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ABSTRACT 

Centrifugal pumps are turbomachines that have wide industrial applications and could perform in different ways 

such as pump and turbine mode. The maintenance of this equipment is mostly carried out using invasive 

methods that are expensive, time-consuming, and even complicated. The application of non-invasive methods 

is sought since they offer the advantage of real-time monitoring without stopping the process, reducing 

component assembly and disassembly times and providing a faster response. The aim of this work is done an 

experimental investigation that shows evidence about how the information on the hydraulic variables can be 

obtained if the electrical variables are monitored for the modes of operation such as pump and turbine. This 

work is divided into two parts, the first part is based on a statistical analysis to perform a multivariate adjustment 

through copulas and probability distributions. The second part focuses on the graphical analysis of the power 

density spectra for the hydraulic variables, the torque, and the defined electrical variables. The amplitude peaks 

of each variable and which peaks are common between them are determined. A statistically significant fit for 

Tawn type 2 copula is obtained with the indicator variable of pressure fluctuation and a multivariate 

transformation of the three-phase network currents. In the spectra analysis, common amplitude peaks are 

observed between the spectra that indicate the information flow on the phenomena between the hydraulic 

variables and the electrical variables. 
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NOMENCLATURE 

AIC Akaike Information Criterion 

C copula 

CDF Cumulative Distribution Function 

D-T common peaks between Dytran and 

Torque 

D-A common peaks between Dytran and 

Accelerometer 

D-A-T amplitude spikes that are common 

between Dytran, Accelerometer, and 

Torque variables 

I amplitudes for the current 1, 2 and 3 

 

k number of deviations from the sample 

standard deviation  

KS Kolmogorov-Smirnov 

LS upper limit 

Ln natural logarithm 

R2 determination coefficient 

Wi:n expectation of the statistic for K-plot 

ui variable distribution 1 or 2 

λ    distance of the observation to the center  

of the data for Chi plot 

µ    average 

σ    standard deviation 
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1. INTRODUCTION 

Turbomachines are hydrodynamic equipment that 

uses a rotating impeller to transfer power from the 

motor to the fluid (Li et al. 2022) and are used in 

different applications such as chemical industry, 

manufacturing, agriculture, and transportation 

(Wang et al. 2022). A suitable design and operation 

of a centrifugal pump imply an efficient momentum, 

mass, and heat transfer to other process equipment 

such as heat exchangers, shock and mixing tanks, 

reactor systems, and distillation towers, among 

others (Perez 2022; Li et al. 2022; Wang et al. 2022). 

The main turbomachines that can be found in 

industry are centrifugal pumps and turbines (Muttalli 

et al. 2014). A centrifugal pump in its structure does 

not differ significantly from a reaction hydraulic 

turbine. The difference lies mainly in its function 

since the pump transforms mechanical energy into 

hydraulic energy and the turbine does the reverse 

process. The design of each of them is then defined 

by the hydraulic efficiency for each application, 

efficiency that is determined by the constructive 

characteristics of the rotor, the spiral chamber, or the 

volute. It could then be stated that the efficiency in a 

hydraulic turbine application is greater at a specific 

condition (Flórez and Jiménez 2008). 

In this energy transformation process, hydrodynamic 

phenomena can occur and affect the operation of the 

machine (Obidov et al. 2021). The consequences of 

these phenomena include loss of mass of the 

components, unbalanced rotation, and vibrations, 

among other results that decrease the efficiency of 

the pump (Al-Obaidi 2019; Perez 2022). The 

development of tools that allow the early detection of 

these phenomena has been the objective of different 

scientific and engineering works that seek to find the 

optimal operating conditions for hydrodynamic 

machines and maximize their life span. However, not 

only these tools are aimed to work, but also offer 

non-invasive methods that protect the integrity of the 

machines and reduce costs (Al-Obaidi 2019; Obidov 

et al. 2021; Li et al. 2022). 

One of the most studied phenomena in 

turbomachines is cavitation (Li et al. 2022). 

Mousmoulis et al. (2019) carried out a review of the 

experimental studies for phenomenon detection and 

mentions four main methods to detect this 

irregularity and is related to static pressure, sound 

pressure, vibration acceleration, and fluid 

visualization. Al-Hashmi (2012) studied cavitation 

from acoustics in a centrifugal pump during normal 

operation. Al-Hashmi (2012) analyzed acoustic 

signal spectra, however, there is no clear relationship 

between pump cavitation and shaft frequency and its 

harmonics. Baldassarre (2018) did a study with a 

real-time image processing system for cavitation 

detection. Three different algorithms for real-time 

image analysis were developed and compared with a 

frequency diagram. In real-time, a response was 

obtained, which ensures the high reliability of 

cavitation detection. 

The Rotating Stall phenomenon has also been 

studied with non-invasive methods. Ullum et al. 

(2006) proposed two different methodologies for the 

detection of rotating stalls using velocity and 

pressure time series analysis. Also, velocity and 

pressure spectra analyses are done to determine if the 

rotating stall frequency could be identified. The 

results did not show significant sensitivity to flow 

rate, nor they were completely conclusive in 

detecting the frequency of rotating stalls in all the 

cases studied. Bolaños (2018) studied the 

phenomenon of Rotating Stall in a low specific speed 

centrifugal pump, the response of the turbomachine 

in the volute was analyzed in the time and frequency 

domain, through spectral components. Two types of 

phase analysis were performed using two different 

methods, cross-correlation, and Fourier phases. This 

last method was developed and proposed by the 

authors as an alternative to the cross-correlation 

method. 

