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ABSTRACT 

Wind energy is a renewable energy source that has grown rapidly in recent decades. This energy is converted 

into electricity using advanced INVELOX wind turbines. However, the wind velocity is critical, and 

predicting this velocity in real-time is challenging. As a result, a deep learning (DL) model has been 

developed to predict the velocity in advanced wind turbines using a novel enhanced Long Short-Term 

Memory (LSTM) model. The LSTM enhancement is executed by employing the Black Widow optimization 

with Mayfly optimization in the Python platform as application software. The dataset has been prepared using 

Ansys Fluent fluid flow analysis. In addition to that, the wind turbine power generation was computed 

analytically. A subsonic wind tunnel test is also performed by employing a 3-Dimensional printed physical 

model to validate the simulation dataset for this innovative design. The proposed MFBW-LSTM model 

(Enhanced LSTM with BWO and MFO) predicts efficiently, with an accuracy of 95.34%. Furthermore, the 

performance of the proposed model is compared to LSTM, BW-LSTM, and MF-LSTM. Accuracy, MAE, 

MAPE, MSE, and RMSE are among the performance criteria the proposed DL model achieves efficiently. As 

a result, the proposed DL model is best suited for velocity prediction of an Advanced INVELOX wind turbine 

in various cross sections with high accuracy. 

 

Keywords: Deep learning; Advanced INVELOX wind turbine; Long short-term memory; Black widow 

optimization; Mayfly optimization; Python; Velocity prediction. 

NOMENCLATURE 

BOA  Black Widow Optimization Algorithm PLA Poly Lactic Acid Material 

BW-LSTM Enhanced LSTM with BWO MAE Mean Absolute Error 

CAD Computer-Aided Design 
MAPE Mean Absolute Percentage 

Error 

CFD Computational Fluid Dynamics MOA Mayfly Optimization Algorithm 

DL Deep Learning MF-LSTM Enhanced LSTM with MFO 

DAWT Diffuser Augmented Wind Turbine 
MFBW-LSTM Enhanced LSTM with BWO 

and MFO 

FDM Fused Deposition Modeling RMSE Root Mean Square Error 

GUI Graphical User Interface RNN Recurrent Neural Network 

LSTM Long Short-Term Memory 
SST K-Ꞷ Shear Stress Transport K-Ꞷ 

model 

 

1. INTRODUCTION 

Wind energy is abundant, pollution-free, locally 

available, and renewable (Shahbazi et al. 2019). 

The stochastic nature of the wind is a continual 

difficulty for the wind power generation industry; 

therefore, the prediction of power is incertitude 

(Zhu et al. 2021). Nowadays, wind energy is the 

fastest-growing energy source in the world due to 

freely existing unlimited wind and ecological ways 

to make electricity (Guo et al. 2019). According to 

the developed mean wind speed data, wind energy 
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rises in winter and reduction in fall (Ohba 2019). 

Many fields, including meteorology, environmental 

science, and aerospace, are critical for measuring 

wind velocity. This wind speed is transformed into 

wind power with the help of wind turbines and the 

predictions of the wind velocity are examined using 

the Neural Network model (Allison et al. 2019). 

There are many wind speed forecasting methods 

have been developed. Physical laws and 

meteorological parameters are utilized by the 

physical approaches to construct mathematical 

models for predicting wind power. These 

approaches need a significant computational time 

which is not appropriate for short-term prediction. 

Deep learning, isolated forest, and enhanced models 

are used to predict wind power (Zi et al. 2020). 

Machine learning models in the wind speed series 

are powerful, with excellent generalization 

competence to simulate dynamic behavior (Allison 

et al. 2020). Artificial neural network (ANN), 

Elman neural network (ENN), Support vector 

machine (SVM), and Autoregressive moving 

average model (ARMA) are more advanced models 

(Li et al. 2021). Traditional machine learning 

models predict the wind speed using a single or 

multiple data sets. These methods are frequently 

applied for the precise tendency wind speed data. 

Moreover, with the growth of deep learning models, 

they are increasingly used for the wind speed 

prediction problem (Liu et al. 2018). To study the 

forecasting problem, commonly used deep neural 

networks are LSTM, restricted Boltzmann machine 

(RBM), auto-encoders, and the convolutional neural 

network (CNN) (Liu, Y. et al. 2020).  

