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ABSTRACT 

The effects of inflow variations due to the working environment and flight attitude changes on turbomachines 

are considerable in the real world. Nevertheless, uncertainty quantification can be adopted to assess mean 

performance changes and perform the aerodynamic shape design as well as optimization. Thus, an uncertainty 

quantification method of adaptive sparse grid collocation (ASGC) was first introduced to address the inflow 

uncertainties’ effect issue effectively and accurately. Then, ASGC was utilized to evaluate the impacts of inlet 

incidence perturbations at different perturbation scales and reference inflow Mach numbers on the aerodynamic 

performance of a controlled diffusion cascade. The results showed that compared with the Monte Carlo 

simulation and static sparse gird collocation, the statistical accuracy and response accuracy of ASGC were 

maintained, and meanwhile its model construction efficiency was significantly improved because of the nested 

adaptive sampling feature. Under the perturbations of inlet incidences with high reference incidences, the mean 

aerodynamic loss always aggravates. The changes in aerodynamic loss nonlinearly depend on the inlet 

incidence perturbations, and the nonlinear dependence becomes greater when the perturbation scale. expands. 

At the same perturbation scale, the nonlinear dependence on the inlet incidence perturbations is further 

enhanced when the reference inflow Mach number rises. Finally, uncertainty quantification of the flow field 

revealed that the fluctuation of flow accelerations at the leading edge plays a fundamental role in determining 

the uncertainty of the aerodynamic loss. 

 

Keywords: Uncertainty quantification; Turbomachinery blade; Adaptive sparse grid collocation method; 

Aerodynamic performance; Inlet flow uncertainties. 

NOMENCLATURE 

ASGC Adaptive Sparse Grid Collocation NIPRC Non-Intrusive Probabilistic Collocation 

A Sparse gird interpolation process PDF Probability Density Function 

B relative hierarchical surplus PS pressure surface of blade 

c chord of blade [mm] Stdv statistical standard deviation 

CDF Cumulative Distribution Function Sg entropy generation  

D dimension of random input SS suction surface of blade 

H
l 

D sparse grid interpolation grids SSGC Static Sparsegrid Collocation 

H boundary layer shape factor TE trailing edge of blade 

L
i 

j  interpolation basis functions U univariate interpolation process 

L total pressure loss coefficient UQ uncertainty quantification 

l interpolation level α inlet incidence  

lmax maximum interpolation level β1k inlet metal angle  

LE leading edge of blade  variation relative to the nominal  

Ma1 inflow Mach number 0 interpolation error tolerance 

Mais isentropic Mach number ave mean of response error 

MCS Monte Carlo simulation rms standard deviation of response error 

m number of 1-D interpolation nodes  statistical mean value 

N number of training samples  statistical standard deviation 

NIPC Non-Intrusive Polynomial Chaos ω hierarchical surplus 
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1. INTRODUCTION 

There are many uncertainties either in the real world 

or at the inlet of turbomachines, such as geometric 

variations (Garzon and Darmofal 2003, 2004), and 

flow variations (Stenning 1980; Bry et al. 1985). 

They usually lead to undesirable aerodynamic 

performance deterioration. It is of great significance 

for the robust design of turbomachinery to evaluate 

the effect of uncertain inducements on performance. 

An effective approach to improving the robustness of 

actual aerodynamic performance is to use an 

uncertainty quantification (UQ) method for analysis 

and design. 

In the last century, performance changes of 

turbomachinery blades were measured through 

experiments (Bammert and Sandstede 1976; Roelke 

and Haas 1983). In the past decades, many studies 

applied Monte Carlo simulation (MCS) to evaluate 

the impact of machining deviations on the 

performance of turbomachinery blades (Garzon and 

Darmofal 2003, 2004; Lange et al. 2010, 2012). 

Compared with the defects of long cycles and high 

costs exposed in the early experimental method, 

MCS can perform UQ of aerodynamics in a quick 

and accurate manner. With the increasing complexity 

of aerodynamic shapes and uncertain inducements, 

sensitivity analysis methods (Putko et al. 2002; Luo 

and Liu 2018) such as the method of moment and the 

probabilistic models (Xiu and Karniadakis 2003; 

Loeven et al. 2007; Hosder et al. 2010; Loeven and 

Bijl 2010; Liu et al. 2014; Panizza et al. 2014; 

Seshadri et al. 2015; Wunsch et al. 2015; Ahlfeld 

and Montomoli 2017; Wang and Zou 2019; Xia et al. 

2019a) have been developed rapidly in the recent 

decade, further improving the efficiency of MCS. By 

using the method of moment, Putko et al. (2002) 

determined the uncertainty propagations of 

geometric and flow variations separately in the 

quasi-one-dimensional flow. Luo and Liu (2018) 

further investigated the impact of manufacturing 

variations on a turbine cascade using the second-

order adjoint sensitivity analysis. In contrast with 

MCS results, the sensitivity analysis methods 

showed obviously high precision and great 

efficiency. However, the sensitivity-based methods 

are only suitable for small-scale stochastic problems 

(Xia et al. 2019a). For large-scale aerodynamic 

stochastic issues, the probabilistic models shall be 

outweighed because of their global characteristics. 