Non-invasive methods have been studied for both 

pump mode and turbine mode. Bolaños et al. (2019) 

used a centrifugal pump working as a turbine. Image 

processing of a sequence of photos taken with a high-

speed camera was used, and pressure sensor signals 

were considered as pressure fluctuations. The 

analysis in the time and frequency domain allowed 

us to find the relationship between the torch spectra 

and the areas projected in the sequence of images of 

the phenomenon. 

A practical way of identifying hydraulic phenomena 

is by evaluating the electrical variables of the system. 

The measurement of currents and voltages represents 

less effort and less cost compared to the 

measurement of variables such as pressure and flow. 

Machado et al. (2016) used a noninvasive technique 

to diagnose the hydrodynamic phenomenon of 

cavitation in real-time. The suction capacity was 

studied to analyze the electrical parameters and find 

the relationship between cavitation and the stator 

current spectrum. The proposal is based on the 

evaluation of the cavitation phenomenon using time-

frequency transforms of the current stator. The 

results showed effectiveness at the moment of 

diagnosing the existence of cavitation. 

A nonlinear multivariate adjustment methodology is 

applied through copulas, whose application is not so 

frequent in the study of turbomachines and has scarce 

exploration regarding the relationship between 

electrical variables and hydraulic variables. Taillon 

et al. (2019) developed a method of analysis of 

cavitation peaks (impact events) using copulas. 

Impact events, also known as spikes, are defined as 

maximums in the amplitude pressure applied to the 

surface of a material. The copulas allow the study of 

the dependency structure of the characteristics of the 

measured impacts. The measured parameters show 

that they are not independent but have a complex and 

asymmetric dependency structure. The copula is a 

better fit compared to a joint distribution of 

independent marginals (Taillon et al. 2019). 

The present work aims to relate the hydraulic 

variables such as the pressure fluctuations and the 

vibrations of the turbomachine casing, the torque, 

and the electrical variables (non-invasive variables) 

of the three-phase network. The above implies three  
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Fig. 1. General test bench scheme (Bolaños and 

Botero 2021). 

 

currents and the three voltage drops of each line. Two 

methodologies are applied for the pump and turbine 

operation modes, firstly a statistical analysis using 

copulas is done, where pressure fluctuations are 

related to the currents of each three-phase line, 

performing transformations to the variables to find 

optimal settings. The second methodology is a 

graphical analysis of the frequency spectra obtained 

with the Fourier transformation for the pressure 

fluctuation, vibrations, torque, triphasic currents, and 

voltages. 

2. METHODOLOGY 

2.1 Process Design 

The hydraulics laboratory of the EAFIT University 

located in Medellín, Colombia is used to perform all 

the measurements for this work. The scheme of the 

equipment used is shown in Fig. 1. This scheme is 

composed of two centrifugal pumps in series with 

electric motors (2 hp for the ITT-Goulds stainless 

steel 316 and 3 Hp for the recirculation pump) and 

each pump has six blades. The test bench is 

composed of a closed piping system with a water 

reservoir (Bolaños and Botero 2021). Measurement 

instruments include an accelerometer, tachometer, 

flow meter, torque sensor, and thermometers.  

 

Table 1 Specifications elements of the practice. 

Impeller 

External diameter 0.14764 m 

Reference diameter 0.08104 m 

Number of blades (backward 

curved) 
6 

Inlet and outlet pipes 

Inlet diameter (suction hole) 0.0635 m 

Outlet diameter (discharge hole) 0.0508 m 

Design specifications 

Flow 0.009 m3/s 

Head 7.7 m 

Mechanical power 1118.5 W 

Electric motor 

Power 2 hp 

Speed 1745 rpm 

Phases 3 

Stream 5.6 - 5.2/2.6 A 

Voltage 
208 - 230 / 460 

V 

Frequency 60 Hz 

 

Turbologger is a data processing software developed 

in a LabView® environment by researchers from 

EAFIT University and is successfully used in 

different applications in academic and mechanical 

industries (Bolaños and Botero 2021). 

Two types of measurement campaigns are done. In 

the first campaign, the 2 HP motor works in turbine 

mode. For the second campaign, the study pump is 

placed in pump mode. Angular velocity ranges from 

700 rpm to 1900 rpm in ascent and descent is used. 

Table 1 shows the specifications of the system 

elements. The pump under study is operated in a 

speed range between 700 to 1700 rpm in pump mode 

and from 700 to 1900 rpm in turbine mode. The 

different rotation speeds are obtained with a speed 

variator (Bolaños and Botero 2021). 

 

2.2 Instrumentation and data acquisition 

Table 2 shows the instrumentation used for the  

Table 2 Specifications measuring instruments and their uncertainties (Bolaños and Botero 2021). 