DAWT is used to harvest more power from the 

source. Also, due to low-pressure regions, flanged 

DAWT draws more wind through rotors than a bare 

wind turbine (Alpman 2018). As a result, the 

diffuser's attainable wind speed in DAWT is 

enhanced to generate high power output (Khodayar 

and Wang 2018). Furthermore, the INVELOX 

(increased velocity) wind turbine captures the wind 

from all directions and accelerates it with good 

turbine efficiency (Allaei and Andreopoulos 2014). 

Moreover, various INVELOX models with venture 

design and their velocity contours were examined 

by CFD (Gohar et al. 2019). As a result, the 

Advanced INVELOX design used a novel 

prediction model to predict the Velocity in different 

areas. Here, the enhanced LSTM is employed for 

the prediction process, and the LSTM is upgraded 

using Black widow optimization with the Mayfly 

optimization algorithm. Moreover, the power 

calculation is also performed by applying the wind 

turbine power estimation equation.  

This article is systematically arranged as follows, 

section 2 analyses the research articles; section 3 

discusses the research gaps in the surveyed articles; 

section 4 explains the proposed model and 

methodology of the system; section 5 describes the 

results obtained from the implementation process, 

performance evaluation, and comparative analysis; 

and the final section concludes this work.  

2. LITERATURE SURVEY 

Wind power can be predicted using a high-

frequency SCADA (Supervisory Control and Data 

Acquisition) database with a 1-s sampling rate 

developed by a deep-learning neural network. Input 

features were constructed based on the physical 

process of offshore wind turbines, and its linear 

relationship was explored using Pearson product-

moment correlation coefficients. The non-linear 

correlations were examined utilizing DL approaches 

(Lin and Liu 2020).The training-based method was 

developed for wind turbine blade stiffness 

prediction under fatigue testing using time series 

stiffness data. The residual stiffness of the blade 

fatigue life related to fatigue testing is found by 

combining the ancient fatigue data with a deep 

learning algorithm incorporating a long-short term 

memory network, hybrid network, and 

convolutional neural network (Liu, H. et al. 2020). 

The hybrid principal component analysis method 

(PCA) and deep learning explain hidden patterns in 

wind data and estimate wind power. 

Moreover, a Tensor Flow procedure employs an 

optimized deep learning algorithm to predict wind 

power from important characteristics precisely 

(Khan et al. 2019). The new short-term wind speed 

prediction model investigated relies on an error 

correction strategy, deep learning algorithm, and 

double ensemble. To decay the exact wind speed 

series, the entire ensemble decomposition of 

empirical mode with variational and adaptive noise 

decomposition is proper. The long-term and short-

term memory features were found, and the 

appropriate prediction model for each sub-series 

was created using a long short-term memory neural 

network (Ma et al. 2020). An EEL (ELM, ENN, 

LSTM) - ELM is a two-layer nonlinear combination 

method established for short-term wind speed 

prediction issues. The initial layer focuses on Elman 

neural network (ENN), long short-term memory 

neural network (LSTM), and extreme learning 

machine (ELM) to individually predict wind speed 

by creating their merits of estimation speed (Chen et 

al. 2019).  

A new hybrid strategy for multi-step ahead wind 

speed forecasting is observed based on a weighted 

regularized extreme learning machine (WRELM), 

three-phase signal decomposition (TPSD), and 

feature extraction (FE). The TPSD is suggested for 

the first time to regulate the complex and irregular 

natures of wind speed, and it includes fast ensemble 

empirical mode decomposition (FEEMD), 

variational mode decomposition (VMD), and 

seasonal separation algorithm (SSA) (Wang et al. 

2018). Hybrid intelligent learning is studied based 

on an adaptive neuro-fuzzy inference system 

(ANFIS) for online estimation of effective wind 

speed from instant values of tip speed ratio (TSR), 

rotor speed, and mechanical power (Asghar and Liu 

2018).Various combinations of recurrent Kalman 

filter (RKF), wavelet neural network (WNN), 

artificial neural network (ANN), and Fourier series 

(FS) are used for wind power and wind speed 

prediction (Aly 2020). To boost the accuracy  
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Fig. 1. Process flow structure of the proposed DL model. 

