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ABSTRACT 

This work is a numerical study on the effects of the flow structures of the power-law fluid between two 

concentric cylinders with an upward laminar axial flow on levels of mixing and mean residence time through 

the Taylor Couette system. The cylindrical annular duct presents a radius ratio of 0.5 and an aspect ratio of 8. 

The inner cylinder is rotating while the outer one is kept at rest. The residence time distributions (R.T.D.) 

method and the mean residence time (Tm) are used to determine the number of tanks in series and the 

dispersion coefficient to evaluate levels of mixing. To this end, a pulsed input injection of a tracer is 

computing at the outlet of the annulus. As a main objective of this study, is to analyze the effect of the flow 

structure of a power-law fluid between two concentric cylinders on the mixing level and mean residence time 

in a Taylor Couette system. The novelty of our work is the use of power-law fluids as particles-carrying 

fluids. Several parameters, such as the axial Reynolds number (Re), the Taylor number (Ta), and the power-

law index behavior (n), are used to show their impact on levels of mixing. It is shown that when n increases, 

the number of stirred tanks in series N increases for pseudoplastic fluids (n<1), indicating low levels of 

mixing while the parameter (N) decreases for dilatants fluids (n>1), revealing high levels of mixing. The 

increase of the power-law index in the range of 0.6<n<1 decreases the dispersion coefficient, indicating the 

non-ideal mixing in the duct. In addition, for further increase of the power-law index in the range of n>1 

increases the dispersion coefficient points to the well-mixing. 

 

Keywords: Poiseuille-Taylor-Couette flow; Residence time distribution; Meantime; Lattice Boltzmann 

Method; Non-Newtonians fluids. 

NOMENCLATURE 

c lattice Velocity  

C dimensionless concentration  

Cα particle distribution function for the 

concentration 

Ceq equilibrium distribution Function for the 

concentration 

Cs sound speed  

d gap of the annular duct 

D coefficient of the mass diffusion   

eα Particle velocity vector along direction α 

E(t) residence time distribution 

Fα particle distribution function 

Feq equilibrium distribution Function  

Gα particle distribution function for the 

azimuthal velocity 

Geq equilibrium distribution Function for the 

azimuthal velocity 

Gr Grashof number 

Iα source term added into lattice Boltzmann 

Δt time step set to unity 

Δz lattice space size set to unity 

δij Kronecker function 

ν fluid kinetic viscosity  

ε error 

ωα Weight coefficients for the equilibrium 

distribution function 

ρ fluid density  

τα relaxation time of the D2Q9 lattice 

Boltzmann equation along direction α 

τ relaxation time of the D2Q9 lattice 

Boltzmann equation  

  relaxation time of the D2Q4 lattice 

Boltzmann equation for azimuthal 

velocity 

c  relaxation time of the D2Q4 lattice 

Boltzmann equation for the concentration 

Γ Aspect ratio  2 1/ ( ) = −L R R  

http://www.jafmonline.net/
https://doi.org/10.47176/jafm.16.06.1683
mailto:samir.khali@usthb.edu.dz


S. Khali and R. Nebbali / JAFM, Vol. 16, No. 6, pp. 1232-1242, 2023.  

 

1233 

equation 

Kα source term added to the azimuthal 

velocity equation 

k consistence of the non-Newtonian fluid 

lu lattice spacing (spatial lattice unit) 

lt lattice time step (temporal lattice unit) 

L height of the annulus 

M Mach number  

N number of tanks agitated in series 

n power-law index behavior 

p pressure 

R1 radius of the inner cylinder 

R2 radius of the outer cylinder 

Re Reynolds number  

Sα source term added into lattice Boltzmann 

equation 

Sc Schmidt number 

t time 

Ta Taylor number 

Tm meantime 

vr Radial velocity  

vθ azimuthal velocity 

vz axial velocity 

w(z)  laminar axial velocity 

Greek Symbol  

α  thermal diffusion coefficient 

η radius ratio  

μa apparent viscosity for non-Newtonians 

fluids  

∂α  partial space derivative, α can represent z 

or r 

Φ source term added into lattice Boltzmann 

equation 

γ source term added into lattice Boltzmann 

equation 


 

shear rate 

Ω angular speed of the inner cylinder  

σ first moment of the distribution function 

σ2 second moment of the distribution 

function 

x  lattice spacing lu (m) set to unity  

t  lattice time step lt (s) set to unity 

Δt
 

time step lu, (s) set to unity  

Subscripts 

α component in direction eα 

α, β  axial coordinate z or radial coordinate r 

z ,r axial and radial coordinates respectively 

w wall 

αop        opposite direction of α. 

