theoretical curves are obtained by imposing Sh as 

known variable. But for the measured data Sh 

depends on the used length scale, because E remains 

unknown from the observations. The hachured dark 

cloud shows measured data of Janzen (2006) also 

used by Janzen et al. (2010 a, b) superposing the light 

gray cloud of the profiles of Fig. 4c. Janzen et al. 

(2010a, b) applied seven models to observed 

interfacial gas transfer data allowing obtaining, for 

the so-called film model, mean values of =1.15.10-

3m, KL=2.16.10-6 m/s, with D=2.47.10-9 m2/s. Using 

the boundary layer thickness  in place of E led to 

Sh1.0. Further, the so-called diffusive layer 

obtained by Janzen et al. (2010a, b) was about 28.7% 

of , which, maintaining unaltered the other 

variables, also reduces Sh to about 0.287. Asano  

 

Fig. 5. Curves n and dn/dz* for A1=0.76, IJ1 =7, 
variable Sh with maximum slopes of n for z§≠0. 

(2006) reviewed the definitions of Sh pointing to 

their differences and dependence on arbitrary length 

scales, proposing a new form based on the molar 

flux. In the present study, being aware of the 

indefinite length scale, the Sh of observed data is not 

specified, and references to Sh1.0 (for  ) and 

Sh0.287 (for the diffusive layer) serve as examples. 

The theoretical range was restricted to 0.01<Sh<0.6. 

The RSW curves of Fig.e 6a were obtained for 

A1=0.6, IJ1=5, and Sh varying from 0.01 to 0.56, the 

last value being the limiting value for this union of 

control parameters. The obtained n profiles show a 

“down-and-up” behavior with Sh. In other words, the 

profiles of n have not a monotonic behavior with Sh. 

This aspect is also observed in Fig. 6b, obtained for 

A1=0.6 and IJ1=5, and for which the limiting value 

of Sh is 0.49. In this case, the profile of Sh=0.49 is 

very close to the measured values of Janzen (2006), 

being this value of Sh in the range of the mentioned 

reference values of 0.1 and 0.287. The behavior of 

doubling the n profiles observed in the data of Fig. 

4b of Friedl (2013) is also observed in Fig. 6a, b for 

the different agitation conditions expressed by the 

control parameters. Figure 6b, for example, shows it 

clearly for the Sh values of 0.10 and 0.30, and for the 

Sh values of 0.01 and 0.49. In addition, Sh=0.49 

leads to a maximum derivative of n (in modulus) for 

z§≠0, better detailed in the discussion of Fig. 14. 

In view of the indefinite length scale for Sh, the 

experimental and theoretical profiles must still be 

compared to attain a best adjustment condition. The  

 

 

 

Fig. 6. n curves for A1=0.6; a) IJ1 =5, variable Sh; 

b) IJ1 = 7, and Sh=0.49 close to the observations. 
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question of the length scale can then be studied in 

detail, a procedure needed to generate design tools, 

and not followed in the present study because of the 

present lack of specific experimental data.  

Additionally, the present discussion shows that 

procedures that “impose” the whole slope reduction 

of n at z→0.0 as being optical distortions may need 

a refining, which may depend on the level of 

turbulence of the interface. Similarly, adjustments 

may be necessary for numerical codes that also 

impose the maximum slope of n to always occur at 

the interface.  

 

4.2 Profiles of the Complementary 

Reduction Function A=1- 

As aforementioned, the quantification of the partition 

function, or the normalized concentration profile n, 

was the part of the problem that concentrated most of 

the attention of the present study. It is however 

evident, from the formulation, that the concentration 

profile depends on the other variables of the RSW 

method, and on physical properties of the gaseous 

and liquid phases. In this sense, the profiles of the 

interferent variables are also important, and the 

present discussion shows aspects of these profiles 

that can be considered in future studies to improve 

the applicability of the method.  

Fig.  joins observed and calculated A profiles for 

different values of A1, IJ1 and Sh. The experimental 

data of the light brown profiles were adapted from 

Janzen (2006), and Schulz and Janzen (2009), and 

involve several agitation levels. The mentioned 

authors normalized the measured axis z with the 

value z= δc’ of the peak of the profile of the RMS 

concentration fluctuations 𝑐′ = √𝐴 𝑛(1 − 𝑛), which 

was also used here to allow comparisons. The RSW 

profiles were obtained for different values of the 

control parameters, as shown in the figure. 