 

of predicting the short-term wind speed, a hybrid 

wind speed prediction model is elucidated based on 

wavelet transform (WT), crow search algorithm 

(CSA), feature selection (FS) depending on entropy 

and mutual information (MI), and deep learning 

time series prediction depending on Long Short-

Term Memory neural networks (LSTM) 

(Memarzadeh and Keynia 2020). Wind power is 

forecasted using Bi LSTM-CNN, and the results are 

compared to deep learning approaches such as Bi-

LSTM, CNN, and LSTM-CNN (Hao et al. 2020). 

3. LITERATURE GAP 

The preceding section explored various methods for 

predicting wind velocity in turbines. Although the 

methodologies presented above perform well in 

prediction, several research gaps will be addressed 

in future studies. The proposed CNN-LSTM was 

shown to be efficient and capable of predicting from 

the raw stiffness data. Still, the required prediction 

level needs to be met an insufficient data sample 

(Liu et al. 2020). The proposed PCA with DL 

neural network technique attained a better accuracy 

level in the prediction process. The acquired 

findings needed fine parameter adjustment (Khan et 

al. 2019).  

CEEMDAN and VMD techniques are used to 

increase the effect of the error correction approach. 

Still, an evolutionary algorithm's attained result 

accuracy is not the best result (Ma et al. 2020). 

Therefore, EEL-ELM can achieve better prediction 

performance. Still, an evolutionary algorithm's 

attained result accuracy is not the best result (Chen 

et al. 2019). The intended ANFIS was executed to 

forecast the values. But the required degree of 

accuracy was not attained (Asghar and Liu 2018). 

The section above outlined the various approaches 

utilized in wind speed prediction. The above-

discussed methods can be used in the prediction of 

the velocity of the wind. However, several research 

gaps are indicated in future works. 

4. PROPOSED METHODOLOGY 

This section discusses the proposed model for 

predicting the wind velocity and power calculation 

for Advanced INVELOX Wind Turbine. For the 

prediction process, the proposed model combines 

enhanced LSTM with improved BOA, which is 

augmented by employing MOA, and a power 

equation is utilized for power determination. Figure 

1 depicts the workflow of the proposed work. 

 

4.1 Data Acquisition 

The data for this task is collected from the Ansys 

Fluent study of the proposed Advanced INVELOX 

wind turbine. Firstly, the model is created in 

Solidworks software using the proposed Advanced 

INVELOX design, also called as Integrated Omni-

directional Intake funnel, Natural fan, Straight 

diffuser, Splitter, and Flange (I2NS2F) model, and 

its critical dimensions are illustrated in Fig. 2. The 

CAD geometry is then transferred to Ansys Fluent 

for fluid flow analysis. The grid consistency test is 

conducted for three different grid densities to 

determine the optimum grid size such that the 

solution is consistent regardless of the grid. A free 

stream velocity of 5.5m/s is considered at the inlet. 

Because of the usual environmental conditions, the 

ambient pressure is assumed at the intake hopper 

and exit splitter. Also, a medium-turbulence (5%) is 

suggested for this simulation study (Ramesh and 

Selvaraj 2023). A pressure-based solver was used 

due to its adaptability for a wide range of flow 

phases (Sorribes-Palmer et al. 2017). The SST K-Ꞷ 

turbulence model was employed in this 

investigation. It is more accurate and efficient for 

airfoils, adverse pressure gradient flows, nearby 

walls, and faraway regions. Furthermore, by 

including transport effects in the eddy-viscosity 

formulation, this model accounts for the transit of 

turbulence kinetic energy and gives accurate  
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Fig. 2. Critical dimensions of Advanced 

INVELOX wind turbine. 

 

estimates of the beginning and extent of flow 

separation under detrimental pressure gradients 

(Kosasih and Hudin 2016). 

