Study on the Erosion Characteristics of Non-spherical Particles in Liquid-solid Two-phase Flow

H. Z. Jin¹, Z. Y. Liao¹, J. F. Zhou², X. F. Liu¹, H. C. Yao¹ and C. Wang †

¹Institute of Flow-Induced Corrosion, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
²Hangzhou Special Equipment Inspection and Research Institute, Hangzhou 310051, China

†Corresponding Author Email: wangchao@zstu.edu.cn

ABSTRACT

Elbow erosion, defined as wall thinning due to the continuous interactions between solid particles and surface, is a common phenomenon in catalyst addition/withdrawal pipeline systems used in residual oil hydrogenation units. This form of erosion can seriously affect the reliable pipeline operation. The present paper describes the construction of realistic cylindrical catalyst particles using the multi-sphere clump method and computational fluid dynamics/discrete element model simulations to study the erosion of pipe walls under different inlet velocities and particle aspect ratios. An optical shooting experiment is carried out to ensure the accuracy of the calculation method, and the model performance is compared using several existing drag models. The results show that the drag model of Haider & Levenspiel is more accurate than the others in revealing the actual cylindrical particle flow. A higher inlet velocity is observed to increase the kinetic energy of the particles and affect their spatial distribution. Specifically, when the Stokes number is greater than 113.7, the position of the maximum erosion rate shifts from the elbow’s outer wall to the inner wall. Cumulative contact energy is introduced to quantify two different types of particle-wall contacts. With a growing particle aspect ratio, the proportion of tangential energy gradually increases, which indicates that sliding is the main contact mode. The results presented in this paper provide a reference for engineering erosion calculations.

1. INTRODUCTION

Boiling bed residue units that enable online catalyst addition and withdrawal are widely used in residual oil hydrogenation. The process of catalyst transportation is a typical complex liquid–solid flow, and the pipelines used to convey the catalysts often experience erosion problems.

Erosion is the phenomenon of material removal from the pipe walls through particle–surface interactions. Many investigations have attempted to provide a better understanding of the erosion process. For example, Finnie et al. (1960, 1979) researched erosion mechanisms for brittle and ductile materials and proposed a widely accepted micro-cutting theory. Bitter (1962) believed that the combined effect of micro-cutting and impact deformation caused erosion. Based on the work of Finnie and Bitter, Deng et al. (2004) established a quantitative model that explains the effect of the particle spin direction on erosion by testing the velocity of the contact point between the spin particles and the target surface. Under specific experimental conditions, Archard (1953), Oka (2005), and the Erosion/Corrosion Research Center (Ahlert, 1994) established several classic erosion models. Recently, high-speed photography has been used to record the particle–wall collision behavior. Jing et al. (2018) investigated the particle velocity fields in gas–liquid–solid flows using image processing techniques, and found that the average deviation between the measured and numerical velocity was 6.1%. Wang et al. (2020) measured the collision velocities of non-spherical glass particles, and reported that the particle sphericity exhibited a strong relationship with the restitution coefficient e. As the impact angle approached 90°, the value of e reached 0.6 for spherical particles and just 0.2–0.3 for non-spherical particles.

Full quantitative information about the flow field and particle motion parameters cannot be readily obtained by experiments. Numerical models have therefore been extensively developed (Ali, 2022; Sajjad et al., 2022). To date, most elbow erosion
Erosion under liquid–solid flow is a complex physical problem consisting of two processes: particle–fluid flow and particle–wall contact. For the former, the drag force imposed by the fluid is a major cause of modification to the particle motion state. However, previous research on the erosion caused by non-spherical particles demonstrates the effectiveness of predictions given by maximum wear depth measurements, and there has been no experimental validation of drag models in multiphase flows. The motion of cylindrical catalyst particles would vary according to their geometric shape, thus affecting the flow erosion characteristics. The particle–wall contact is directly linked to particle collision dynamics. Previous studies lack detailed statistical information on the collision process and do not provide quantitative assessments for judging the particle–wall contact pattern.