 
 

 

1. INTRODUCTION 

Levels of mixing and mean residence time of non-

Newtonians fluids through the different apparatus is 

an important key parameter for the design and the 

efficiency of various reactors in industrial 

apparatuses involved in mechanical engineering, 

chemical engineering and oil drilling. The residence 

time distribution (R.T.D.) is a model used to 

characterize levels of mixing, and defined as the 

time each particle of a tracer remained in the 

channel. Results in distributions of the tracer 

injection at the output are used to get fluid levels of 

mixing. For a Dirac-Delta function of the R.T.D, 

the tracer enters and leaves simultaneously the 

channel, signifying a plug flow. On the other hand, 

when the R.T.D., exhibits an exponential decay 

function, the flow describes a good mixing. 

Danckwerts (1958) was first to use the R.T.D 

method as a new technique to quantify the levels of 

mixing by injecting a tracer in the Taylor-Couette 

configuration. Kataoka et al. (1975) uses the 

residence time distribution to study the fluid flow 

structures for the Taylor Vortex Flow regime 

(T.V.F.) between two concentric cylinders. They 

ended that each vortex behaves as a perfectly 

agitated reactor and does not interact with the 

adjacent vertices. This work is considered as a 

reference study for the subsequent studies such as 

Legrand et al. (1983), Legrand and Coeuret (1986) 

and Guihard et al. (1989). Kataoka and Takigawa 

(1981) proposed a new model to quantify leveling 

of mixing as the number of tanks in series N. They 

described each reactor by a number N of perfectly 

mixed tanks in series. When the number of tanks in 

series is equal to one, the flow is perfectly mixed 

and when N tends to infinity, the flow is a plug 

flow. 

For the Taylor-Couette system, the dispersion 

coefficient model is often used to show how the 

fluid is mixed. The tracer drifts along the radial 

direction due to the centrifugal forces and the R.T.D 

widens, and the flow describes a plug flow. A high 

dispersion coefficient reveals the decrease of radial 

concentration gradients along the radial direction, 

and flow is well mixed. Kataoka et al. (1977) 

showed that the dispersion coefficient through the 

Taylor Couette configuration becomes independent 

of the molecular diffusion coefficient and increases 

with the imposed axial flow. Their results were 

confirmed later by Enkoida et al. (1989) and Moore 

and Cooney (1995). Pudjioni and Tavar (1993) 

predicted experimentally the dispersion coefficient 

through Couette flow device. For a given flow rate, 

the authors determine a critical Taylor number as a 

function of the dispersion coefficient. Tam and 

Swinney (1987) and Ohmura et al. (1997) carried 

out an experimental study based on the piston 

reactor model to determine the axial dispersion 

coefficient for several flow regimes in Taylor 

Couette configuration. Legentilhomme et al. (1997) 

analyzed the impact of the addition of a phase 

dispersion of microcapsules on the residence time 

distribution of a liquid phase through an annular 

channel. Desmet et al. (1996) showed by the R.T.D 

that the convection dominates in the zone close to 

the separation region between the vortices, while 

the diffusion dominates in the center of the vortices. 

One year later, Campero and Vigil (1997) used a 

similar approach that led to a three parameters 

model to study the non-ideal mixing in the central 

zone of the vortices, as suggested by Desmet et al. 