Among those methods available for establishing the 

probabilistic models, non-intrusive polynomial 

chaos (NIPC) (Xiu and Karniadakis 2003) and non-

intrusive probabilistic collocation (NIPRC) (Loeven 
et al. 2007) are the most popular due to their 

outstanding capabilities in rapid convergence. 

Moreover, Computational Fluid Dynamics (CFD) is 

regarded as a black box model requiring no change 

of the CFD program codes in non-intrusive methods. 

NIPC is based on the spectral representation of the 

uncertainty. Once the spectral representation is 

constructed with a certain number of training 

samples, function responses can be determined, and 

then the statistics are directly inferred from the PC 

coefficients, which have been widely used in 

aerodynamic UQ of turbomachinery blades (Loeven 
et al. 2007; Hosder et al. 2010; Panizza et al. 2014; 

Seshadri et al. 2015; Ahlfeld and Montomoli 2017; 

Wang and Zou 2019). In NIPRC, collocation points 

are chosen according to Gauss quadrature nodes, and 

the probability distribution of the solution is 

constructed with Lagrange interpolation. The results 

in the reference (Loeven et al. 2007) demonstrated 

that for the same amount of computational cost, the 

accuracy of the NIPRC methods was higher than that 

of the NIPC methods. By using NIPRC, Loeven and 

Bijl (2010) investigated the impact of an uncertain 

inlet total pressure profile on the performance of a 

transonic compressor rotor - NASA Rotor 37. Liu et 

al. (2014) studied the effects of inlet velocity 

uncertainties on the aerodynamic performance of a 

wind turbine. Wunsch et al. (2015) explored the 

impact of the coexistence of the operation and 

geometric uncertainties on Rotor 37. Nevertheless, 

the collocation nodes in NIPRC are not nested, i.e., 

low-order collocation nodes cannot be reused in the 

construction of a higher-order probabilistic model, 

resulting in a huge waste of samples. 

In practical engineering, a low-order quadrature 

formula is often constructed first, and then the 

approximation accuracy is improved with the 

increase of the order of the quadrature formula. The 

nested quadrature rules, such as the Kronrod-

Patterson-Hermite quadrature rule (Liao et al. 2017), 

indicate that the lower-order quadrature nodes can be 

reused in a higher-order scheme. Moreover, Heiss 

and Winschel (2008) provided the readily calculated 

matrices of nodes and weights for nested quadrature 

rules. Based on the extended Gauss-Hermite nested 

quadrature rule (Genz and Keister 1996), Wang et al. 

(2020) developed a new sparse grid collocation 

method for UQ of the impact of stagger angles on the 

performance of a turbine blade. However, not all the 

collocation nodes added in the construction of high-

order probability models need to be utilized. The 

reinforcement of the collocation nodes near the 

smooth or flat area of the real response also leads to 

a waste of samples. To alleviate the computational 

burden for aerodynamic UQ to the maximum 

extent, an ASGC method is introduced in this paper. 

It should be noticed that there is an existing ASGC 

method (Conrad and Marzouk 2013) reducing the 

training samples based on the dimension-adaptive 

quadrature approaches. In the current study, the 

proposed ASGC still has the nested property, and can 

dynamically add collocation nodes with increasing 

collocation levels, thereby further minimizing the 

computational costs of highly accurate probabilistic 

surrogate modeling.  

Nowadays, there has been much publicly available 

literature working on UQ of performance for 

turbomachinery blades concerning the effects of inlet 

flow variations with a single fluctuation range 

(Gopinathrao et al. 2009; Loeven and Bijl 2010; Liu 

et al. 2014; Wunsch et al. 2015; Xia et al. 2019b). In 

most cases, the fluctuation scale of inlet flow 

variables varies with the working environment of 

turbomachines. The effects of different fluctuation 

scales on aerodynamic performance are worth 

further quantifying. Besides, being affected by the 
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flight attitude, the reference operation conditions are 

constantly changing. Thus, the effects of inlet flow 

variations at different reference operation conditions 

must be considered during the statistical analysis. 

Additionally, to lay the foundation for further 

improving the aerodynamic robustness of blade 

shapes, UQ studies should be performed covering the 

influence mechanism of stochastic inflow variations 

at different fluctuation scales and reference operation 

conditions on aerodynamics.  

In the present study, according to the proposed 

ASGC method, aerodynamic UQs of a subsonic 

aero-engine compressor cascade were carried out. 

Specifically, the loss uncertainty concerning 

incidence perturbations was quantified, and the 

influence law of incidence perturbations on the loss 

uncertainty at different scales and inflow Mach 

numbers was analyzed. Finally, the key factor for 

triggering the uncertainty of the cascade flow field 

was discussed in detail using UQ. The applicable 

methods and conclusion will provide certain 

guidelines for the aerodynamic UQ and design of real 

compressor blades. 

2. ADAPTIVE SPARSE GRID 

COLLOCATION 

2.1 Smolyak Sparse Grid Algorithm 

Smolyak sparse grid algorithm provides a method to 

construct interpolation formulas based on a minimal 

number of nodes in multivariate space. The 

algorithm has already been introduced in the open 

literature (Gerstner and Griebel 1998; Barthelmann 

et al. 2000) and below is a quick review.  