Instrument 

RO 

(Rated 

Output) 

Intervals Span Linearity Repeatability Hysteresis Sensitivity 

Dytran 

2005V 

0 - 5 

VDC 
0 - 50 psi 

344738 

Pa 

±0.1 % of 

span 
- - 

100 

mV/psi 

Kistler 

8704B50M1 
±5 V ±50 g 100 g 

±1 % of 

RO 
- - 100 mV/g 

Futek 

TRS600 

FSH01998 

±5 VDC 
-20 - 20 

Nm 
40 Nm 

±0.2 % of 

RO 

±0.2 % of 

RO 

±0.1 % of 

RO 
- 

GE 

TransPort 

PT878 

4 - 20 

mA 

-10 l/s - 

20 l/s 

 

30 l/s - 
±0.1% a 

±0.3% 
- - 

DT2234C+ 0 - 5 V 

2.5 - 

99999 

rpm 

99996.5 

rpm 

 
 

 

 

- - - 

0.1 rpm 

(2.5 - 

999.9 rpm) 

1 rpm 

(1000 - 

99999) 
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Fig. 2. Location of measuring instruments (Bolaños and Botero 2021). 

 

measurement campaigns and the main technical 

characteristics of the instruments. Notation RO of 

this Table indicates Rated Output (RO). Figure 2 

illustrates the location of the measurement 

instruments in the equipment. The following 

measurements are performed to relate hydraulic and 

electrical variables: Dytran 2005V piezoelectric 

pressure transducer for measuring pressure 

fluctuations in the volute; Kistler 8704B50M1 

accelerometer installed in the volute; Futek TRS600 

FSH01998 torque sensor placed on the pump shaft; 

General Electric (GE) TransPort PT878 ultrasonic 

flow meter mounted on the 6” pipe to the high-

pressure area; conventional digital tachometer 

DT2234C+ to measure the speed of the pump on the 

shaft. This tachometer is modified to send voltage 

signals to data acquisition equipment. The sensitivity 

analysis is presented in Table 2 and corresponds to 

the sensitivity of the unmodified equipment.  

Electrical signals transmitted by sensors are received 

and processed using National Instruments® 

CompactRio® 9076 data acquisition equipment and 

the Turbologger software. The data acquisition 

equipment is made up of two acquisition modules, 

NI-9232 and NI-9203, and there are three different 

groups for data acquisition. All signals are recorded 

simultaneously. Group 0 is based on a 

Hydromechanical – 9232 and contains the dynamic 

signals of hydraulic and mechanical origin, acquired 

with the NI9232 module: pressure fluctuations, 

accelerometer, and torque. Group 1 is based on 

hydraulics - 9203: Contains stochastic signals of 

hydraulic origin (independent of time), acquired with 

the NI9203 module: Gauge pressures (high and low), 

flow rate, fluid temperature, and engine temperature. 

Group 2 contains dynamic signals of electrical 

origin: voltages and currents of the different phases. 

 

2.3. Characteristic Curves 

Centrifugal pumps can work under different 

operating conditions, transient states such as starting 

or stopping changes in fluid direction, or changes in 

rotation. It is precisely this possibility of inverting 

the rotation or the flow that allows the operation in 

turbine mode (Bolaños 2018). This diversity of 

operation modes that centrifugal pumps present 

makes it necessary to have a complete 

characterization tool that allows identifying all the 

operating zones of the machine and its efficiency in 

each one of them. This tool is the characteristic 

curves of four quadrants. Characteristic curves are 

graphical representations of the behavior of 

turbomachines with respect to variables of interest 

such as angular speed, flow rate, torque, and power, 

among others (Bolaños 2018; Bolaños and Botero 

2018). 

One of the advantages of the characteristic curves is 

the representation in a single graph of the behavior 

of all the possible operating points of a 

turbomachine. The four quadrants I, II, III, and IV 

correspond to the modes of operation: pump, brake 

pump, turbine, and reverse rotation pump, 

respectively. The characteristic curves also help to 

identify problem areas that may be associated with 

the presence of hydrodynamic phenomena. These 

zones are normally found where there are changes in 

the sign of slope in the characteristic curves (Bolaños 

2018; Bolaños and Botero 2018). 

For the pump under study, measurements are taken 

in the operating modes such as pump and turbine. In 

this work, three are the criteria selection of the pump 

and turbine operating conditions. Firstly, there must 

be a correspondence between the desired quadrants 

of the pump and turbine modes. Secondly, a cleaning 

process of the sample of those points that presented 

noise in the measurements. Thirdly, the operating 

points whose graphs are clearer and showed better 

amplitude peaks in the variables chosen. In each of 

the operating modes, records of the sensors are taken, 

varying the angular speed of the 2 Hp pump and 

maintaining a fixed frequency of 60 Hz. Initially 

from low to high rpm (climb), and later from high to 

low rpm (decline), these variations are made in 100 

rpm intervals. Both modes of operation are done with 

an angular speed of 1700 rpm for the pump study. 

However, for the pump mode, the speed of the 

recirculation is around 1100 rpm and for the turbine 

mode, the speed is around 1900 rpm. 