(1996). Zhu et al. (2000) identify the limits of the 

classical model of non-perfectly stirred reactor. 
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Nemri et al. (2016) carried out a numerical and 

experimental study of the mixing properties of 

several Taylor-Couette flow regimes by using the 

axial dispersion coefficient model and R.T.D 

measurements. They confirmed the significant 

effect of the flow structure on the axial dispersion 

and mixing properties. Among studies using the 

R.T.D for different geometries, we quote Zhang et 

al. (1990), Madeira et al. (2006), Haicheng et al. 

(2022), Gyürkes et al. (2022) and Wang et al. 

(2022). Guo et al. (2018) conducted experimental 

and theoretical study to show the effectiveness of 

the R.T.D for multichannel apparatus. Their results 

show that the R.T.D model is a useful technique for 

the diagnosis of flow distribution non-uniformity 

through multichannel devices. Aparicio-Mauricioa 

et al. (2020) showed that the combination of 

experimental R.T.D with C.F.D modeling is an 

effective approach to understand and visualize the 

hydrodynamic behavior and mass transport.  

The mean age theory is another method, which 

provides the distribution of the average time of all 

particles crossing a given position and estimates 

levels of mixing in different tanks. It received a 

particular interest in the literature, we cite Baleo 

and Cloirec (2000), Bartak et al. (2002), 

Chanteloup and Mirade (2009), Liu and Tilton 

(2010) and Russ and Berson (2016). They used a 

derivative of the mean age theory to characterize 

the flow of oil, water, and air through pipelines to 

characterize the age profiles for each phase. Their 

works showed that the average age could be applied 

to the individual phases. Theaker (2017) compares 

residence time distributions with mean age theory in 

systems by varying the number of stirred tanks in 

series model. Liu (2011) developed a map of the 

spatial mean age distributions as a function of the 

tank diameter, with the objective to identify critical 

parameters influencing the mean age. Among 

studies concerning non-Newtonian fluids, one can 

cite Kaur and Gupta (2022); Kaur et al. (2022); 

Devi and Gupta (2022); Devi et al. (2022) and 

Shukla and Gupta (2022). 

As conclusion, it appears numerical studies 

carried out the residence time distribution in the 

Taylor – Couette system involving Power-law 

non-Newtonians fluids with the presence of an 

axial laminar flow are rare. In our work, a pulse 

injection of a tracer is computed numerically at 

the outlet of the Taylor Couette configuration 

with a radius ratio of 0.5 and an aspect ratio of 8 

as it is shown in the Fig. 1. The inner cylinder is 

rotating while the outer cylinder is maintained at 

rest. Different influencing parameters, such as the 

Taylor number, the axial Reynolds number and 

the power-law index behavior can be reflected by 

R.T.D response curve. The dispersion coefficient 

and the number of stirred tanks to give valuable 

information such as the power law fluid flow 

structure and mixing levels. 

2. GOVERNING EQUATIONS 

The lattice Boltzmann equation for the axial and the 

radial velocity component in the D2Q9 model for  

 
Fig. 1. Physical domain. 

 

axisymmetric, laminar and incompressible flow is: 

Zhou (2011). 

z t r t t

eq

F (z c , r c , t )

F (z, r, t) F (z, r, t) F (z, r, t)

t (z, r, t)

  

   



+  +  +  =

 +  − 

+ +   

(1) 

The lattice Boltzmann equation for the azimuthal 

velocity in the (D2Q4) model is: Zhou (2011) 

z rt t t

r eq

G (z c , r c , t ) G (z, r, t)

1 (2 1)c t
. 1 G (z, r, t) G (z, r, t)

2r

(z, r, t)

  



 



+  +  +  − =

  − 
 + −      

+  

              (2) 

The lattice Boltzmann equation for the 

concentration field in the D2Q4 model is:  

z rt t t

r eqC

C

C (z c , r c , t ) C (z, r, t)

(2 1)c t1
. 1 C (z, r, t) C (z, r, t)

2r

  



 

+  +  +  − =

  − 
 + −      

            

(3) 

F , G and C  are respectively the density, the 

azimuthal velocity and the concentration 

distribution functions. 
eqF , eqG and eqC  are the 

equilibrium distribution functions along α directions 

for respectively the axial and the radial velocities, 

the azimuthal velocity and the concentration field. 