 The velocity contour obtained from the flow study 

is illustrated in Fig. 3. The flow simulation is 

performed for various input velocities, and the 

results are attained at different cross-sectional areas 

of the Inlet hopper, Natural fan, Convergent section, 

Turbine entry, Turbine exit, Divergent section, and 

Exit splitter (Ramesh and Selvaraj 2023). The 

power law velocity profile equation is utilized for 

the velocity estimation, and it is derived below, 

v(h) = vref (
h

href
)

∝
                                 (1) 

Where v(h) represents the velocity at height ℎ, vref 

represents the input velocity, h represents the height 

of vertical ordinate, href represents the height at 

reference area, and ∝ is the tuning parameter 

generally set to 1/7. Furthermore, the obtained 

values are noted as a dataset for the velocity 

prediction process, and these data are sent to the 

enhanced LSTM network. 

 

 
Fig. 3. Flow analysis velocity contour.  

4.2 Data Validation  

The experiment data for this DL model is measured 

from the wind tunnel testing of a 3-Dimensional 

printed miniature model of the Advanced 

INVELOX wind turbine. Due to the limited 

dimensions of the wind tunnel test section and the 

enormous blockage, testing real-scale wind turbine 

systems with massive rotors in a wind tunnel is 

usually impossible. Therefore, the Advanced 

INVELOX design is scaled down for 3D printing 

based on tunnel blockages (Howell et al. 2010).   

 

4.2.1 3D Printing of Physical Model 

The method of creating 3D physical models from 

digital files is known as 3D printing. First, a 3D 

model was created in Solidworks CAD software 

and converted to the STL (Stereolithography) file 

format. Then, printing layers of a particular material 

manufacture the entire design on top of one another 

by the FDM technique. This is one of the fastest 

processes for producing complex products in the 

shortest time without using complicated 

manufacturing processes or large machines.PLA 

materials were chosen for use with the 3D printed 

wind turbine model described herein because of its 

low cost, high availability, reliability, and limited 

printer needs. (Bassett et al. 2015). The 3D 

manufactured product for wind turbine design in the 

Ender 3D printing FDM machine is shown in Fig. 4. 

 

4.2.2 Wind Tunnel Testing 

Geometric scaling is considered in this design for 

subsonic wind tunnel testing (Manwell et al. 2009). 

Scaling is done by the available wind tunnel testing 

facilities. 3D printed miniature physical model is 

 

 

Fig. 4. 3D printed physical model. 
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Fig. 5. Experimental setup in Wind tunnel 

Layout. 

 

 
Fig. 6. Wind power estimation for various wind 

speeds at Wind tunnel Layout. 

 

placed in the 300mmX200mmX1000mm of the test 

volume, as indicated in Fig. 5. The wind tunnel was 

operated at multiple speeds. All input and critical 

section venturi plane velocity results were taken 

using an Equinox digital anemometer for each 

speed increase. The velocity at the test ports were 

measured, and wind power was plotted for three 

different input wind speeds, as shown in Fig. 6. 

As a result, the Advanced INVELOX design 

achieved a venturi section wind speed of 26m/s for 

5m/s input wind speed in the wind tunnel. When 

compared to the numerical simulation, there is 

approximately 37% variation. However, it achieved 

a closer result with theoretical computations. 

Scaling down rotating machinery always results in 

efficiency losses, which can be expected (Deam 

2008; Akour and Bataineh 2019). 

 

4.2.2 Long Short-Term Memory (LSTM) 

LSTM network is the advanced model of RNN 

because it cannot retrieve long-term memories. 

However, LSTM can store long-term and short-term 

data with the help of a memory cell unit. Moreover, 

the LSTM operates on three gates; the input gate, 

the output gate, and the forget gate. First, the input 

gate feeds the past and present timeline data to the 

hidden layer. Next, forget gate was performed, and 

attained the necessary data for further process.  

tanh

σ 

 
Fig. 7. Block diagram for the LSTM. 

 

Finally, the output gate stores the current data and 

feeds it into the additional layer. As illustrated in 

Fig. 7, the memory cell in the block is governed by 

the presented gates. 