In this paper, a two-way coupled Eulerian–Lagrangian approach is employed to investigate the erosion caused by a liquid–solid two-phase flow in the elbow sections of a pipeline. To verify the most appropriate drag model for cylindrical particles, a liquid–solid two-phase circulation experiment is performed and the particles’ spatial distribution is captured by a high-speed camera. The effects of the inlet velocity and particle aspect ratio on erosion is then assessed. The analysis focuses on the effect of the particle Stokes number on the maximum erosion position and cumulative contact energy of the pipe walls.

2. METHODOLOGIES

The fluid is treated as a continuous phase and solved by the Navier–Stokes equations, while the particle motion is solved by tracking in a Lagrangian model.

2.1 Governing Equations for Fluid

The Reynolds-Averaged Navier-Stokes (RANS) equations are employed for the fluid flow field modeling. The continuity and momentum conservation equations of the continuous phase are given as follows:

\[
\frac{\partial}{\partial t} \rho + \frac{\partial}{\partial x_i} \left( \rho u_i \right) = 0
\]

\[
\frac{\partial}{\partial t} \rho u_i + \frac{\partial}{\partial x_j} \left( \rho u_i u_j - \delta_{ij} F_{i} \right) = -\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} \left( \mu \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) + \alpha \rho g + F_i
\]
2.2 Governing Equations for Particles

The particle motion includes both translation and rotation, which can be described by Newton’s second law as

\[
m \frac{d\mathbf{v}}{dt} = \mathbf{F} - \mathbf{f} - \mathbf{\tau}
\]

where \( \rho \) is the fluid density, \( \mathbf{u} \) is the fluid velocity, \( p \) is the pressure of the fluid, \( \mu_e \) is the effective viscosity, \( g \) is gravitational acceleration, \( \alpha \) is the void ratio, and \( F_i \) is the interaction term between particles and fluid. In addition, the realizable \( k-\varepsilon \) model is selected to resolve the turbulent flow, and the standard wall functions are applied to model the flow in the near-wall region.

Figure 2 displays the constitutive model.

2.3 Fluid–Particle Coupling Model

2.3.1 Forces from the Fluid to the Particles

Drag force is dominant for particles in fluid flow. Thus, the selection of the drag model has a great effect on the particle motion, especially for cylindrical particles. Buettner et al. (2021) demonstrated the deficiencies of current spherical models when applied to non-spherical particles. In this paper, the drag models developed by Di Felice (1993), Haider and Levenspiel (1988), and Ganser (1993) are considered.

According to the model of Di Felice, the force on an isolated particle is calculated and altered by the influence of surrounding particles, and can be applied to non-spherical particles (Vollmari et al., 2016).
The pressure gradient force can be written as

$$F_p = \frac{\rho_f v_r \nabla u}{\rho_p}$$  \hspace{1cm} (23)$$

2.3.2 Forces from Particles to the Fluid

Based on Newton’s third law, the forces imposed by the particles on the fluids in a CFD cell can be calculated as

$$F_i = -\sum_{i=1}^{n}\left(F_{iA} + F_{iB} + F_{iC} + F_{iD}\right) V_{cell}^{-1}$$  \hspace{1cm} (24)$$

2.4 Erosion Model

The Archard model is used to estimate the erosion depth on eroded surfaces. Archard (1953) investigated the contact mechanism and stated that the amount of material removed from the surface would be proportional to the frictional work done by particles moving over the surface:

$$Q = \frac{KdP}{H}$$  \hspace{1cm} (25)$$

where $Q$ represents the volume of removed material ($\text{mm}^3$), $K$ is a dimensionless constant related to the material itself, and is taken as $3 \times 10^{-3} \text{m}^2/\text{N}$ according to the experimental data of Chen et al. (2017). $H$ is the hardness of the wall (HB), $d_i$ is the tangential distance moved (mm), and $P$ is the applied load (N).

2.5 Experimental Setup

To assess the accuracy of the various drag models, an experimental platform is designed and constructed for photograpbing the particle dispersion. Figure 3 shows the arrangement of the experiment. The two-phase mixture is stirred in the water tank, then pumped into the pipeline and...
flows through the reflux valve, the electromagnetic flowmeter, and the clear acrylic elbow. High-frequency porcelain cylindrical particles with a 1-mm bottom diameter and 2-mm height are used. The inner diameter $D$ of the elbow is 34 mm and the radius of curvature $R$ is 4$D$ (=136 mm). The display resolution of the high-speed camera (model PCO.dimax HS4) is 1920×1080 pixels, which is sufficient so that the particles are visible when they pass through the transparent segment. The exposure time is set as 0.59 ms and the frame rate is 1547 fps.