τα ,   and C are respectively the relaxation times 

in the α direction for the flow fields, the azimuthal 

velocity and the concentration.  ,  ,   are 

source terms.  

For D2Q9 LBGK model components of the discrete 

velocity vector are given as follows: Zhou (2011) 

L 

g 

R1 

R2 

d 

w(r) 

T1, 

C1 
T2, 

C2 

z 
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(0,0) 0

( 1) ( 1)
c cos ,sin c 1, 2,3, 4

2 2

( 5) ( 5)
2 cos ,sin c 5,6,7,8

2 4 2 4






 =

  −   −    

=  =    
    

   −    −      + +  =           

(4) 

The expression of the relaxation time τα and the 

equilibrium distribution function 
eqF  are defined as 

Zhou (2011):  

r(2 1)c t1

2 r




 − 
 = +

   
(5) 

( )

eq

2
s

2 2

2 4 2
s s s

p
F (z, r, t)

c

c vc v v
0,1, 2,...,8,

c 2c 2c

 




= 

 
 +  + −  =
 
 

     

(6) 

sc c / 3=  is the sound velocity and ωi are weight 

coefficients given as ωα =4/9, ωα=1/9 for α=1, 2, 3, 

4 and ωα =1/36 for α=5, 6, 7, 8.  

For D2Q4 LBGK model the weight coefficients ωα 
are equal to 1/4, and the discrete velocity vector of a 

particle is given by 

( 1) ( 1)
c c cos ,sin , 1,2,3,4

2 2


−   −  
=  = 

 
    (7) 

The expression of the equilibrium distribution 

functions for the azimuthal velocity in the equation 

(2) and for the concentration in the equation (3) is 

defined as: Zhou (2011) 

jeq

2

s

2c v v
G (z,r, t) 1

4c






  
= + 
  

                                (8)  

eq

2
s

c .v
C (x, t) R .C 1

c



 



 
=  + 

 

                                    (9) 

x tc =    is the sound speed set to the unity, x

and t are respectively the lattice spacing and time 

step and set to unity.  

The relationship between the relaxation time and 

the fluid viscosity ν in the D2Q9 model is: 

x(2 1) / 6 =  −    and for the D2Q4 model is:

( )0.5 0.25 =  − .  

The apparent viscosity of the power-law fluids is: 

( )n 1

a k
−

 = 
                                                   

(10) 

  is the local shear rate, n is the power-law fluid 

index and  k  is the fluid consistency.  

The corresponding dimensionless of the density, 

velocities, and the concentration are obtained as 

follows: 

(z, t) F (z, t)



 = ,
1

v G 



=

 , 

v(z, t) c F (z, t) 



 = , 

C C (z, t)



=  

(11) 

The residence time distribution function noted E(t) 

is calculated at the outlet of the annulus and is given 

as: Wang et al. (2022) 

0

c(t)
E(t)

c(t)dt


=



 

(12) 

The mean residence time tm is considered as the first 

moment of the distribution function and has the 

following expression: Wang et al. (2022) 

m

0

t tE(t)dt



= 
                                                  

(13) 

The variance of the distribution (σ2) corresponds to 

the second moment of the distribution function and 

is given as: Wang et al. (2022) 

2
m

0

2 (t t ) E(t)dt



= −

                                      

(14) 

The number (N) of tanks agitated in series is 

determined by the following relation: Zhang et al. 