Let us consider the input sequence as (a1, a2, … , an) 

and the hidden layer state is regarded as 
(m1, m2, … , mn), therefore the equations for 

estimating each gate function values at time t are 

given below, 

xt = σ(sxkt−1 + uxat)                                                (2) 

gt = σ(sgkt−1 + ugat)                                (3) 

Rt = gt × Rt−1 + xt × tanh(sRkt−1 + uRat)      (4) 

pt = σ(spkt−1 + upat + vpRt)                (5) 

kt = pt × tanh (Rt)                                (6) 

Where xt represents the input value, kt−1 denotes 

the output of the previous layer, at designates the 

current input at time t, gt represents the forget gate 

value, Rt denotes the memory cell, and pt specifies 

the output gate value. In addition to that, kt 

represents the output of the block, and s, u, and v 

express the weight bias. Here, σ and tanh are taken 

as the activation function.  

 

4.2.2 Black Widow Optimization Algorithm 

(BOA) 

BOA is based on the principle of the black widow 

spider’s lifestyle. The spider’s mating process is 

considered for the optimization process. The female 

spider commences the mating process by locating 

the precise place of her net using a pheromone to 

impress the male spider. The first one is sexual 

cannibalism which is offered to the fitness value of 

the male and female spider populations. Next is 

sibling cannibalism, which is used to increase the 

cannibalism rates by keeping the fittest young 

spiders in the population while rejecting others. The 
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third type is utilized based on the fitness value of 

the young spiders and the mother spider.   

The black widow optimization process begins with 

a random initial black widow population. This 

random population includes female and male black 

widows for producing offspring for the next 

generation. The initial population of a black widow 

is defined in the equation, 

XN,d =  [x1,1x1,2x1,3 … … x1,d]                              (7) 

Where XN,d denotes the black widowpopulation, d 

denotes the number of decision variables, 

Nindicates the population number, and ub 

represents the upper bound of the population. By 

using potential solution population (XN,d) to 

maximize or minimize the objective function and it 

is defined as,  

Objective Function = f(XN,d)                                (8)  

In the BWO model, numerous predefined 

parameters are specific such as Qpt, Qe, RP,RE,Ωts, 

Ωes, Ωer, 𝑎𝑛𝑑 Ωsr, which are determined in the 

above section. Those parameters show the upper 

and lower bounds of Pe and Ps. 

QE−PptΩts

Ωes
 is the lower bound of Pe, 

QP−Pe.maxΩer

Ωes
 is 

the upper bound of Pe, 
QP−(QE−PptΩts)Ωer/Ωes

Ωsr
  is the 

upper bound of Ps and 
QP−Pe.maxΩer

Ωsr
  is the lower 

bound of Ps. The black widow mutation will be 

optimized in this stage, where the mutation rate is 

employed for selecting a young spider. A small 

random value is added to a determined young spider 

for the mutation process. 

Zk,d = Υk,d + α                                                      (9) 

Where Zk,d denotes the mutated population of black 

widows,Υk,drepresents the randomly selected young 

spider, k indicates the randomly selected number, 

and αdesignates the random mutate value. 

 

4.2.3 Mayfly Optimization Algorithm (MOA) 

MOA is developed by combining genetic algorithm 

(GA), Particle swarm optimization (PSO), and 

Firefly Algorithm. This algorithm is performed 

based on the mating behavior of both male and 

female Mayflies. The male and female populations 

are initialized as x = [x1 , … , xd] and 𝑦 =
[y1, … , yd], respectively. These populations are used 

to find the candidate solution for the d-dimensional 

vector. The MFO objective function is depicted 

below, 

FF = Optimal learning rate                              (10) 

Furthermore, by utilizing the below equation, the 

corresponding velocity is calculated, 

v = [v1, … , vd]                                              (11) 

Here, f(gbest) represents the global best position, 

which is used to update the next iteration and 

calculate the cartesian distance between the global 

best agent gbest and the personal element. This 

statement is described by the equations below. 

xi
t+1 = xi

t + vi
t+1                                              (12) 

 vij
t+1 = vij

t + a1e−βrg
2
(gbestj − xij

t ) +

a2e−βrp
2

(pbestij − xij
t )                              (13) 

Where, 

xij
t => At the current iteration t, the agent i in 

dimension j,   

vij
t =>Velocity, 

a1 => Global learning coefficient, 

a2 => Personal learning coefficient, 

rg => Cartesian distance for global,  

rp => Cartesian distance for personal, 

Furthermore, the finest agent’s velocity for the 

current iteration is computed by applying the 

following equation, 

vt+1 = vt + d × r                                              (14) 

Where, 

d => Nuptial dance,  

r => Random variable located in [-1,1]. 