For A1=0.6, IJ1=5, and Sh= 0.56 the obtained profile 

follows the “growth and fall” experimental behavior, 

a good result that indicates that the RSW method 

may produce a broad range of forms of functions. It 

 

 

Fig. 7. RSW A-profiles for several sets of 

parameters, and observed A-profiles for various 

agitation conditions  

 

Fig. 8. IJ-profiles for IJ1=5, A1=0.4 and0.6. Gray 

represents Eq. (22) from Janzen et al. (2010b). 

 

is observed that the combination A1=0.6, IJ1=7, and 

Sh= 0.49, which produced the n profile close to the 

measured data (Fig. 6b) produces a profile of A that 

is well located in the measurement region. The 

comparison of Fig. 7 between experiments and 

theoretical calculations shows that both experimental 

and additional RSW theoretical studies will be 

welcomed to better set the conditions that affect the 

molecular and turbulent contributions in the 

quantification of A. It must be mentioned that, in the 

present stage of the studies, experimental detailed A 

or  profiles are still rare in the literature. 

 

4.3 Profiles of the Turbulent Flux IJ 

The evolution of the variables that interfere in the 

formation of the normalized concentration profile n 

also involves the RSW turbulent flux. Different 

combinations of IJ1, Sh, and A1 were tested and are 

shown in Fig. 8. For comparison with previous 

results, they are plotted together with the predictions 

of Eq. (22) proposed by Janzen et al. (2010b), and 

represented by the gray cloud. The cloud was 

obtained for 2≤a≤3, and =4 in Eq. (22), following 

the indications of Janzen et al. (2010b). For the 

calculations of the Taylor series A1 assumed the 

values 0.4 and 0.6, J1 assumed the values 5 and 7, for 

variable Sh.  

𝐼𝐽

𝐼𝐽1
=

(
𝜅 ∙ 𝑧§

𝑎 )
𝑎

𝑒−𝜅∙𝑧
§+𝑎

[(
𝜅 ∙ 𝑧§

𝑎 )
𝑎

𝑒−𝜅∙𝑧
§+𝑎]

𝑧§=1

 (22) 

Figure 8 shows that the different RSW results have a 

smooth increasing with z§, and that the profiles for 

A1=0.6 furnished higher values than those for A1=0.4 

in the range 0.01 ≤ Sh <0.3, although for the lower 

values of Sh=0.01 and 0.05 the differences are not 

visible in this graph (indicated as superposed 

profiles). For z§ →0 the RSW profiles and the gray 

cloud show very similar behaviors, which may be 

indicating a general trend of the phenomenon for 

z§→0, following Eq. (22) for z+→0 (Janzen et al. 

2010b). On the other hand, for larger distances to the 

interface Eq. (22) predicts a peak of IJ/IJ1 > 1 for 
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z§<1.0. Peaks were in fact measured by Janzen et al. 

(2010b), not necessarily for z§<1.0, but showing that 

this behavior may be expected for interfacial transfer 

phenomena. In the present analysis IJ1 is the 

reference value at z*=1, where the value dIJ /dz*=0 

is the solution of Eqs. (14). This null derivative led 

to a global maximum at z*=1 in the present analysis, 

although this boundary condition may also depict a 

local maximum/minimum, or a horizontal constant 

profile. The nonlinear boundary value problem thus 

needs a refining of this boundary condition to better 

represent the evolution of IJ along the whole z§ axis. 

The results already obtained for z§→0 are, however, 

promising, and induce further studies on the theme.  

5. EFFECT OF THE NUMBER OF PARCELS 

OF THE TAYLOR SERIES  

Usually, if a small number of parcels is used in a 

Taylor series, the obtained results may be affected by 

an observable error, which tend to be smaller for 

higher number of parcels. In the present study the 

values of the control parameters are very relevant to 

define the behavior of the profile of n at the interface, 

and by increasing the number of parcels of the Taylor 

series the difference between successive profiles 

may also increase. To show the effect of the number 

of parcels, Figs. 9 and 10 present respectively the  
 

 

Fig. 9. Effect of number of parcels of the Taylor 

series on the n-profile for A1=0.6, IJ1=7, Sh=0.1. 