2.6 Numerical Simulation Setup

The dimensions of the elbow simulation model are the same as in the experiment. To allow the flow to become fully developed, the lengths of both the horizontal and vertical straight pipes are 15$D$. As presented in Fig. 4, a three-dimensional hexahedral structured mesh is used to discretize the computational domain and ensure sufficient accuracy and stability. The maximum skewness value of the mesh is less than 0.6. Eight boundary layers are meshed in the near-wall region, with the first-layer height equal to 0.275 mm and a growth rate of 1.2. The value of $y^+$ is controlled in the range 30–300, which satisfies the requirements for the wall function. The coupling interface development is based on unresolved models, so the cell volume must be greater than the particle volume. Moreover, considering the stability of the solver and the accuracy of the drag model, the volume ratio is recommended to be greater than 10. Under these cell size requirements, mesh independence tests are conducted by examining the maximum erosion rate. Figure 5 shows the test result for four meshes. As the mesh is gradually refined, the erosion rate tends to stabilize. In view of improving computing efficiency, the number of mesh cells is determined as $15 \times 10^4$ for the numerical simulations.
Fig. 5. Mesh independency study.

Table 1 Catalyst particles with different aspect ratios (Ar).

<table>
<thead>
<tr>
<th>Ar</th>
<th>DEM model</th>
<th>Spheres</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><img src="image1.png" alt="Image" /></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td><img src="image2.png" alt="Image" /></td>
<td>143</td>
</tr>
<tr>
<td>3</td>
<td><img src="image3.png" alt="Image" /></td>
<td>207</td>
</tr>
<tr>
<td>4</td>
<td><img src="image4.png" alt="Image" /></td>
<td>296</td>
</tr>
</tbody>
</table>

Non-spherical particles are constructed with the multi-sphere clump method. A grid is generated around the cylinder to ensure the fidelity of the multi-sphere particles.

The cylindrical particles are combined with spheres of different sizes, as described in Table 1. The Monto Carlo method is adopted to calculate the centroid, mass, and inertial tensors of the non-spherical particles.

In the CFD calculations, a pressure-based solver is used. The fluid phase is water. The inlet is set as a velocity inlet, the outlet is set as a pressure outlet (0 Pa), and the remaining boundaries are no-slip walls. To discretize the pressure, momentum, turbulent kinetic energy, and specific dissipation rate calculations, a second-order upwind scheme is adopted. The SIMPLEC method is applied to ensure pressure–velocity coupling. The time step size is set as $1 \times 10^{-4}$ s. The DEM settings are listed in Table 2. For particle–particle interactions, the coefficients of restitution, static friction, and rolling friction are 0.5, 0.6, and 0.05, respectively. For particle–wall interactions, the corresponding coefficients are 0.5, 0.4, and 0.05.

3. RESULTS AND DISCUSSION

3.1 Effect of Drag Models on Particle Motion

By adjusting the valve openings, flow velocities of 2 m/s, 3 m/s, and 4 m/s were achieved. After the flow had become stable, the spatial distribution of the particles was as shown in Fig. 6. The number of particles varies slightly at different speeds due to the different carrying capacities. The calculation results using the different drag models are also shown.

Table 2 Calculation parameters of DEM

<table>
<thead>
<tr>
<th>Item</th>
<th>Details</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle</td>
<td>Poisson’s ratio</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>Shear modulus(Pa)</td>
<td>$1 \times 10^8$</td>
</tr>
<tr>
<td></td>
<td>Density(kg·m$^{-3}$)</td>
<td>3000</td>
</tr>
<tr>
<td>Wall</td>
<td>Poisson’s ratio</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>Shear modulus(Pa)</td>
<td>$2.5 \times 10^{10}$</td>
</tr>
<tr>
<td></td>
<td>Density(kg·m$^{-3}$)</td>
<td>7800</td>
</tr>
<tr>
<td>Time step</td>
<td>Fixed time step(s)</td>
<td>$1 \times 10^{-6}$</td>
</tr>
</tbody>
</table>