 

2.4. Couple Analysis 

A copula is a function that relates a multivariate 

distribution with its one-dimensional marginal 

distribution functions, regardless of the shape or type 

of the marginal distributions (Gómez 2017). This 

method is used in this work to develop a predictive 

statistical model in order to relate the hydraulic 

variables with non-invasive variables (electrical 

variables). If H(x,y) is a joint distribution function of 

two continuous variables, then a copula C can be 

defined that relates the marginal distributions F and 

G of the random variables x and y in the way shown 



V. O. Monsalve et al. / JAFM, Vol. 16, No. 4, pp. 685-702, 2023.  

689 

in Eq. 1 and for the case where the variables are 

independent, it can be modeled using the copula 

C(x,y)=xy (Taillon et al. 2019). F(x) and G(y) are the 

marginal distributions for each of the physical 

variables and in this case a hydraulic variable and an 

electrical variable. 

𝐻(𝑥, 𝑦) = 𝐶(𝐹(𝑥), 𝐺(𝑦)) (1) 

 

2.5. Spectral Analysis 

The power density spectra using the Fourier 

transform for the fluctuating variables pressure, 

vibrations, currents, and voltages are plotted. Spectra 

for the 1.4x, 4x, and 25x domains are plotted, using 

logarithmic scales on the required axis. The most 

outstanding amplitude peaks are marked. The 

spectral analysis is done using Python-free software. 

3. RESULTS AND DISCUSSIONS 

The analysis is presented in two parts. The first is 

based on a statistical analysis of the information 

obtained, and the second is based on a graphic 

analysis of the frequency spectra for each of the 

variables under study and provides a predictive 

statistical model. The variables for analysis are the 

Dytran (the pressure fluctuations in the volute) in 

Volts (V), the accelerometer (the vibrations) in m/s2, 

the shaft torque in Nm, Current 1 to 3 in amperes (A), 

and Voltage 1 to 3 in Volts (V). 

Firstly, the authors have done a fitting procedure to 

find linear regression to explain the relationship 

between the electrical variables and the hydraulic 

variables or vice versa. When the fitting procedure is 

done, the determination coefficient (R2) is around 

0.0005 with a p-value of 0.001. Also, the p-values of 

the current 1 to 3 are below 0.82. The above indicated 

that there is no statistical significance and the R2 does 

not describe properly the linear model proposed 

(Bolaños 2018; Taillon et al. 2019; Bolaños and 

Botero 2021). An alternative to describe this 

phenomenon is a non-linear adjustment using copula 

analyses. This copula analysis requires the 

adjustment of the marginal distributions of the 

variables under study. In this order of ideas, the 

predictive statistical model is done by copulas and 

the procedure for development includes (i) 

adjustment of marginal distributions; (ii) Box-Cox 

transformation; (iii) Johnson transformation; (iv) 

Copula adjustment and (v) Graphical analysis of 

spectra, and these methodological steps are 

explained as follows. 

 

3.1 Adjustment of Marginal Distributions 

Arena software is used to fit the marginal probability 

distributions for each variable, particularly the input 

analyzer tool. The available probability distributions 

are fitted, and the Kolmogorov-Smirnov (KS) and 

chi-square tests are performed. Also, transformations 

are made to each variable to seek better results, 

including the square root of each variable, the natural 

logarithm, and a new variable called currents which 

can be seen in Eq. (2). In the appendix (Tables 1A 

and 2A) shows the KS test of the studied variables 

(Dytran, Current 1 to 3, RootCurrent 1 to 3, 

LnCurrent 1 to 3, and the general current) where 

Table 1A is related to the p-values of the KS test for 

each test performed in pump mode and Table 2A 

shows them for the turbine mode. As can be seen in 

these Tables the p-values of the chi-square test are 

less than 0.005. Also, with a common significance 

level of 0.05 can be concluded that no statistical 

evidence that the evaluated variables or 

transformations can fit the different probability 

distributions. In the case of the Dytran variable, an 

attempt could be made to adjust to a Beta or normal 

distribution for another significance level lower than 

the p-level shown. 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡

= √Current 12 + Current 22 + Current 32 
(2) 

Graphical analysis is performed to observe that the 

Dytran variable can be modeled using normal 

probability distribution to find possible adjustments 

and different transformations for the rest of the 

variables. Figures. 1A and 2A provided in the 

appendix show the frequency histograms of each 

study variable in each mode of operation. In the case 

of the Dytran variable and the Current variable, can 

be noted that the histogram is approximately 

symmetric and has a slight Gaussian bell shape. The 

authors decided to adjust the Dytran variable to a 

normal distribution and for the Current variable a 

Box-Cox transformation which is possible since all 

its values are positive. The Johnson transformation 

(Lagos and Vargas 2003) is also performed for each 

of the currents and the current variable since the 

transformation can be done with positive and 

negative values. 

 

3.1.1. Box Cox Transformation 

The Box-Cox potential transformation is used to 

correct biases in the distribution of errors, unequal 

variances, and mainly non-linearity. Eq. (3) shows 

the normal distribution of the data formula used. In 

this equation the value of lambda (λ) used is obtained 

from the maximization of Eq. (4), where n 

corresponds to the number of observations, xi is the 

observation, yi is the transformation, µ and σ2 is the 

average and variance of the transformations, 

respectively (Li 2005). Also, the lambda value varies 

between -5 and 5.  

The results of the fit to the normal distribution of the 

Box-Cox transformation (bc) for the pump and 

turbine modes are applied only to positive values, 

i.e., it is performed only on the current variable (Eq. 