For a univariate function f: [0, 1]→ℝ, the univariate 

interpolation formula is 

1

( ) ( ) ( ),
im

i i i

j j

j

U f f x L x
=

=        (1) 

where i is the interpolation depth, mi is the number of 

the interpolation nodes, x
i 

j  and L
i 

j  represent the 

interpolation nodes and basis functions, respectively. 

In multivariate cases, the full tensor product formula 

used to approximate the function f: [0, 1] D→ℝ is 

1

1

1 1

1 1

1 1 1
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However, the total number of interpolation nodes 

required to construct Eq. (2) increases exponentially 

with dimension D. To mitigate this issue, the 

Smolyak sparse grid algorithm uses a much smaller 

subset of the full tensor grid (Smoljak 1963) to carry 

out the interpolation: 

1
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where l indicates the sparse grid level, and the multi-

index set i = (i1, i2, …, iD) satisfies |i|=i1+i2+…+iD. 

The sparse grid interpolation grids H
l 

D  generated by 

the Smolyak algorithm are 

1 2

1 | |

,Di i il

D

l l D

H
+   +

=   
i

      (4) 

where Θi = {x
i 

1, ···, x
i 

mi
} is the 1-D interpolation nodes 

for Ui. The sparse grid interpolation accuracy is 

O(N−2·(logN)D−1) with respect to the maximum norm 

where N is the number of nodes used. 

 

2.2 Adaptive Algorithm 

The difference is calculated by ∆i =Ui−Ui−1 with 

U0=0, and the D-dimensional and l-level 

interpolation formula as in Eq. (3) can be rewritten 

in a hierarchical form: 

1

1

,

1,

( ) ( )( )

( ) ( )( ).

D

D

i i

l D

l D

i i

l D

l D

A f f

A f f

 +

−

= +

=   

= +   





i

i

      (5) 

Once the nested nodes are selected for Θi, i.e., Θi  

Θi+1, only the calculation of the function responses at 

Θi ∆= Θi \ Θi-1 is needed to extend the interpolation 

depth from i-1 to i. On this condition, when the 

interpolation level is increased from l-1 to l in D 

dimensions, only the responses at differential grids 

need calculating with ∆H
l 

D  given by 

1
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       (6) 

Because of this nested characteristic, Eq. (5) can be 

further simplified as 

1
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where Vi = {j: x
ir 

jr
 Θ

ir 
∆  for jr =1, …, m

ir 

∆ , r=1, …, D} 

is the index set for new nodes generated at the depth 

ir, mir

 

∆= m
 

ir−m
 

ir−1. In this study, the nested Newton–

Cotes grid and the piecewise linear hat function are 

used in the adaptive algorithm due to their excellent 

local adaptivity (Ma and Zabaras 2009). 

For some large-scale perturbations of inflow 

variables at the near-stall condition, such as the high 

incidence of compressor blades, the deterministic 

CFD solutions on the perturbation boundary are 

sometimes difficult to converge, or the convergence 

curve of CFD solutions fluctuates greatly. In this 

instance, the CFD results at the near-stall condition 

may not be valid. To make UQ results reliable, the 

grids on the boundary must be omitted. Herein, the 

one-dimensional Newton–Cotes nodes with 

boundary nodes removed are defined as follows:  

1
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where the number of nodes is defined as mi=2i−1. 

Accordingly, the piecewise linear hat functions L
i 

j  

should be modified to extrapolate linearly towards 

the boundary as follows: 

( )=1 for =1, and

if  1,

2 ( 1) ,           if 2/( 1), 
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                                                                               (9) 

To dynamically refine the grid locally as the level l 

increases, a hierarchical surplus ω
l,i 

j  is defined to 

refer to the error between the exact function response 

and the interpolation result at the previous 

interpolation level of an interpolation node 

corresponding to the sets i and j：  

1 1

1 1

,

1,( , , ) ( )( , , ).D D

D D

i i i il

j j l D j jf x x A f x x −= −i

j       (10) 

If the target function has an extreme value, marked 

fluctuations of the gradient, or highly nonlinear 

regions, a large hierarchical surplus value will be 

obtained. Therefore, the hierarchical surplus can be 

regarded as an error indicator for adaptive sampling 

(Griebel 1998). To avoid encrypting redundant grids 

where the real function is relatively smooth, we used 

relative hierarchical surplus B
l,i 

j  as an error indicator: 

1

1

,

, .
max ( , , )D

D

l

l

i i

j j

B
f x x





=

i

i

ji

j

j V
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The proposed ASGC method is conceptually 

introduced in Fig. 1. Compared to the existing 

adaptive strategy (Ma and Zabaras 2009), the 

proposed ASGC uses the collocation nodes with 

boundary nodes removed and the relative 

hierarchical surplus.  

Once the interpolation formula constructed by the 

ASGC is determined, the Newton–Cotes quadrature 

weight wi with i = 1, 2, …, N corresponding to the N 

adaptive sparse grid nodes used can be calculated. 

Therefore, the mean f and variance f
2 of the 

original function f can be computed by  
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Fig. 1. Flowchart of the ASGC method. 

 

where fx (x) denotes the probability density function 

(PDF) of x = (x1, x2, …, xD). Moreover, the PDF and 

cumulative distribution function (CDF) of the 

original function can be easily evaluated by 

performing MCS on the interpolation formula 

determined. 