(1990) 

2

2

mtN =
                                                               

(15) 

The dispersion coefficient is linked to the Peclet 

number by the following expression: Theaker 

(2017) 

UL
D

Pe
=

                                                               

(16) 

The Peclet number (Pe) is obtained by the following 

expression: Theaker (2017)  

( )
2

Pe

2 2
m

2 2
1 e

Pet Pe

−= − −


                                  

(17) 

 

2.1 Boundary Conditions 

At the entrance of the annulus, the boundary 

conditions for the axial laminar flow are:    
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0 1 3 4 7 8

2 4

5 7 1 3

6 8 3 1

(F F F 2(F F F )) / (1 w(r))

F F (2 / 3) w(r)

F F (1/ 6) w(r) (1/ 2)(F F )

F F (1/ 6) w(r) (1/ 2)(F F )

= + + + + + −

= +

= + − −

= + − −









      (18)
 

Where the velocity profile equation of w(r) is: 

( )
( )

( )
2 2
2 1 2 22

2

R R R1 dp
w(r) ln R R

4 dz ln R

 −      = − − −            
 

     

(19) 

On the outer cylinder, we used the bounce-back rule 

of the non-equilibrium distribution: 

eq eq

1 3 1 3F F (F F )= + −  

eq eq

5 7 5 7F F (F F )= + −  

eq eq

8 6 8 6F F (F F )= + −  

(20) 

On the inner cylinder, all the distribution functions 

were taken equal to their corresponding equilibrium 

distribution functions to prevent slipping condition: 

Zhou (2011) 

eq eqF F , G G= =                                     
(21) 

No mass flux exchanges condition is used for the 

concentration fields on the top, the inner and the 

outer boundaries: Zhou (2011)  

1−
= w

C C
                                                        

(22) 

Where, αw-1 is the nearest mesh layer of the wall. 

At the bottom of the duct, the boundary condition 

for the concentration field is: Khali et al. (2017) 

( )op opw i iC C C= + −  
                            

(23) 

3. NUMERICAL RESULTS 

Due to the complexity of the physical phenomena 

involved in our study, all the calculations were 

carried out by setting the aspect ratio to 8 and the 

radius ratios to 0.5. The axial Reynolds number is 

taken equal to 3 and 6. The Taylor number based on 

the rotating inner cylinder is taken equal to 30, 80 

and 100, which correspond, respectively, to the 

laminar stable regime (C.F.), onset of Taylor cells 

and the laminar instable regime (T.V.F.). The 

power-law index behavior (n) is varied in the range 

0.6 and 1.4. Pseudo-plastics fluids correspond to 

n<1, dilatants fluids correspond to n>1 and n=1 

stands for the Newtonian fluid. 20 lattice nodes in 

the radial direction and 160 nodes in the axial 

direction mesh of the physical domain of the Fig.1. 

In addition, the lattice size is set to 1, and the time 

step is equal to unity. 
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(b) 

Fig. 2. Velocity axial component along the radial 

direction for Ta=120, η=0.8, Γ=14.3, Re=0 and 

4.9. (a): Ta=123 and Re=0, (b): Ta=123 and 

Re=4.3. 

 

As any numerical simulation, a convergence 

criterion of our L.B.M. code is adopted to stop the 

computational process when the following 

convergence criterion is satisfied as reported in 

Khali et al. (2017): 

i, j t t i, j 6

i, j t ti, j

v(x c , t ) v(x , t)
10

v(x c , t )





 

 

−
+ + −


+ +


  

(24)  

Where i, j are the lattice nodes indices. 

Before any use of the present code, a process of 

verification and validation has been conducted. 

First, Fig. 2 shows a confrontation between the 

evolution of the axial velocity along the radial 

direction for Ta= 123 with, and without an imposed 

axial laminar of our present work and the velocity 

profile of Hwang and Yang (2004). It emerges a 

good concordance between our results and those of 

Hwang and Yang (2004) where the mean absolute 

error does not exceed 9.84% for the Fig. 2(a), and 

7.5% for the Fig. 2(b). Second, Fig. 3 presents the 

comparison of the Sherwood number along the 

parameter h(z / D ReSc) with that obtained with 

the correlation reported in Molki et al. (1990) for 

Ta=0, Re=120, η=0.5 and n=1. The result reveals a 

good agreement. Finally, Fig. 4 shows the result of 

a  
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Fig. 3. Distribution of the Sherwood number for 

Ta = 0, Re= 120, η=0.5 and n=1. 
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Fig. 4. Distribution of Sherwood number of 

Newtonian fluid (n=1) for Ta = 100, Re= 120, 

η=0.5. 