(2)). The results of this processes indicated that the 

transformation carried out on the data still does not 

pass the normality criterion since its p-values do not 

offer statistical significance as can be seen in Table 

3A of the appendix. 

𝑦(𝜆) = {
𝑦𝜆 − 1

𝜆
, 𝜆 ≠ 0

log 𝑦 , 𝜆 = 0

 (3) 
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log[𝐿(𝜆, µ, 𝜎)] =
−𝑛

2
log(2𝜋) −

𝑛

2
log(𝜎2)

−
1

2𝜎2
∑(𝑦𝑖 − µ)2

𝑛

𝑖=1

+ (𝜆 − 1) ∑ log (𝑥𝑖)

𝑛

𝑖=1

 

(4) 

 

3.1.2. Johnson Transformation 

Another technique for transforming non-normal data 

into normal data is the Johnson Distribution Families 

system. Table 3 shows the mathematical models for 

the Johnson transformation related to the SB (refers 

to bounded random variable X), SL (refers to X 

bounded below or lognormal), and SU (refers to 

unbounded X) (Lagos and Vargas 2003). R statistical 

package is used, particularly the Johnson library is 

applied to fit the data and to determine the type of 

family of the transformation. Table 4 shows the 

parameters for each variable according to each 

transformation performed. 

 

Table 3 Johnson transformations 

Johnson 

transformation 
Equation 

SB 𝑍 = 𝛾 + 𝜂 ln (
𝑋 − 𝜖

𝜆 + 𝜖 − 𝑋
) 

SL 𝑍 = 𝛾 + 𝜂 ln(𝑋 − 𝜖) 

SU 𝑍 = 𝛾 + 𝜂 senh−1 (
𝑋 − 𝜖

𝜆
) 

 

In the case of the pump mode, the current variable 

has a p-value greater than a significance level of 

0.05, which indicates that there is statistical evidence 

to not rule out the normality hypothesis. Figure 3 

shows the histograms for each transformation. 

Johnson and the Gaussian bell shape can be 

corroborated for the current variable in pump mode. 

For the case of the turbine mode, the p-value is 0.01 

with the KS test. Figure 4 shows the histograms for 

the Johnson transformations in the turbine mode, 

where the approximate Gaussian bell shape of the 

current’s variable in this mode of operation can be 

shown. 

Table 4 Johnson transformation parameters performed by variable in each operation mode 

Johnson transformation 

  
Pump mode Turbine mode 

Current1 Current2 Current3 Current Current1 Current2 Current3 Current 

Family SB SB SB SU SB SB SB SU 

Gamma, γ -0.01 -0.03 -0.02 -0.88 -0.06 0.01 -0.07 -0.43 

Lambda, λ 13.16 13.06 13.32 3.79 12.21 12.33 12.82 4.06 

Epsilon, ε -6.62 -6.58 -6.73 5.35 -6.24 -6.22 -6.57 4.08 

Eta, η 0.64 0.61 0.64 3.82 0.87 0.85 0.90 3.42 

p-value of KS 0.00 0.02 0.06 0.03 0.00 0.00 0.01 0.01 

 

 

Fig. 3. Histograms for Johnson transformations in pump mode. 
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Fig. 4. Histograms for Johnson transformations in turbine mode. 

 

For the other analysis, a normal distribution fit is 

applied for the current variable in the two modes of 

operation of the machine under study. In the pump 

mode, for the Dytran variable, a normal distribution 

with a mean of 0.00106 and a standard deviation of 

0.0027 is fitted. For the current variable that has been 

transformed with the Johnson model, a normal 

distribution with a mean of 0.0225 and a standard 

deviation of 1.03 is obtained. In the turbine mode, for 

the Dytran variable, there is a normal distribution 

with a mean of -0.0021 and a standard deviation of 

0.0053 and for the current variable transformed with 

Johnson there is a normal distribution with a mean of 

0.026 and a standard deviation of 1.03. 

Once the variables are analyzed and each of their 

marginal distributions is defined, the fit for the 

Dytran and currents variables is found using the 

VineCopula and VC2copula copula packages of the 

R software. 

 

3.2. Copula Adjustment 

For the pump mode, a better fit is obtained with the 

type 2 Tawn copula whose cumulative distribution 

function is defined by Eq. 5 and whose generating 

function is shown in Eq. 6, where u and v correspond 

to the evaluation of the marginal distributions of each 

variable (Jaramillo-Elorza and Lozano 2014). 

𝐶(𝑢, 𝑣) = (𝑢 ∗ 𝑣)𝐴(𝑤), 𝑤ℎ𝑒𝑟𝑒 𝑤

=
ln(𝑢)

ln (𝑢 ∗ 𝑣)
 

(5) 

𝐴(𝑡) = (1 − 𝜓2)(1 − 𝑡) + (1 − 𝜓1)𝑡

+ [𝜓1(1 − 𝑡)𝜃

+ (𝜓2𝑡)𝜃]
1
𝜃  

(6) 

With copula parameters t ϵ [0,1],0< ψ1, ψ2<1 and θ ϵ 

[1,∞]. There can be two classes of Tawn copulas  

Table 5 Adjustment parameters of the Tawn 

Copula type 2 for pump mode. 