 

2.3 Function Test of ASGC 

A nonlinear function test was performed to verify the 

response performance of ASGC, including the 

statistical accuracy, response accuracy, and model 

construction efficiency. The test function is  

4
1

1 2

2

1 2 2

( : , )

(sin10 cos3 ) cos40 (1 e ),x

f x x

x x x

=

+   −

x
    (14) 

where x1 and x2 obey the truncated Gaussian 

distribution, which has a mean value of 0.5 and a ± 

0.5 variability.  

For comparison, static sparse grid collocation 

(SSGC) and MCS are considered. The MCS results 

are regarded as the exact solution for reference while 

the SSGC model is directly established by Eq. (7) 

without using the adaptive algorithm. To quantify the 

response accuracy of the sparse grid collocation, the 

mean error ave and root mean square error rms are 

defined as 

( ) ( )

,

1

1
( ) ( )( ) ,

M
i i

ave l D

i

f A f
M


=

= − x x                  (15) 
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2
( ) ( )

,

1

1
( ) ( )( ) ,

M
i i

rms l D

i

f A f
M


=

= − x x              (16) 

where M is the number of test samples generated by 

the direct MCS, f and Al,D refer to the exact solution 

and the interpolation result, respectively. 

Figure 2 compares the response errors avr and rms 

using different sparse grid collocations and indicates 

that much fewer points are needed in the ASGC than 

in the SSGC to achieve the same response accuracy. 

To be specific, Table 1 demonstrates the mean, 

standard deviation (Stdv), response errors, and 

numbers of training samples for the SSGC and 

ASGC. The mean and Stdv of the response obtained 

by sparse grid interpolation coincide with that in the 

MCS results. The mean, Stdv, and response errors for 

SSGC are close to that of ASGC which displays 

fewer training samples, further illustrating the 

feasibility of the adaptive sampling method in 

reducing the training samples.  

Figure 3 shows the grid node evolution of the ASGC. 

The low-level grid nodes are reused in the 

construction of the interpolation formula with a 

higher level. Most of the nodes are distributed in the 

areas where large gradient changes of the function 

occur. These further embody that the proposed 

ASGC has the characteristics of nested adaptive 

sampling. 
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Fig. 2. Comparison of the response errors using 

different sparse grid collocations. 

Table 1 Results of function experiments by MCS, 

SSGC (l=9), and ASGC (lmax= 9, 0 =10-2) 

 MCS SSGC ASGC 

f 1.21×10-4 1.41×10-4 1.05×10-4 

f 0.1784 0.1781 0.1780 

ave - 1.26×10-2 1.42×10-2 

rms - 8.22×10-2 8.25×10-2 

N 10000 4097 1092 

 

 
(a) l=5 

 
(b) l=7 

 
(c) l=9 

Fig. 3. Grid node evolution of ASGC (lmax=9, 

0=10-2) 

3. UNCERTAINTY QUANTIFICATION OF 

THE IMPACT OF INLET INCIDENCE 

PERTURBATIONS 

3.1 Description of the Numerical Model 

A subsonic compressor cascade, which was self-

designed by Ma et al. (2017), is extracted as the 

specific research object in the following study. It is a 

controlled diffusion airfoil with a circular leading 

edge  (LE)  and  trailing  edge  (TE),   and  its  main  
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Fig. 4. Geometric configuration and local computational mesh of the cascade. 

 

Table 2 Main geometric parameters. 

Variables Values 

Radius of the leading edge (mm) 0.5205 

Radius of the trailing edge (mm) 0.5850 

Pitch (mm) 30.44 

Inlet metal angle (deg) 45.83 

Outlet metal angle (deg) 6.22 

Chord length c (mm) 69.95 

Stagger angle (deg) 26.58 

 

geometric parameters are provided in Table 2. The 

inlet flow angle is 47.83 degrees (deg) and the design 

incidence is 2.5 deg.  

Figure 4 shows the cascade's geometric 

configuration and local computation mesh. The inlet 

and outlet domains are respectively extended to 0.5 

chords upstream of the LE and 1.5 chords 

downstream of the TE. The domain is meshed using 

an ‘‘O4H’’ block topology to generate quadrangular 

structured grids. The ‘‘O’’ and ‘‘H’’ blocks are used 

to surround the blade and cover the upstream and 

downstream passages, respectively. The calculation 

mesh in a single flow passage has about 165,000 

cells, and Y+ is about 1.0. The mesh has been 

verified to meet the requirement of grid 

independence through previous work (Guo and Chu 

2022), and used for many aerodynamic studies (Guo 

et al. 2022a, b). 

With NUMECA software, the Reynolds Average 

Navier-Stokes equations are used to calculate the 

single passage mesh with translation periods. The 

compressible ideal gas is the working medium, and 

the turbulence model is the Spalart-Allmaras model. 

The adiabatic wall with the no-slip assumption is 

defined on the solid surfaces. Turbulence viscosity 

0.001 m2/s, total pressure 101325 Pa, total 

temperature 288.15 K, and various incidences α are 

imposed on the inlet. α equals the inflow angle minus 

the inlet metal angle. The mass flow rate is given at 

the outlet to maintain the inflow Mach number Ma1. 

Ma1 is defined as the vectorial sum of tangential and 

axial flow Mach numbers.  