 

confrontation of the Sherwood number distribution 

along the parameter h(z / D ReSc)  with that of the 

correlation of 
( 0.451)Sh 5.212 0.432 z −= + . 

Figure 5 illustrates the distribution of the Sherwood 

number for a Newtonian fluid of n=1 along the axial 

direction without an axial flow (Re=0) and for 

Ta=80 and 100. The Sherwood number exhibits 

high values at the entrance of the annulus because 

of the high gradients of concentration. Then, the 

Sherwood number decreases along the length of the 

duct as the boundary layer grow, reducing, 

therefore, the mass transfer intensity. Figure 5 

shows also the effect of the inner cylinder rotation 

on the mass transfer rate. In fact, increasing the 

rotation of the inner cylinder of Ta=100 produces 

the increase of the mass transfer rate. This increase 

occurs due to the presence of Taylor cells in the 

duct. The value of the Taylor number of Ta=100 

reveals a quite different trend. In fact, the Sherwood 

number exhibits a sinusoidal shape. For Ta=80, the 

Sherwood number remains almost constant, 

denoting the dominance of the axial viscous forces, 

due to the axial flow, on the centrifugal forces, due 

to the rotation of the inner cylinder. 

The impact of the fluid rheological behavior on the 

mass transfer rate is illustrated in Fig. 6 for Re=3 

and Ta=100. We note that the rate of mass transfer 

2 4 6 8
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Sh

z/d

 Ta=100
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Fig. 5. Distribution of the Sherwood number for 

the Newtonian fluid (n=1) along the axial 

direction without axial flow (Re=0) and for 

Ta=80 and 100. 
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Fig. 6. Evolution of the Sherwood number for 

n=0.6, n=1, and n=1.4 along the axial direction 

for Re=3 and Ta= 100. 
 

decreases when the power-law index (n) increases, 

attributed to the fluid apparent viscosity increase. 

The Sherwood number shows oscillating shape in 

the axial direction for the pseudo-plastic fluid 

(n=0.6) and the Newtonian fluid (n=1). For dilatant 

fluids (n=1.4) we note that the Sherwood number is 

lower in the annulus due to the dominance of the 

centrifugal forces on the axial viscous forces.  

Figure 7 shows the Sherwood number evolution for 

a Newtonian fluid (n=1) for different values of the 

axial Reynolds number and a Ta= 80. We note 

Taylor cells disappear in the annulus when the axial 

Reynolds number increases. Without an axial flow 

(Re=0), Taylor cells are present in the annulus and 

the Sherwood number exhibits a sinusoidal form in 

the area where these vortices extend. The increase 

in the Reynolds number has damping effects on the 

Taylor vortices growth and, therefore, it reduces the 

mass transfer rate in the channel.  

The evolution of the residence time distribution for 

a dilatant fluid of n=1.2 for Ta=30 and for Re=3 

and 6 is shown in Fig. 8. We note that the curve’s 

peak of the residence time distribution is higher 

when the axial Reynolds number is equal to 6.  

The peak residence time increases when  

the axial viscous forces increase and prevails on the  
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Fig. 7. Evolution of the Sherwood number for 

Newtonian fluid (n=1) for different values of the 

Reynolds number along the axial direction for 

Ta= 80. 
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Fig. 8. Evolution of the residence time 

distribution for two values of Reynolds number 

(Re=3 and 6) for Ta=30 and n=1.2. 

 

centrifugal forces in the annulus, leading to a low 

level of mixing in the duct.   

The Fig. 9 illustrates the resident time distribution 

for a dilatant fluid of n=1.2 for two values of the 

Taylor number (80 and 100) and Re=3. We note 

that the peak of the R.T.D curves decreases with the 

increase of the Taylor number due to the presence 

of Taylor cells in the annulus. In addition, for 

Ta=80 we observe the dominance of the axial 

pressure gradient on the centrifugal forces and as a 

result, the tracer enters and leaves more rapidly than 

for Ta=100 where the flow exhibits a T.V.F. 

regime. As a result, the flow is well mixing for 

Ta=100 than Ta=80.  