Parameter Value 

𝜓1 0,01 

𝜓2 1 

𝜃 2.44 

p-value 0.03 

AIC -8.09 

 

(type 1 and 2), and this refers to the value that the 

asymmetric parameter ψ can be assumed (ψ1 = 1 or 

ψ2 = 1) (Lagos and Vargas 2003). Table 5 shows the 

p-value of the independence test and it may suggest 

that the hypothesis of independence of the variables 

is accepted. The Akaike Information Criterion (AIC) 

is presented, whose logic of comparison between 

adjustment of copulas is to choose the one with the 

lowest value (Genest and Favre 2007). Figure 5 

shows the suggested copula density function. 

Chi-plot and K-plot are made to represent a graphical 

behavior of the possible functional dependence of 

two random variables. Figure 3A and Fig. 4A 

 

 

Fig. 5. Density graph for the fit of the Tawn 

Copula type 2 for pump mode. 
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presented in the appendix show the Chi-plot and K-

plot graphs for the proposed adjustment. As can be 

seen in both cases, the criteria of the graphic analysis 

are met to define the dependence of the variables. In 

the case of the K-plot graph, positive functional 

dependence is detected by accentuating the 

concavity of the point cloud with respect to the 

diagonal, when the variables are independent the 

graph is concentrated on the diagonal (Moreno 

2012). Also, Fig. 5A shows the comparison of the 

copula fit with the observed data, showing a greater 

relationship in the central part of the variables. 

For the turbine mode, the fitted results showed 

independence. This is one of the simplest models 

since they assume independence between all the 

variables, i.e., it is assumed that the joint probability 

distribution can be represented as the product of the 

univariate and independent probability distributions 

as indicated in Eq. 7 (Flórez and Jiménez 2008). The 

p-value for independence is 0.73 and the AIC = 0. 

𝐶(𝐹(𝑥), 𝐺(𝑦)) = 𝐹(𝑥) ∗ 𝐺(𝑦) (7) 

 

3.3. Graphic analysis of Spectra 

3.3.1. Pump Mode 

Figure 6 shows an analysis of the Time Synchronous 

Average (TSA). In this figure, the blue lines indicate 

a nominal value of the pressure variation in the 

sensor measurement, and the red lines show the 95 % 

confidence interval of the measurement. The polar 

graph for the point of operation in pump mode shows 

that, despite being the point of higher efficiency of 

the measurements, the turbomachine presents 

slightly unbalanced flows, and these could be 

reflected in rotodynamic, or other forces transferred 

from the shaft to the rotor. 

Spectral graphs are made for each of the hydraulic 

and electrical variables selected in this work. The  

 

Fig. 6. Polar graph for the Dytran variable in 

pump mode. 

 

aim is to find those points where the information has 

been transferred from the hydraulic part to the 

electrical variables of current or voltage. Figure 7 

shows the power density spectra for the Dytran 

variable. Also, in the appendix can be found the Fig. 

6A related to the accelerometer variable, and Fig. 7A 

for the torque in the 1.4x, 4x, and 25x frequency 

domains, and the peaks of higher amplitudes. The 

frequency domain is normalized using the rotational 

speed of the turbomachine as a reference, obtaining 

the horizontal axis of orders of the rotational 

frequency of the machine. 

The amplitude peaks at frequencies 0.58x, 0.8x, 1x, 

2x, 3x, 3.4x, 4.9x, 5.4x, and 6x are common in these 

figures and the last peak corresponds to the step of 

blades. The information has moved from the volute 

and the casing to the turbomachine shaft, i.e., the 

pressure fluctuations cause the casing to vibrate, and 

these fluctuations and vibrations cause changes in 

torque, or it could also be seen in the opposite 

direction where the changes in torque have caused 

the vibrations in the casing and the pressure 

fluctuations registered in the volute. 

 

  

 
Fig. 7. Spectra for the Dytran variable in pump mode. 
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For the case of currents, the frequency spectra are 

shown in Fig. 16A for a frequency of 25x. As can be 

seen in the figure, the amplitudes have significantly 

small dimensions compared to the other variables. 

The spectra are made at the 1.4x and 4x frequencies 

with logarithmic scales on the vertical axis and are 

shown for the currents in Fig. 17A provided in the 

appendix. 

For the comparison between the peaks of the 

variables Dytran, accelerometer, Torque, currents 

and voltages, the creation of an upper limit (LS) is 

proposed that will indicate when the amplitude peak 

would correspond to atypical data. This limit is 

established according to Eq. 8, where µ and σ are the 

mean and standard deviation of each variable and the 

parameter k corresponds to the number of deviations 

considered with respect to the standard deviation of 

the sample. 

For the case of the three currents k = 1 is established 

and for the rest of the variables k = 1.5 since it is 

observed that in the case of the electrical variables 

the data are more concentrated on the central value 

or the mean and for the rest of the variables it is 

desired to obtain those that are much further away 

from said central value. It is also tested with a lower 

limit, but none of the data is below the resulting 

value. 

𝐿𝑆 = µ + 𝑘𝜎 (8) 

The results of those values that exceed the 

established upper limits are shown in Table 4A for 

the subsynchronous region and in Table 5A for the 

rest of the scale. D-A-T corresponds to those 

amplitude peaks that are common between the 

Dytran, Accelerometer and Torque variables. D-A 

corresponds to the common peaks between Dytran 

and the accelerometer. D-T corresponds to the 

common peaks between Dytran and Torque. Box I 

refer to the amplitude values where the current 1, 2, 

and 3 exceeded the LS value. 