In Fig. 5, the numerical results of the isentropic Mach 

number Mais distribution on the cascade surface and 

the loss coefficient at 1.0c downstream of the TE are 

validated with the experimental data in the reference 

(Ma et al. 2017) and the comparison shows a good 

agreement.  

 

3.2 Evaluations of Performance Impact 

Total pressure loss coefficient L is used to evaluate 

the aerodynamic performance with the definition as 

follows:  

* *

*
,in out

in in

p p
L

p p

−
=

−
                                                 (17) 

where p refers to pressure, superscript * refers to the 

total value, and subscripts in and out refer to the 

passage inlet and outlet, respectively.  
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Fig. 5. Comparison between the numerical and 

experimental results. 
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Fig. 6. The L distribution at different inlet 

incidences when reference Ma1 = 0.7 

 

The L distribution with the inlet incidences when the 

reference Ma1 = 0.7 is first calculated as shown in 

Fig. 6. At the design condition, L varies as a flat 

quadratic curve, while at the off-design condition 

with high inlet incidences, L varies as an increasing 

cubic curve, implying that L is more sensitive to the 

variations of α and less robust. To provide design 

guidance for effective improvement of the 

aerodynamic robustness of the cascades, this study 

concerned the inlet incidence perturbations at the off-

design incidence α = 5 deg, because the change of L 

is relatively more drastic afterward. Since the 

relative changes are more intuitive, the relative 

variation of the total pressure loss coefficient L is 

employed to display the performance change. Many 

studies (Luo and Liu 2018, Xia et al. 2019b) have 

adopted this illustration, which is defined as 

0

0

,
L L

L
L


−

=                                                        (18) 

where L0 is the nominal value of the total pressure 

loss coefficient.  

Gaussian distributions for flow variations have been 

widely applied in describing stochastic flow 

variations (Hosder et al. 2007; Loeven et al. 2007; 

Loeven and Bijl 2010). Because the disturbance 

range of uncertainty variables cannot be infinite, the 

truncated Gaussian distribution is more practical to 

describe the uncertainty, which has been accepted by 

many aerodynamic UQ studies (Wu et al. 2017; Guo 

and Chu 2022). Thus, it is also employed to illustrate 

the variation of inlet incidences 

  .
ref

z


 −
=                                                      (19) 

And its PDF is  

 
21

exp( ),       3,  3 ,
( )    20.9974 2

0,                                        otherwise,

z

z
z

f z 


−  −

= 



 (20) 

where αref =5 deg and σα is the Stdv of inlet incidence 

variation.  

To investigate the effect of ASGC on the 

aerodynamic UQ results, the aerodynamics of the 

studied  cascade  was  statistically  evaluated  at  

 
Fig. 7. Convergence history of direct MCS-based 

statistics when reference Ma1=0.7 and σα=1. 
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Fig. 8. Statistical distribution of L with the 

maximum interpolation level. 

 

reference Ma1=0.7 and σα=1. Figure 7 shows the 

convergence history of the direct MCS-based 

statistics on L. The mean and Stdv of L are 

convergent once the number of trials exceeds 4,500. 

To maintain the accuracy of statistics, the 5,000 

samples-based statistics are regarded as the exact 

ones in the following study. 

We first studied the statistical convergence of ASGC 

by increasing the level lmax. Figure 8 shows the 

statistical result of L with lmax of ASGC and the 

comparison with that of MCS. When lmax=6 or 7, the 

result of ASGC coincides with that of MCS, showing 

few differences between ASGC and MCS. Then, the 

convergence of ASGC was also studied by 

increasing the tolerance 0. Figure 9 presents the 

statistical result of L with 0 of ASGC and the 

comparison with that of MCS. When 0=10-2, the 

result of ASGC coincides well with that of MCS.  
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Fig. 9. Statistical distribution of L with the 

interpolation error tolerance. 

 

The overall comparison result indicates that the 

ASGC with lmax ≥ 6 and 0 ≤ 10-2 can better produce 

the statistics. 

Lastly, the computational costs and response 

accuracy of ASGC were compared with that of 

SSGC, as shown in Table 3. Compared with MCS, 

the necessary CFD evaluations for ASGC and SSGC 

are significantly reduced. ASGC requires fewer CFD 

evaluations than SSGC with similar response 

accuracy, further indicating that the aerodynamic UQ 

efficiency can be improved by ASGC. From the 

second to fourth rows of the table, as lmax increases 

or 0 decreases, the number of training samples 

increases accordingly, while the function response 

accuracy changes lessen. 

Therefore, the number of training samples can be 

maximally reduced for the ASGC with lmax=6 and 

0=10-2 while response accuracy is still ensured.  

PDF and CDF are widely applied to in-depth 

statistical analysis. Figure 10 shows the PDFs and 

 

Table 3 The response errors of L and the 

number of training samples by ASGC and 

SSGC. ASGC-1 (lmax=6, 0=10-2), ASGC-2 

(lmax=7, 0=10-2), ASGC-3 (lmax=6, 0 =10-3), SSGC 

(l=6) 

 ave rms N 

ASGC-1 2.50×10-3 2.63×10-2 23 

ASGC-2 2.63×10-2 2.13×10-2 31 

ASGC-3 1.62×10-3 2.13×10-2 57 

SSGC 1.62×10-3 2.12×10-2 63 

MCS - - 5000 

 
 (a) PDF of MCS 

 
 (b) PDF of ASGC 

 
 (c) CDF 

Fig. 10. PDFs and CDFs for L. 