Fig. 6. Comparison of particle spatial distribution in simulations and experiments.
Figure 6 indicates that when the flow velocity is 2 m/s, the particles are affected by the drag force, which restricts the particle movement within streamlines. In parallel, gravity causes the particles to settle, effectively restricting their motion to the bottom of the pipe wall. Particle–particle and particle–wall interactions are weak. The particles are close to the outer wall and slide when entering the bend section. In a given region, the particles have approximately the same movement direction. With an increase in velocity, the distribution of the particles becomes more dispersed and gradually covers the entire flow field. The trend is more visible at 4 m/s. The particles have a broader range of motion at axial angles of 54°–72°. This implies that the region of most severe erosion will shift towards the elbow inner wall at higher flow velocities.

The drag force directly influenced the particle motion. Numerical simulations using the Di Felice drag model show an obvious aggregation phenomenon at the outer walls at 2 m/s. There is almost no difference in the spatial distributions of the particles as the speed increases. Poincare maps are used to display the particle motion at a cross-section in Fig. 7. The Haider & Levenspiel drag model and the Ganser drag model both reflect the particle trend of moving the inner wall, while the Di Felice drag model does not. Stokes number can explain such a trend and will be present in the following section. Figure 8 shows that these particles have high average velocities in the z-direction (i.e., along the negative Z-axis). The spatial distribution of particles is more dispersed and closer to the experimental situation when using the Haider &
Levenspiel drag model under flow velocities of 3 m/s and 4 m/s. The z-component of velocity with the Haider & Levenspiel drag model increases as the inlet velocity increases, whereas Ganser’s drag model produces a slight decrease in the z-component of velocity at 4 m/s. In addition, Fig. 7 also presents the particle offset situation at 3 m/s and 4 m/s. It is associated with the secondary flow, and particles are driven from the compression side to the suction side.

Haider & Levenspiel, and Ganser models both consider the shape factor in the \( C_D \) calculation, and the simulated particle distribution based on a single non-spherical particle followed the trends of the experimental images. \( C_D \) for “the Haider Levenspiel drag model” is more applicable to cylindrical particles in liquid flow, and simulation based on the model can reflect the trend of particles shifting towards the inner wall with increasing inlet velocity, especially at 3 and 4 m/s.

3.2 Effect of Inlet Velocity on Erosion

As a higher inlet velocity results in greater impact energies, there is also a nearly exponential rise in the maximum erosion rate, as shown in Fig. 9. Clearly, the inlet velocity has a significant effect on erosion. According to the results displayed in Fig. 10(a), the maximum erosion rate changes slightly at different bend curvature angles for 2–5 m/s. When the flow velocities are 6 m/s and 7 m/s, the local maximum erosion rate occurs at 6°, 40°, and 73°. To provide a clearer view of these results, the maximum erosion rates along the inner and outer walls are plotted in Figs. 10(b) and 10(c), respectively. Increasing the inlet velocity alters the spatial distribution of particles, which contributes to friction between the particles and the inner walls. The position of maximum erosion shifts from the outer walls to the inner walls at 6 m/s. The maximum erosion rate along the inner wall is very similar at velocities of 5 m/s, 6 m/s, and 7 m/s. For the outer wall, the peak values are centered around 70°.

Figure 11 illustrates the particle trajectories and contours of erosion rate. For inlet velocities of 2 m/s and 3 m/s, the particles are limited to the bottom of the elbow due to the drag force and gravity. Hence, the particles only contact outer wall when passing through the bend section. According to Fig. 10(c), particles start to contact and separate from the walls at about 8° and 70°, and the main features are uniform shallow erosion in the middle and more serious damage at both ends. When the inlet velocity is from 4–7 m/s, the surface morphology of the outer wall shares similar characteristics and agrees with the particle trajectories. The trajectories can be generally divided into two parts: one set along the inner wall and another set...
along the outer wall. Severe erosion areas along the inner wall are concentrated around the elbow’s center and the extent of the particle distribution significantly increases in the section above the bending axis. Most particle trajectories turn towards the inner wall, which results in a change of the maximum erosion rate position at 6 m/s and 7 m/s. In the following, the Stokes number (St) is used to describe the erosion law with changes in inlet velocity.