As can be seen, the Dytran and Accelerometer 

variables have the highest number of peaks in 

common, which can give an idea of how the fluid 

information is also transmitted to the casing. The 

peak shown on the 2.4x scale for D-T is very close to 

the peak of the currents at the 2.5x scale, as well as 

for the 8.3x and 20.8x scales when compared to 7.8x 

and 19.7x for D-A. In the subsynchronous scale no 

peaks in the currents are appreciated. Although there 

are no data in the currents that exceed the LS value, 

there are two representative peaks in the 0.75x and 

0.88x domains that are equal to the common D-A-T 

peaks. In the case of voltages, Fig. 10A shows the 

spectra for this variable. Significant peaks are 

obtained at the 12.5x and 13.2x scales, which are 

very close to the D-A peaks at 12 and 14.7x. 

 

3.3.2. Turbine mode 

Figure 8 shows the polar graph for the point of 

operation in turbine mode. Similar to the notation 

lines in Fig. 6, the blue lines indicate a nominal value  

 

Fig. 8. Polar graph for the Dytran variable in 

turbine mode. 

 

of the pressure variation in the sensor measurement, 

and the red lines show the 95 % confidence interval 

of the measurement. The turbomachine still shows 

slightly unbalanced flows, however to a lesser extent 

in this mode of operation. The power density spectra 

are made and are shown in Fig. 9 for the Dytran 

variable. Also, in Fig. 11A for the accelerometer 

variable and Fig. 12A for the torque in the 1.4x, 4x, 

and 25x scales with the highest amplitude elevated 

peaks marked. 

In a quick observation, the 1x, 2x and 6x peaks are 

common for the three graphs of the Dytran, 

accelerometer and torque variables. This may be an 

indication that the information has been transferred 

from the volute, the casing up to the axis of the 

turbomachine. Thus, the pressure fluctuations cause 

the casing to vibrate, and these fluctuations and 

vibrations cause changes in torque. It could also be 

interpretated in the opposite direction where the 

changes in torque caused the vibrations in the casing 

and pressure fluctuations recorded in the volute. 

For the case of currents, the frequency spectra are 

shown in Fig. 10 for a 25x scale. This figure is made 

in the x-axis with a logarithmic scale in order to have 

a better visualization, however, the y-axis represents 

the current in Amperes, and this measurement is not 

transformed. As can be seen, the amplitudes have 

significantly small dimensions compared to the other 

variables. Figure 11 shows the spectra that are made 

at 1.4x and 4x scales with logarithmic scales on the 

vertical axis for the currents. 

For the comparison between the peaks of the 

variables, Dytran, accelerometer, Torque, currents, 

and voltages in turbine mode, the creation of an 

upper limit (LS) of Eq. (8) is also proposed. For the 

case of the three currents k = 1, and for the rest of the 

variables k = 1.5 since it is observed that in the 

turbine mode in the electrical variables the data is 

more concentrated on the central value or the mean 

and for the rest of the variables it is desired to obtain 

those that move much further away from that central 

value. It is tested again with a lower limit, but none 

of the data is below the resulting value. 
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Fig. 9. Spectra for the Dytran variable in turbine mode. 

 

  

 
Fig. 10. Spectra for currents in turbine mode. 

 

The results of those values that exceed the 

established upper limits are shown in Table 6A for 

the subsynchronous region and in Table 7A for the 

rest of the scale. The Dytran and Torque variables 

have the highest number of peaks in common, this 

reflects the pump's operating mode as a turbine since 

now the motor behaves as a generator. Likewise, 

there is a significant number of peaks in common 

between the Dytran variable and the accelerometer, 

which continues to show the flow of information 

between the fluid and the casing.  

In the subsynchronous region, the information 

reached each of the elements and there is a point of 

great interest in the 0.2x scale since a common peak 

is presented between Dytran, Torque, and the three 

currents and it is located in the subsynchronous 

region. Another common amplitude peak is the one 

located at 8.2x between the Dytran, the 

accelerometer, and the three currents. Additionally, 

there is a common peak shown in Fig. 11 in the 1.6x 

domain for the currents and D-T. For the case of 

voltage, Fig. 13A shows the spectra for the three 

voltages, peaks 12.2 and 13.1 are very close to 12 and 

13.7 of D-T. 
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Fig. 11. Spectra for the currents in logarithmic scale for the turbine mode. 

 

 

5. CONCLUSION 

The following conclusions and recommendations 

can be drawn. 

This work aims to do an analysis of the frequency 

spectrum of the electrical variables (non-invasive 

variables) in order to provide information on the 

hydraulic variables using graphical and statistical 

analysis. In order of ideas, the authors do a predictive 

model using a joint probability distribution from the 

electrical and hydraulic marginal variables. 

In the pump and turbine modes, a statistical analysis 

is performed. Non-significant statistical evidence at 

a 95 % confidence level is found for the adjustment 

to a common probability distribution of the pressure 

fluctuation variables related to the three currents, and 

the three voltages of the three-phase network. 