 

Fig. 10. Differences between successive n-profiles 

for A1=0.6, IJ1=7, Sh=0.1. 

evolution of n-profiles and of the difference 

between successive n-profiles for the agitation state 

given by A1=0.6, IJ1=7, Sh=0.1, when changing the 

number of parcels. An asymptotically superposing 

behavior of the n-profiles is observed by increasing 

the number of parcels, while the difference between 

successive profiles decreases. Related profiles for 

this condition also naturally show asymptotic 

behaviors, as shown by the profiles of the derivative 

of n in Fig. 11. 

The evolution of the profiles for other agitation 

levels (other values of the control parameters) may 

differ of those shown in Figs. 9, 10 and 11. To clarify 

this aspect, Figs. 12, 13, and 14 were built for the 

agitation state characterized by the parameters 

A1=0.6, IJ1=7, Sh=0.49, already discussed in Fig. 6b. 

Figure 12 shows that the profiles have a visual closer 

evolution for the different number of parcels, varied 

between 10 and 24 parcels.  

Figure 13 shows that the differences between two 

successive profiles may have a nonlinear behavior. 

For this combination of parameters, a “decreasing-

increasing-decreasing” sequence is observed for the 

differences. Figures 10 and 13 indicate that more 

studies on n profile’s details and control parameters 

will be positive for this field of knowledge. 

 

Fig. 11. Effect of number of parcels on the 

profile of dn/dz* for A1=0.6, IJ1=7, Sh=0.1. 

 

 
Fig. 12. Effect of number of parcels of the Taylor 

series on the n-profile for A1=0.6, IJ1=7, Sh=0.49. 
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Fig. 13. Differences between successive n-profiles 

for A1=0.6, IJ1=7, Sh=0.49. 

 

Fig. 14. Effect of number of parcels on the 

profile of dn/dz* for A1=0.6, IJ1=7, Sh=0.49. 

 

Figure 14 shows the derivatives of the n profiles for 

A1=0.6, IJ1=7, Sh=0.49, evidencing the evolution to 

a minimum for the derivative, as mentioned in 

Fig.6b. Figures 11 and 14 also suggest more studies 

on the details of the interface n profiles in relation to 

the control parameters. 

As described, the use of Taylor series has the 

“disadvantage” of being constituted of an infinite 

number of parcels, being thus unavoidable to impose 

a truncation, and, as a consequence, to introduce the 

related truncation error. A further characteristic of 

the method is that the convergence of the series to 

final stable profiles depends on the values of the 

control parameters. A tool that quantifies the number 

of parcels having a predefined residual error and the 

values of the control parameters is still not available, 

so that each combination of values must be tested. 

Evidently future studies may be directed to evaluate 

these aspects, and to allow quicker applications.  

It must also be noted that only two positions were 

used in the present study to apply the six physically 

based boundary conditions (three second order 

differential equations). Although adequate for the 

present study, these conditions are not definitive. 

Different physically justified boundary conditions 

may be proposed and used, in the sense of improve 

the obtained profiles. This possibility shows that the 

method is very open to contributions, and that they 

may expand its application potential. 

6. CONCLUSIONS  

The Random Square Waves method (RSW) was 

described and applied to obtain mean profiles of 

variables related to turbulent mass transfer across 

air/water interfaces in the scalar boundary layer 

region. The main focus was the mean concentration 

profile, followed by the turbulent mass flux profiles, 

and reduction function profiles. Although involving 

a large number of parcels in its general form (Eq. 10), 

the RSW method allows defining a proper closed set 

of equations for the one-dimensional transport of 

scalar properties. The method thus surpasses the 

closure problem of statistical turbulence, meaning 

that supplementary models (Boussinesq hypothesis, 

for example) or auxiliary equations are not necessary 

(ad hoc approximations for the turbulent viscosity, 

for example).  