 

CDFs of L by direct MCS and ASGC. The PDF and 

CDF obtained by ASGC with lmax=6 and 0=10-2 are 

almost the same as those obtained by MCS, further 

illustrating the effectiveness of ASGC for the 

aerodynamic UQ study. Besides, the right-skewed 

PDFs demonstrate that the strong nonlinear 

dependence of performance changes on the 

incidence perturbations can be accurately evaluated 

by ASGC. In fact, the nonlinear dependence 

increases with σα, which will be elaborated in the 

following study. 

Through the above investigation on the response 

performance of ASGC, the aerodynamic UQ results 

can be derived from the ASGC model with lmax=6 

and 0=10-2 efficiently and exactly. Subsequently, all 

aerodynamic UQ results were obtained using ASGC 

with lmax=6 and 0=10-2. To analyze the effect of inlet 

incidences at different perturbation scales on the 

uncertainty of the changes for relative aerodynamic 

performance, five inlet incidence perturbation 

tolerances were set: σα = 0.4, 0.6, 0.8, 1.0, 1.2. 

Meanwhile, four reference Ma1=0.4, 0.5, 0.6, and 0.7 
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were assigned to investigate the effect of inlet 

incidence perturbations at different numbers of 

reference Ma1 on the uncertainty of the changes for 

relative aerodynamic performance. 

Figure 11 shows the statistics of L against the 

tolerance σα at four reference Mach numbers. It can 

be observed that all the statistical mean values of L 

are positive, i.e., the mean aerodynamic loss 

aggravates, which illustrates the importance of 

aerodynamic UQ in the inlet incidence perturbations 

at off-design incidences. Moreover, the overall 

variation trends of the statistics versus σα at the four 

reference Mach numbers are similar. The mean 

values of L exhibit evident quadratic increases with 

σα, while the Stdvs exhibit nearly linear increases. 

Therefore, L is the nonlinear dependence on the 

inlet incidence perturbation which gradually 

becomes greater with the increasing σα. It implies 

that the PDFs of the aerodynamic performance 

changes will no longer meet the Gaussian 

distribution but deviate far away from it towards a 

large σα. From Fig. 11, it can also be observed that as 

the reference Ma1 rises, the slopes d(L)/d(σα) and 

d(L)/d(σα) increase, which shows stronger 

nonlinear dependence of L on the inlet incidence 

perturbations. Therefore, the aerodynamic UQ 

concerning the inlet incidence perturbation at high 

reference Ma1 should be the top focus.  

The variation law of PDF and CDF of L versus the 

tolerance σα at reference Ma1 = 0.4, 0.5, and 0.6 is 

similar to that at reference Ma1 = 0.7. Figure 12 

presents the PDFs and CDFs of L at reference Ma1 

= 0.7. It can be found that PDFs are more right-

skewed with the increase of σα. In the figure 

demonstrating CDFs, the arrows indicate the 

increasing directions of σα. The high-end “tails” of 

L become thicker as σα increases, indicating that the 

maximum performance change increases with σα. 

These results further confirm that the nonlinear 

dependence of performance changes on the inlet 

incidence perturbations becomes heavier with the 

increasing σα.  

Figure 13 compares the CDF of L versus the 

tolerance   σα  at   four   numbers   of  reference  Ma1.  

The   CDF   curves  with  the  same σα reveal  that  the 
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Fig. 11. Statistics of L versus σα at four numbers of reference Ma1.  

 

 
(a) PDF of σα = 0.4 

 
(b) PDF of σα = 0.5 

 
(c) PDF of σα = 0.6 

 
(d) PDF of σα = 1.0 

 
(e) PDF of σα = 1.2 

 
(f) CDFs 

Fig. 12. PDFs and CDFs of L versus σα at reference Ma1 = 0.7. 
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(a) Ma1=0.4                                                 (b) Ma1=0.5 

        
(c) Ma1=0.6                                                 (d) Ma1=0.7 

Fig. 13. CDF L versus σα at four numbers of reference Ma1. 

 

maximum performance change increases when the 

reference Ma1 rises, further confirming the strong 

nonlinear dependence of L on the inlet incidence 

perturbations in the operating conditions of high 

reference performance. 

 

3.3 Statistical Analysis of Flow Field 

For the purpose of exploring the impact mechanisms 

of inlet incidence perturbations on the performance 

change of the cascade, the first two statistical 

moments of aerodynamic parameters of the flow 

field were calculated by N flow solutions. The 

calculation formulas for the statistical moments are 

similar to Eq. (12) and Eq. (13), and the N flow 

solutions are obtained by the ASGC (lmax=6 and 

0=10-2) model. It should be noted that the 

deterministic impact of a variation of incidence on 

compressor performance had been studied 

(Goodhand 2010, Goodhand and Robert  2011) in-

depth. Here, we intended to reveal the performance 

impact of incidence variations from the non-

deterministic aspect. 

Four typical cases were studied as shown in Table 4. 