The female Mayfly's movement velocity is then 

updated using the following equation, which is 

determined by accounting for the Cartesian distance 

between male and female Mayflies. 

vij
t+1 = {

vij
t + a3e−βrmf

2
(xij

t − yij
t ),    if f(yi) > 𝑓(xi)

vij
t + fl × r,    if f(yi) ≤ f(xi)

      

                                                                             (15) 

Where, 

y => Female agent, a3=> Learning coefficient, 

β => Distance sight coefficient, 

rmf=> Cartesian distance between the female and 

male agent. 

Following this assessment, the best female Mayfly 

selected the best male Mayfly for mating to produce 

offspring. A fraction of the created offspring is 

male, while the remaining are female. Finally, the 

weak solution is substituted by the best solution, 

reiterating the process until the desired best solution 

is attained. 

 

4.3 Proposed Enhanced LSTM 

This section explores developing the proposed 

enhanced LSTM for the velocity prediction process. 

Firstly,  LSTM  initializes  the  parameters  for the  
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Fig. 8. Flowchart for the proposed DL Model. 

 

input dataset and estimates the gate values as per 

the equations (2-6). The fitness value for the 

initialized parameters is then computed via BOA. 

BOA randomly initializes the population by 

utilizing equation (7). The objective function of the 

BOA is depicted in equation (8). The BOA uses 

equation (9) to perform the mutation process. The 

population is selected. As a result, this process and 

the fittest parameter are moved to the prediction 

process, while the parameters not being fit are 

moved to the MOA. The objective function of the 

MOA is estimated using equation (10) in this case. 

Then, the male and female Mayfly populations are 

initialized based on the parameters not being fit. 

The optimal parameter is selected from the 

initialized population. BWO then executes the 

process of estimating fitness values. This is an 

iterative process that continues until the optimal 

parameters are obtained. After attaining the optimal 

parameters, the velocity prediction process is 

performed. Once the velocity is predicted, the 

output value is fed to the performance evaluation. 

Then, the velocity value is taken for the calculation 

of power in each cross-sectional area of the 

proposed Advanced INVELOX wind turbine. The 

power is thus calculated by utilizing the below-

derived formula, 

p =
1

2
ρ × A × NW × NG × NT × v3            (16) 

Where power is represented by P, wind density is 

denoted as ρ. The cross-sectional area is denoted as 

A,  the whirlpool loss factor is defined as NW, the 

efficiency of the generator is expressed in NG, the 

efficiency of the turbine is expressed in NT, and the 

velocity of the wind is defined as V. The flow chart 

for the proposed deep learning model is illustrated 

in Fig. 8. 

5. RESULTS AND DISCUSSION 

This section presents the wind speed forecasting 

and wind power calculation findings for the 

advanced INVELOX wind turbine. MFBW-LSTM 

performs wind speed forecasting. Python 3.8.11 is 

used to develop the implementation program in the 

experimental process with the system configuration 

of the i3 9th generation intel core processor, 8GB 

RAM, and CPU speed of 3.6GHz. In the following 

section, the results of wind speed prediction and 

wind power generation are discussed and analyzed 

(Bekir and Resat 2019). 

 

5.1 Wind speed forecasting and power 

calculation 

During the implementation process, a GUI is 

developed in Python programming for the proposed 

DL model, which includes an input bar for 

obtaining the results based on the respective input 

value. The GUI output of wind speed and power for 

an input velocity of 5.5m/s is illustrated in Fig. 9. 

This proposed model can accept input values 

ranging from zero to 53m/s. It also displays a list of 



K. Ramesh Kumar and M. Selvaraj /JAFM, Vol. 16, No. 6, pp. 1256-1268, 2023.  

 

1263 

 
Fig. 9. GUI of developed application software for the proposed methodology. 

 

Table 1 Plane label list of Advanced INVELOX Wind Turbine. 

 

 

 
Fig. 10. Plane location at Flow analysis velocity 

contour.  

velocity, label, and power values based on the 

input value. The plane details for various cross 

sections of the turbine system are given in 

Table 1, and their location in the design is 

shown in Fig. 10. (Few Planes are hidden for 

best visibility purposes).  