Considering the use of Taylor series to obtain the 

profiles for the concentration and related statistical 

variables, following positive aspects are evidenced: 

i) – The Taylor series allow to adequately treat the 

nonlinear boundary condition problem.  

ii) – The series may be centered in convenient points 

in the domain of calculation. In the present study 

they were centered at z*=1. 

iii) – Truncations of the infinite series are needed, 

allowing to adequately recalculate coefficients to 

express the boundary conditions of the problem.  

iv) – The coefficients can be theoretically calculated 

through symbolic codes, like symbolic MATLAB ®. 

The results indicate that the calculated profiles 

follow most features of observed profiles of the 

literature. It was shown that the boundary layer mass 

transfer problem is linked to three RSW functions: i) 

the partition function n (which corresponds to the 

normalized concentration profile) ii) the reduction 

function a=1-A, and iii) the turbulent mass transfer 

IJ, thus needing three equations to be solved. The 

Taylor series were used to represent each of the three 

mentioned functions. The adequate number of terms 

of the Taylor series in the present study were 24 for 

n, 24 for A and 25 for IJ, centered at the immersed 

border of the region of variation of the mean 

concentration (the aforementioned position z*=1.0). 

A set of six physically justified boundary conditions 

for the different variables (n, A, and IJ) was applied, 

a procedure not followed in previous studies on the 

theme. The six conditions are needed because the 

RSW method generated three second order 

differential equations for the one-dimensional mass 

transfer. The profiles were conditioned by three 

nondimensional control parameters, two of them (A1 

and IJ1) were restricted to the interval [0,1], and the 

third given by the modified Sherwood number. 

These control parameters are a consequence of the 

RSW method, thus not existing in previous studies 

that used other models or tools to quantify statistical 

parameters of the interfacial region. It was observed 
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that the maximum modified Sherwood number 

appliable to an agitation condition depends on the 

value of the two remaining control parameters, a 

condition that suggests further studies on this 

dependence.  

The obtained normalized concentration profiles 

followed the features observed in experimental 

profiles of the literature. Considering the sub 

superficial conditions very close to the interface for 

slightly soluble gases, and which are related to the 

form of the profiles, the  present results indicate that 

it is possible to have both behaviors for the n profiles: 

i) solutions with the maximum slope of the profile 

(derivative or gradient in relation to the axis normal 

to the surface) at the interface, in agreement with 

most of the studies of the literature, and ii) solutions 

with the maximum slope located at positions below 

the interface, previously considered for laminar 

flows in the literature, but also measured in turbulent 

flows and justified as methodologic imagery 

distortions at the interface. This new theoretical 

result indicates that measured smaller slopes at the 

interface may be not only due to distortions of optical 

measurement methods, but also partially represent 

the physical phenomenon itself, and that this 

condition may be dependent on the agitation level of 

the surface. In this sense, experimental and 

numerical procedures that impose maximum slope at 

the interface may need adjustments. Further studies 

to better determine the characteristics of n profiles at 

the air-water interface are very welcomed.  

Some eventual “disadvantages” of using the Taylor 

series were also mentioned, like the truncation errors 

that follow from the truncations needed for practical 

purposes. There is still no tool to predict the number 

of parcels needed to attain a predefined residual 

error, a quantification that depends on the predefined 

error itself, and also on the agitation conditions given 

by the combination of the three control parameters. 

Further, the propagation of errors with the number of 

parcels is also an interesting aspect for future studies. 

Considering the procedures described in this study, 

the RSW method is easy to implement, being an 

adequate tool to study different aspects of turbulent 

scalar boundary layers. The obtained results suggest 

its use to analyze details of statistical profiles of 

relevant variables in the region very near to the gas-

liquid interface. The present results also show that 

further studies on aspects of the method that were 

still not covered are very welcomed, like: 

i) Different boundary conditions applied at 

different points of the domain of calculation of the 

nonlinear boundary value problem. 

ii) Experimental measurements of the profiles of 

the variables a=1-A and IJ in the boundary layer 

region close to the interface, which are still very rare 

in the literature.  

iii) A better reproduction of the “growth and fall” 

behaviors of the A and IJ profiles, which may also 

depend on the definitions of boundary conditions. 

iv) A tool that quantifies the number of parcels of 

the Taylor series necessary to attain a predefined 

residual error. 
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