Particles flowing through the elbow are mainly subjected to the particle inertial force and the drag force exerted by the fluid, which ensures the particles move along the tangential direction and prompts them to follow the water streamlines, respectively. The particle Stokes number is a measure of the ratio between the inertial force and drag force. This dimensionless number is related to the particle trajectories and is written as $St = \frac{\rho_p d_p^2 \mu}{18 \mu D}$. To analyze the erosion location, a dimensionless number $\lambda$ is defined as the ratio of the inner wall’s maximum erosion rate to that of the whole elbow. Figure 12 shows that $\lambda$ increases as the Stokes number rises. For $St \geq 113.7$, $\lambda$ stabilizes at a value of 1 and no longer changes. Furthermore, the inertial force plays a leading role and particles contain sufficient momentum to cross the vortex with a large Stokes number. In this case, particles deviate from the streamlines of the surrounding fluid and directly contact the inner wall. When $St \geq 113.7$, the maximum erosion rate occurs at the inner wall; when $St < 113.7$, it will occur at the outer wall.

The erosion traces move closer to the sidewalls with increases in velocity, which illustrates that cylindrical particles are susceptible to secondary flows. The secondary flow vortices are generated by the centrifugal effect and push the flow to the sidewalls. The velocity vectors at the plane perpendicular to the bend curvature angle of 90° are displayed in Fig. 13. A portion of the flow separates from the bulk flow, and one pair of counter-rotating vortices forms. Their intensity becomes stronger as the inlet velocity increases.
3.3 Effect of Particle Shape on Erosion

With the particle generation rate and the inlet velocity held constant at 0.2 kg/s and 4 m/s, numerical simulations were carried out with particle aspect ratios of 1, 2, 3, and 4. The maximum erosion rate decreases as the aspect ratio increases, as displayed in Fig. 14. This is because a higher aspect ratio means there are fewer particles, which reduces the impact density. Compared with spherical particles, cylindrical particles are subjected to a greater drag force. Table 3 presents the number of particle–wall collisions. Given the larger contact area, particles with $Ar=2$ and $Ar=3$ produce a greater number of collisions than spherical particles. The collision number is associated with the length of the sliding path.

---

**Fig. 12. Relationship between $\lambda$ and $St$.**

**Fig. 13. Velocity vectors on a cross-section and erosion profiles of outer walls.**

(a) 2 m/s  
(b) 5 m/s  
(c) 7 m/s

**Fig. 14. Influence of aspect ratio $Ar$ on maximum erosion rate.**
Fig. 15. Variation of (a) maximum erosion rate, (b) maximum normal cumulative contact energy, (c) maximum tangential cumulative contact energy along bend curvature angles.

Table 3 Statistical information of particles passing through the elbow

<table>
<thead>
<tr>
<th>Ar</th>
<th>Number of particles</th>
<th>Number of collisions (particle-particle)</th>
<th>Number of 1 (particle-wall)</th>
<th>Drag force (10$^{-3}$ N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52514</td>
<td>10526</td>
<td>8363</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>15057</td>
<td>5051</td>
<td>10443</td>
<td>1.06</td>
</tr>
<tr>
<td>3</td>
<td>11323</td>
<td>3327</td>
<td>9857</td>
<td>1.48</td>
</tr>
<tr>
<td>4</td>
<td>8799</td>
<td>2563</td>
<td>8263</td>
<td>1.85</td>
</tr>
</tbody>
</table>

To quantify the two modes of erosion on the elbow wall, the normal and tangential cumulative contact energies are introduced to measure the cumulative energy produced by material impacting and sliding, respectively. $E_n$ and $E_t$ are expressed as

$$E_n = \sum |F_x V_n \delta t|$$

$$E_t = \sum |F_y V_t \delta t|$$

where $V_n$ is the normal relative velocity, which is negative in a loading situation, and $V_t$ is the tangential relative velocity.