Consistent with Section 3.2, this study involved the 

inlet incidence perturbations at α=5 deg. In Table 4, 

Cases 1 and 2 are used to explore the impact 

mechanisms of different perturbation scales on the 

performance uncertainty changes, while Cases 3 and 

4 focused on the effect arising from different 

reference Mach numbers. 

We first compared the statistical results of Cases 1 

and 2. To reveal the influence law of incidence 

 

Table 4 Cases studied for statistical analysis of 

the flow field. 

Case 1 2 3 4 

σα 0.4 1.0 1.2 1.2 

Ma1  0.7 0.7 0.4 0.6 
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(b) Stdv of relative changes 

Fig. 14. Distributions of statistical results of Mais 

on blade surface for Cases 1 and 2. 

 

perturbation scales on the blade surface flow, the 

distributions of the statistical results of Mais on the 

blade surface for Cases 1 and 2 were calculated as 

shown in Fig. 14. The nominal value indicates the 

results without concerning the inlet incidence 

perturbations. From Fig. 14(a), the Ma
 

is distributions 

of Cases 1 and 2 are almost duplicates of nominal 

ones, demonstrating that the influence of inlet 

incidence perturbations on the blade surface flow  

cannot be reflected by the statistical mean values of 
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aerodynamic parameters. Therefore, the influence 

should be evaluated by obtaining the variance. 

Figure 14(b) shows the Stdvs for the relative changes 

of isentropic Mach number Mais. The definition of 

Mais is:  
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(a) H on SS for Case 1 
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(b) H on SS for Case 2 
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(c) H on PS for Case 1 
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(d) H on PS for Case 2 

Fig. 15. Statistical results of the boundary layer 

shape factor for Cases 1 and 2. 
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where Mais,0 is the nominal isentropic Mach number. 

From the LE to about 0.1 chords, the inlet incidence 

perturbations lead to the sharp increment of Ma
 

is 

which is much higher than in other regions. It 

illustrates that the inlet incidence perturbations 

mainly affect the flow acceleration process near the 

LE. Most notably, the fluctuation of the flow 

acceleration significantly influences the 

aerodynamic load, due to the rapid diffusion process 

with strong reverse pressure gradients after the flow 

acceleration of the LE. Besides, the peak Ma
 

is near 

the LE of Case 2 increases dramatically compared 

with that of Case 1, illustrating that the flow 

acceleration near the LE is more significant with the 

increment of σα.  

To display the influence law of incidence 

perturbation scales on the passage flow, Fig. 15 

presents statistical results of boundary layer shape 

factor H for Cases 1 and 2. The blue region 

represents the fluctuation range of H, the boundary 

of which is determined by the mean H minus one 

time's Stdv. The value of H represents the normalized 

boundary layer thickness and is useful to determine 

whether the boundary layer separation occurs. In the 

present study, the boundary layer separation occurs 

when H > 2.5. In Fig. 15, the fluctuation ranges of H 

in most regions on the PS are much smaller than 

those on the suction surface (SS), demonstrating that 

the incidence perturbations impose a weak effect on 

the boundary layer thickness on the pressure surface 

(PS).  

However, the nominal H distributions on the SS in 

Figs. 15(a) and (b) illustrate that there are two local 

separations, i.e., LE and TE separations, in the region 

of the first 0.5 chords and 0.8 chords to 1.0 chords, 

respectively. It can be found that in the regions where 

the local separations occur, the mean H of Case 2 

increases more with respect to the nominal than that 

of Case 1. The results show that due to the 

uncertainty perturbations of inlet incidences, the 

probability of the local separation scale relative to 

the nominal increases with σα. Meanwhile, the 

fluctuation range of Case 2 is much larger than that 

of Case 1, demonstrating that the fluctuation of the 

local separation scales enhances when σα increases. 

Figure 16 compares the Stdvs of entropy generation 

Sg between Case 1 and Case 2, which exactly 

illustrates that the uncertainty of the boundary layer 

separation and the wake mixing loss, resulting from 

the uncertainties of the local separations, increases 

with σα. 

Lastly, the statistical results of Cases 3 and 4 were 

compared. Figure 17 presents the statistical 

distributions of Mais on the blade surface for Cases 3 

and 4. Similar to Figure 14, the statistical mean of 

Mais exhibits almost zero deviation from the nominal, 

and the increment of Ma
 

is is mainly centered in the 

first 0.1 chord region. These results further validate 

that the influence of inlet incidence perturbations on 

the cascade surface flow is majorly presented by the 
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variance of the flow acceleration process near the LE. 

Moreover, the Stdvs of Mais within the first 0.1 

chords for Case 4 are larger than those for Case 3, 

manifesting that the flow acceleration process near 

the LE is more sensitive to the inlet incidence 

perturbations when the reference Ma1 is higher. Such 

variation law is not surprising because the results 

illustrated in Fig. 17(a) also show the nominal 

aerodynamic load near the LE advancing with the 

increment of the reference Ma1, reflecting the 

increase of the sensitivity to the inlet incidence 

perturbations. 

 
(a) Case1 

 
(b) Case2 

Fig. 16. Comparison of Stdvs of entropy 

generation between Cases 1 and 2. 
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Fig. 17. Distributions of statistical results of Mais 

on blade surface for Cases 3 and 4. 
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(a) H on SS for Case 3 
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(b) H on SS for Case 4 
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(c) H on PS for Case 3 
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(d) H on PS for Case 4 

Fig. 18. Statistical results of the boundary layer 

shape factor for Cases 3 and 4. 