Figure 10 shows the combined effect of the Taylor 

and axial Reynolds numbers on the mean residence 

time as a function of the power-law index fluid 

behavior (n). The variation of the mean residence 

time shows an increase with the power-law index 

(n) before experiencing a decrease after reaching a 

maximum value for pseudoplastic fluids (0.8 < n < 

0.9). For Re=3 in Fig. (10a), we note that the mean 

residence time is slightly higher for a lower Taylor 

number for fluids belonging to the pseudoplastic 

family because; the axial flow dominates the 

secondary flow generated by the inner cylinder  
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Fig. 9. Evolution of the residence time 

distribution of a dilatant fluid (n=1.2) for Ta=80, 

Ta=100 and Re=3. 
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Fig. 10. Evolution of the mean residence time for 

different values of n for Ta=30 and 80. (a): Re=3, 

(b) : Re=6 . 
 

rotation. For Re=6 (Fig. 10b) the opposite trend is 

observed for pseudo-plastics fluids for Ta= 30 and 

Ta=80 while for dilatants and Newtonian fluids the 

mean residence time is almost the same. 

Figure 11 shows the evolution of mean residence 

time as a function of the power-law index (n) for 

Ta= 80. We notice that Tm is 2.5 times higher for 

Re=3 than for Re=6. When Re=3, the flow 

structure is characterized by the presence of Taylor 

cells surrounded by an axial lines flow, which 

increases the residence time of the tracer crossing 

the duct. Unlike for Re=6, the cells disappear, 

which  shortens the path  experienced  by the tracer  

(b) 
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Fig. 11. Evolution of the mean residence time as 

a function of the power-law index (n) for Re=3 

and 6 and Ta= 80. 

 

reducing, therefore, the mean residence time too. In 

addition, for constant values of the Taylor number, 

both of the axial Reynolds number values and the 

mean residence time is less sensitive to the power 

law index (n). 

Figure 12 illustrates the distribution of the residence 

time distribution of different rheological power-law 

fluids for Ta=80 and Re=3. We notice that the area 

under the curves of the residence time distribution 

increases when the power-law index (n) increases. 

In fact, increasing n leads to the higher apparent 

viscosity of the fluid, thereby reducing the axial 

viscous forces, which allows the Taylor cells to 

grow in size and gain in intensity. Thus, when n 

increases, gradients of the concentration increase 

along the radial direction and leading to higher 

levels of mixing.  

Figure 13 shows residence time distributions for 

different radius ratios for Ta=100, n=1.2, and Re=3. 

We note that when the radius ratio increases, the 

peak value of the R.T.D curves increase in the 

annulus. In fact, the increase of the radius ratio 

reduces the annular gap, lowering thus the 

centrifugal force intensity, and as a result, the 

Taylor cells vanished in the duct for the higher 

value of the radius ratio and the flow tends to non-

mixing.  
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Fig. 12. Evolution of the residence time 

distribution of different rheological fluids for 

Ta=80 and Re=3. 
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The Fig. 14 shows the variation of the number of 

tanks in series (N) versus the rheological power-law 

index (n) for Ta=100 and for both values of the 

axial Reynolds number, Re=3 and 6. The number 

(N) of tanks-in-series is a model that is used to 

quantify levels of mixing. From the Fig. 14, we note 

that N increases and exhibits a similar trend that 

observed for Tm in the Fig. 10. In addition, when 

the power-law index increases, pseudoplastic fluids 

(n<1) require higher N indicates a lower level of 

mixing while dilatant fluids (n>1) need a less 

number of N which indicates a higher level of 

mixing. 
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stirred tanks in series for a dilatant fluid (n=1.2) 
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Figure 15 illustrates the evolution of the dispersion 