Figure. 15(b) illustrates impacting mode occurs mainly in the entrance and exit section of the elbow. Specifically, the maximum normal energy of the wall begins to increase at 5° and reaches a peak value at 10°. The curve exhibits a decreasing trend within the range of 10°–70°. This tendency is even more pronounced for cylindrical particles. At locations beyond 70°, where the downstream region is adjacent to the outlet, the maximum normal energy of cylindrical particles gradually increases. Spherical particles exhibit rapid growth in this region, with two maximum values. The maximum tangential energy curves display similar fluctuations, with a clear trough appearing at 40° and two peaks at 10° and 70°. Likewise, Fig. 15(a) shows the sudden drop in erosion rate at 40° and 70°. This is because of the continuous particle-wall sliding and friction leading to reduce particle velocity. At this time, the particles will follow the fluid flow and separate from the wall at 40° and 70°. It is clear from Fig. 15(c) that spherical particles have a larger range of fluctuations.
We now divide the circumferential erosion regions at 10° intervals, as shown in Fig. 16, so that computational domain 1 corresponds to circumferential angles of 0°–10°, and so on. Figure 17 shows the erosion and cumulative energy variation at different circumferential angles. The locations of severe erosion are distributed in the range of 170°–200° and the maximum erosion rate, which has a parabola-like profile, occurs from 120°–240°. There is a clear distinction in the erosion distribution between the spherical particles and the cylindrical particles. Spherical particles are almost unaffected by secondary flow and barely enter the area of 0°–120°, whereas cylindrical particles slide along the walls so that the wall normal energy is almost zero in this range (see Figs. 17(b) and 17(c)).

Spherical (Ar=1) and cylindrical particles (Ar=2, 3, and 4) exhibit distinct contact energy distributions. In either axial or circumferential direction, the contact energy distributions of cylindrical particles with Ar=2, 3, and 4 follow a similar trend. Overall, in the process of contacting the elbow walls, \( E_t \) is greater than \( E_n \) and can be written as \( E_{t_{\text{max}}} = nE_{n_{\text{max}}} \). For particle aspect ratios of 1, 2, 3, and 4, \( n \) is equal to 17.6, 20.3, 20.5, and 21.5, respectively. And the curve representing tangential energy basically coincides with that of the erosion rate. On the other hand, the particle-wall collisions are high, and elbow erosion marks appear as stripes. All of this suggests that sliding is the predominant behavior during contact with the elbow walls.

4. CONCLUSION

A CFD-DEM coupling method has been used to calculate the elbow erosion rate produced by cylindrical particles composed of multi-sphere clumps. The effectiveness of various drag models was verified through comparisons against experimental results. Numerical simulations were performed under various inlet velocities and aspect ratio conditions. Based on the results, the following conclusions can be stated.

(1) The calculated particle distribution based on single non-spherical particle drag models followed the experimental images' trends. Using Haider Levenspiel model is more accurate to recreate cylindrical particles flow in an elbow, while simulation with the Di Felice drag model does not.

(2) A higher inlet velocity not only increases the kinetic energy of the particles, but also affects their spatial distribution, as indicated by the particle trajectories. Numerical simulation results show that the elbow erosion morphology is aligned with the particle trajectories. Most particle trajectories turn towards the inner wall, which results in the same position of maximum erosion at 6 m/s and 7 m/s. The critical Stokes number is identified as 113.7. Cylindrical particles are susceptible to secondary flows, which lead to a sidewall shift in the erosion traces.

(3) Given the same particle quality, the impact density decreases with increasing aspect ratio, resulting in a reduction in the maximum erosion rate. According to the collision number statistics, sliding is the predominant
contact mode. Furthermore, $E_i$ and $E_s$ were introduced to quantify the impacting and sliding, respectively. $E_s$ is greater than $E_i$ and can be written as $E_{s\text{res}} = nE_{i\text{res}}$. For particle aspect ratios of 1, 2, 3, and 4, $n$ is equal to 17.6, 20.3, 20.5, and 21.5, respectively.

**ACKNOWLEDGEMENTS**

The authors are grateful to the National Natural Science Foundation of China (Grant Nos. 52176048, 51876194, U1909216).

**CONFLICT OF INTEREST**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

**AUTHORS CONTRIBUTION**


**REFERENCES**