The above graphs (Figs. 11 and 12) illustrate 

the power and velocity fluctuation for input 

velocity values of 5m/s and 7m/s. Here, the x-

axis indicates the axial diffuser length denoted 

by the label shown in Table 1, while the y-axis 

indicates the power and velocity values. The 

variation of power and velocity are depicted in 

orange and blue colors, respectively. 



K. Ramesh Kumar and M. Selvaraj /JAFM, Vol. 16, No. 6, pp. 1256-1268, 2023.  

 

1264 

Fig. 11. Power and velocity variation on plane 

labels for input velocity 5 m/s. 

 

Fig. 12. Power and velocity variation for input 

velocity 7 m/s. 

 

The wind power generation along the various axial 

locations of the Advanced INVELOX design is 

presented in Fig. 13 for 5m/s, 7m/s, and 9m/s. 

These graphs are proved that the power and velocity 

values are higher in the turbine entry area. 

Moreover, the performance evaluation was also 

conducted to validate the accuracy and error levels 

of the proposed DL model. 

 

5.2 Performance Evaluation 

The proposed MFBW-LSTM is validated using 

performance matrices like Accuracy, Loss, MAE, 

MAPE, MSE, and RMSE (Hao, W. et al. 2020). 

The formulae used to assess these performance 

matrices are presented below,   

Accuracy (A) =
True Positive (TP)+True Negative (TN)

Total Samples
  

(17) 

MSE =
1

n
∑ (yt − ỹt)2n

t=1                              (18) 

MAE =
1

n
∑ |yt − ỹt|N

t=1                               (19) 

RMSE =√
1

n
∑ (yt − ỹt)2N

t=1                               (20) 

Fig. 13. Wind power production for the various 

input wind speed. 

 

 
Fig. 14. Graphical representation for the 

accuracy of the proposed technique. 

 

MAPE =
100%

n
∑ |

yt−ỹt

yt
|n

t=1                               (21) 

Where, 

TP =>Model correctly predicts the presence of a 

condition or positive class, 

TN =>Model correctly predicts the absence of a 

condition or negative class, 

n => Number of samples taken, 

yt=> Measured wind speed, 

 ỹt=> Predicted wind speed. 

The acquired accuracy for the proposed MFBW-

LSTM is 95.34%, as illustrated in Fig. 14. The 

epoch value is set as 100 for the implementation 

process. Fig. 15 reveals that the proposed technique 

has an MAE of 26.08% at the 100th epoch. 

Similarly, the MAPEobtained for the proposed 

model is graphically verified in Fig.16. which 

indicates that it is 28.22% at the 100th epoch. Fig. 

17 depicted the MSE for the proposed technique at 

the 100th epoch as 22.11%. In addition, Fig. 18 

verified the RMSE of the proposed method and is 

obtained as 18.09 % at the 100th epoch for this 

technique. Therefore, as per the performance 

estimation, the proposed MFBW-LSTM DL model 

can predict wind velocity in advanced INVELOX 

wind turbines. 
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Fig. 15. Proposed technique – MAE. 

 

Fig. 16. Proposed technique – MAPE.

Fig. 17. Proposed technique – MSE. 

Fig. 18. Proposed technique – RMSE. 

 

 

Fig. 19. GUI of Application software: Predicted velocity for the comparative analysis. 

 

5.3 Comparative Analysis 

This section provides the comparative analysis 

between the implemented MFBW-LSTM, LSTM, 

BW-LSTM, and MF-LSTM. The findings are 

summarized in Fig. 19 for an input velocity of 

5.5m/s. The application software developed in 

Python (Fig. 19) demonstrates the predicted 

velocity for LSTM, BW-LSTM, MF-LSTM, and 

MFBW-LSTM. The predicted velocity in the 

proposed MFBW-LSTM is more appropriate when 

compared to other models such as LSTM, BW- 
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Table 2 Summary of the implemented techniques. 