 

Figure 18 gives the statistical results of H for Cases 

3 and 4. The comparisons demonstrate that the 

boundary layer thickness on the SS is more sensitive 

to the perturbation of inlet incidences, since the 

fluctuation ranges of H in most regions on the PS are 

much smaller than those on the SS. As shown in 

Figures 18(a) and (b), the mean H distributions on 
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the SS indicate that there is a LE separation in Case 

3, while there are LE and TE separations in Case 4. 

This is because the reference Ma1 in Case 4 is higher, 

the aerodynamic load near the LE is larger (See 

Figure 17(a)), and this situation is prone to induce the 

boundary layer separation on the SS. As such, it can 

be found that under the uncertainty perturbations of 

inlet incidences, the mean H on the SS for Case 4 

increases compared to the nominal, while that for 

Case 3 is almost the same as the nominal. 

Meanwhile, the fluctuation range of Case 4 is much 

larger than that of Case 3, especially in the regions 

occurring the TE separation. Figure 19 presents the 

comparison of the Stdv of entropy generation 

between Cases 3 and 4. It shows that the uncertainty 

of the boundary layer separation and wake mixing 

losses increases with the increasing reference Ma1. 

 

 
(a) Case 3 

 
(b) Case 4 

Fig. 19. Comparison of Stdvs of entropy 

generation between Cases 3 and 4. 

 

According to the above analysis, the variation of the 

LE flow plays a leading role in the variation of 

aerodynamic performance when the inlet incidence 

is disturbed with uncertainties. The incidence 

perturbation will influence the Stdv of the flow 

acceleration near the LE of the SS, and subsequently 

cause dramatic fluctuations of the downstream 

boundary layer thicknesses, which will be more 

significant when there is a local separation. Under 

such circumstances, the Stdv of the separation and 

the wake mixing loss will inevitably be increased, 

and an uncertainty variation in aerodynamic 

performance appears. When the perturbation 

tolerance σα and the reference Ma1 rise, the Stdv of 

the flow acceleration near the LE increases, resulting 

in the increment of the mean and Stdv within the 

local separation scales. In summary, it is more 

significant to concern the shape optimization design 

near the LE for improving aerodynamic robustness 

concerning the random perturbations of the inlet 

incidence. 

4. CONCLUSION 

To minimize the computational costs of highly 

accurate probabilistic surrogate modeling, the ASGC 

method was first introduced in the study, which can 

dynamically add nested collocation nodes with the 

increase of collocation levels. Compared with the 

direct MCS and the SSGC, the response performance 

for ASGC including the statistical accuracy and 

response accuracy is saved, while the model 

construction efficiency is significantly improved 

because of its nested adaptive sampling feature, 

which was validated and convinced by a highly 

nonlinear test function. Then for a controlled 

diffusion compressor cascade, the inlet incidence 

was assumed to be an uncertain parameter in 

truncated Gaussian distribution and, the uncertainty 

impact of the total pressure loss coefficient and flow 

field due to inlet incidence perturbations on the high 

reference incidence was quantified using the ASGC 

method.  

The ASGC can effectively measure the effect of inlet 

incidence uncertainties on the controlled diffusion 

compressor cascade and the ASCG begins to be 

convergent to the result of the MCS method when 

lmax=6 and 0=10-2. The first two statistical moments 

of aerodynamic variables obtained by ASGC are in 

good agreement with those obtained by SSGC and 

MCS. The PDFs and CDFs of the response variable 

are easy to get from ASGC with accuracy, but a large 

number of samples are needed for MCS. Under the 

perturbations of inlet incidences, the mean 

aerodynamic loss always aggravates. It suggests that 

it is necessary to perform aerodynamic UQ 

concerning the inlet incidence perturbations at the 

off-design incidence. The mean values of L exhibit 

evident quadratic enhancement with the increasing 

σα, while the Stdvs display nearly linear increases. 

Meanwhile, the PDF of L deviates away from the 

Gaussian distribution and is more right-skewed with 

the increasing σα. It shows that the performance 

variations nonlinearly depend on the inlet incidence 

perturbations, and the nonlinear dependence 

becomes stronger when σα. is growing. In addition, 

the slopes d(L)/d(σα) and d(L)/d(σα) increase 

when the reference Ma1 climbs up, which reveals the 

greater nonlinear dependence of L on the inlet 

incidence perturbations at high reference Ma1.  

The UQ of the flow field reveals that the variation of 

the LE flow takes the lead in the variation of 

aerodynamic performance when the inlet incidence 

is perturbed with uncertainty. The inlet incidence 

perturbation mainly influences the Stdv of the flow 

acceleration near the LE and subsequently causes 

dramatic fluctuations of the downstream boundary 

layer thicknesses, which will be more significant 

when there is a local separation. In addition, the Stdv 

of the flow acceleration near the LE increases with 

the perturbation tolerance σα. and the reference Ma1, 

resulting in the increment of the mean and Stdv of 

the local separation scales. Thus, the shape 

robustness optimization design near the LE should be 

deemed a priority for improving aerodynamic 

robustness concerning the inlet incidence 

perturbations. 
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