coefficient (D) as a function of the power-law index 

(n) for Re=3 and Ta=80. The dispersion coefficient 

approach quantifies the non-ideal mixing and 

indicates the radial flow in the duct. A larger 

dispersion coefficient points to better mixing and 

lower dispersion coefficient suggesting a plug flow 

within the system. From the Fig. 15, we note that 

the dispersion coefficient decreases and exhibits a 

decreasing trend in the range of n between [0.6 and 

0.9] with a minimal value about n=0.9. In addition, 

the dispersion coefficient is higher for a high axial 

Reynolds number. To further increase of the power-

law index (n), we observe that the dispersion 

coefficient increases because of the higher apparent 

viscosity of the power-law fluid. As a result, when n 

increases, concentration gradients decrease along 

the radial direction consequently, the axial 

dispersion coefficient increases in the channel. 

Thus, high values of the dispersive coefficient 

correspond to a good mixing of dilatant fluids and 

non-ideal mixing of pseudoplastic fluids in the 

annulus. Similar results have been found in the form 

of tanks in series (N) in the Fig. 14.  

Figure 16 illustrates the dispersion coefficient as a 

function of the radius ratio for different theological 

index behavior (n) for Ta=100 and Re=3. For a 

pseudoplastic fluid of n=0.6 the Fig. (16a) shows 

that the dispersive coefficient exhibits its lowest 

value for η=0.6. Above this value of the radius 

ratio, the axial dispersion coefficient increases 

indicating, thus, the good mixing increases for this 

kind of fluids. For the Newtonian fluid of n=1 in the 

Fig. (16b), the dispersion coefficient remains almost 

constant when the radius ratio increases above 

η=0.6. This behavior reveals that the mixing is not 

affected by the variation of the radius ratio. For the 

dilatant fluid of n=1.2 as illustrated in Fig. (16c), 

the dispersive coefficient decreases monotonically 

when the radius ratio (η) increases, reducing thus 

the mixing. Finally, for n=1.4 we note that the 

dispersion coefficient is higher for lower radius 

ratio and decrease when (η) increases.  

5. CONCLUSION 

In this study, we performed a numerical analysis 

based  on   the   Lattice   Boltzmann   method  to  
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Fig. 15. Evolution of the dispersive coefficient for 

different fluids for Re=3 and Ta=80 
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determine the effect of the power-law fluids flow 

structures on levels of mixing between two 

concentric cylinders where the inner cylinder is 

rotating while the outer cylinder is maintained at 

rest with an imposed laminar axial flow. A pulse 
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input injection of a tracer was computed at the 

outlet of the annulus. The residence time 

distribution and the mean residence time were used 

to determine the number of tanks in series and the 

axial dispersion coefficient to evaluate levels of 

mixing. As a main objective of this study, is to 

analyze the effect of the flow structure of a power-

law fluid between two concentric cylinders on the 

mixing level and mean residence time in a Taylor- 

Couette system. The novelty of our work is the use 

of power-law fluids as particles-carrying fluids. The 

obtained results showed that the peak of the 

residence time distribution increases when the axial 

viscous forces increase and prevail on the 

centrifugal forces in the annulus, leading to a low 

level of mixing in the annulus. The axial flow with 

Re=3 dominates the secondary flow generated by 

the inner cylinder rotation for Ta=30 and, as a 

result, the mean residence time is slightly higher for 

fluids belonging to pseudoplastic family. For Re=6, 

the opposite trend is observed for pseudo-plastics 

fluids. For Re=3 and Ta=80 the area under curves 

of the residence time distribution increase when the 

power law index (n) increases leading to higher 

levels of mixing in the annulus. For Ta=100 and for 

both values of Re=3 and 6, when the power-law 

index increases, the number of stirred tanks in series 

(N) increases for pseudoplastic fluids family (n<1) 

indicating a lower levels of mixing and it decreases 

for dilatant fluids family (n>1) indicating a higher 

level mixing.  For Ta=80 and Re=3, the increase of 

the power law index for pseudoplastic fluids leads 

to the decrease of the dispersion coefficient 

indicating the non-ideal mixing and for further 

increase of the power law index for dilatant fluids 

leads to the increase of the dispersion coefficient 

indicating the well mixing for dilatant fluids. 
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