Techniques Accuracy (%) MAE (%) MAPE (%) MSE (%) RMSE (%) 

LSTM 86.59 32.55 34.83 28.24 27.17 

BW-LSTM 92.3 27.05 30.98 24.81 21.33 

MF-LSTM 92.5 26.97 29.12 24.53 20.96 

MFBW-LSTM 95.34 26.08 28.22 22.11 18.09 

 

LSTM, and MF-LSTM. The values obtained for 

Accuracy, MAE, MAPE, MSE, and RMSE for the 

LSTM, BW-LSTM, MF-LSTM, and MFBW-LSTM 

are given in Table 2. 

The LSTM model revealed 86.59, 32.55, 34.83, 

28.24, and 27.17 % for the Accuracy, MAE, 

MAPE, MSE, and RMSE, respectively. The BW-

LSTM model provided 92.3, 27.05, 30.98, 24.81, 

and 21.33 % for the acquired performance metrics. 

The MF-LSTM model obtained 92.5, 26.97, 29.12, 

24.53, and 20.96 % for the performance metrics, 

respectively. In addition, the proposed MFBW-

LSTM achieved 95.34, 26.08, 28.22, 22.11, and 

18.09 % in respect to the Accuracy, MAE, MAPE, 

MSE, and RMSE.  

The variations arrived at for the Accuracy, MAE, 

MAPE, MSE, and RMSE for the implemented 

techniques is depicted as a bar diagram in Fig. 20, 

21, 22, 23, and 24, with the implemented techniques 

such as LSTM, BW-LSTM, MF-LSTM, and 

MFBW-LSTM in the x-axis and the performance 

index values in the y-axis. Fig. 20 proves that the 

proposed technique is more accurate than the other 

techniques. Figure 21 illustrates that the MAE of  

 

Fig. 20. Accuracy level for Implemented 

techniques. 

 

Fig. 21. Implemented techniques – MAE. 

Fig. 22. Implemented techniques - MAPE 

 

Fig. 23. Implemented techniques - MSE 

 

Fig. 24. Implemented techniques – RMSE. 

 

the proposed techniques is achieved a lesser value 

when compared to the other implemented 

techniques. The bar diagram in Fig. 22 provides the 

minimum MAPE value for MFBW-LSTM when 

compared to the different techniques. From Fig.23, 

the proposed model has the lowest MSE value 

compared to the other techniques. Moreover, Fig. 

24 reveals that the proposed MFBW-LSTM has the 

lowest RMSE value compared to the other 

techniques, such as LSTM, BW-LSTM, and MF-

LSTM. Finally, the suggested MFBW-LSTM model 
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outperforms the implemented techniques in 

Accuracy, MAE, MAPE, MSE, and RMSE.  

6. CONCLUSION 

The main objective of this work is to produce a 

novel DL model for the velocity prediction in an 

Advanced INVELOX wind turbine. The developed 

DL model and its performance are given as follows, 

• The prediction model is constructed by an 

enhanced LSTM which is upgraded with the help of 

improved BOA. The BOA is further enhanced by 

employing the MOA, and thus produces a 

innovative model called MFBW-LSTM.  

• The power calculation comparison for a 

wind turbine is utilized for estimating the variation 

of power in the wind turbine based on predicted 

velocity.  

• The dataset for the proposed model is 

developed from the Ansys Fluent fluid flow 

analysis of advanced INVELOX wind turbine 

design. In addition, the wind tunnel tests were 

performed on a downsized 3D printed low-weight 

model to obtain velocity contour along the 

axial direction of wind turbine design to validate 

these results. The DL implementation process is 

performed in the Python platform.  

• The planned MFBW-LSTM is efficiently 

performed for the velocity prediction process with 

an accuracy level of 95%. Furthermore, the error 

metrics like MAE, MAPE, MSE, and RMSE are 

estimated to be 0.26, 0.28, 0.22, and 0.18, 

respectively. 

• The power is also determined in various 

plane sections in the wind turbine. Moreover, the 

proposed MFBW-LSTM is compared with the 

LSTM, BW-LSTM, and MF-LSTM. The proposed 

technique is effectively performed in all 

performance metrics.  

• The suggested MFBW-LSTM is most 

suitable and efficient for the velocity prediction and 

power calculation for green and clean energy 

production in Advanced INVELOX wind turbines.  
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