In the pump mode, the dependence of the variables 

is observed with a p-value of around 0.03. An 

adjustment to a proposed copula is obtained that 

corresponds to a Tawn type 2, with an AIC value of 

around -8.09. The fit is achieved with the product of 

the marginal values of each variable. 

The spectra analysis for the pump mode show 

common peaks are observed among each of them, i.e. 

there are points where the information has been 

transferred from the volute, the casing to the axis. 

Nevertheless, there are close points between the 

amplitude peaks of the currents and the voltages, 

which give an indication that the information has 

been able to reach the electrical terms. 

For the turbine mode in the spectral analysis, there is 

a common point between all the study variables and 

peaks, i.e. the information has been transferred to or 

from the electrical terms. 

Further works are needed to develop other predictive 

models that use copulas in order to describe 

hydraulic variables with electrical variables, for 

example, single-variable or multivariate control 

charts (Aas et al. 2021). Also, statistical curves or 

tables that relate electrical or hydraulic variables can 

be developed and will be used for industrial 

applications (Liu et al. 2021). 
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APPENDIX A 

Table 1A Marginal distributions fit for pump mode. 

  Beta Normal Erlang Gamma Lognormal Weibull Triangular Uniform Exponential 

Dytran 0.0137 0.0222 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Current 1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Current 2 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Current 3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

RaizCurrent 1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

RaizCurrent 2 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

RaizCurrent 3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

LnCurrent 1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

LnCurrent 2 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

LnCurrent 3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Current <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

 

Table 2A Fit of marginal distributions for turbine mode. 

  Beta Normal Erlang Gamma Lognormal Weibull Triangular Uniform Exponential 

Dytran 0.0137 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Current 1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Current 2 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Current 3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

RaizCurrent 1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

RaizCurrent 2 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

RaizCurrent 3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

LnCurrent 1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

LnCurrent 2 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

LnCurrent 3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Current <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

 
Table 3A Box Cox transformation of the current variable for pump and turbine modes. 

Transformation Error p-value of KS p-value of Chi squared 

Transf_bc_bomb 0.00139 <0.005 <0.01 

Transf_bc_turb 0.00172 <0.005 <0.01 

 
Table 4A Amplitude peaks exceeding LS in the subsynchronous region in pump mode. 

D-A-T   0.6  0.8  1.0 

D-A 0.1 0.5 0.6  0.8 0.9 1.0 

D-T   0.6 0.7 0.8  1.0 

I        
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Table 5A Amplitude peaks that exceed LS after 

the subsynchronous region in pump mode. 

D-A-T D-A D-T I 

    1   

    1   

    1.6   

2 2 2   

    2.4   

      2.5 

  2.7     

3 3 3   

3.4 3.4 3.4   

    4   

      4 

      4.2 

4.9 4.9 4.9   

    5   

5 5.4 5   

6 6 6   

  7.8     

      8.3 

  9.3     

  9.8     

  12     

  14.7     

  19.7     

      20.8 

  21.6     

  23.6     

  23.7     

  23.9     

  24.6     

  24.7     
 

 

Table 6A Amplitude peaks exceeding LS in the 

subsynchronous region in turbine mode. 

D-A-T D-A D-T I 

    0.1   

    0.2 0.2 

0.3 0.3 0.3   

0.4 0.4 0.4   

0.5 0.5 0.5   

0.6 0.6 0.6   

0.7 0.7 0.7   

0.8 0.8 0.8   

  0.9     

1 1 1   

Table 7A Amplitude peaks that exceed LS after 

the subsynchronous region in turbine mode. 

D-A-T D-A D-T I 

  1.1     

1.2 1.2 1.2   

  1.3     

  1.4     

    1.6   

2 2 2   

    2.1   

    2.2   

    2.5   

    2.6   

    2.7   

2.8 2.8 2.8   

2.9 2.9 2.9   

3 3 3   

    3.1   

    3.2   

3.3 3.3 3.3   

    3.4   

    3.5   

    3.6   

    3.7   

    3.8   

    3.9   

4 4 4   

    4.1 4.1 

    4.2 4.2 

    4.6   

4.9 4.9 4.9   

5 5 5   

5.4 5.4 5.4   

  5.9     

6 6 6   

  6.2     

  7.8     

  8.2   8.2 

  8.8     

  9.3     

  9.8     

  12     

  13.7     

      20.6 

  21.6     
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Fig. 1A. Histograms for the variables under study in pump mode. 

 

 
Fig. 2A. Histograms for the variables under study in turbine mode. 
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Fig. 3A. Chi-plot graph for copula adjustment in 

pump mode. 

 
Fig. 4A. K-plot graph for the copula fit in pump 

mode.

 
Fig. 5A. Comparison of fit with observations 

 

 

 

 
Fig. 6A. Spectra for the accelerometer variable in pump mode 

 

 
Fig. 7A. Spectra for the Torque variable in pump mode 

 

 
Fig. 8A. Spectra for currents in pump mode. 
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Fig. 9A. Spectra of the currents in logarithmic scale for the pump mode. 

 

 
Fig. 10A. Spectra for the voltages in pump mode. 

 

 
Fig. 11A. Spectra for the variable accelerometer in turbine mode. 

 
Fig. 12A. Spectra for the torque variable in turbine mode. 
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Fig. 13A. Spectra voltages for the turbine mode  

 

 


