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ABSTRACT 

The simulation of nonlinear surface waves is of significant importance in safety 

studies of fluid containers and reservoirs. In this paper, nonlinear free surface 

flows are simulated using a fixed grid method which employs local exponential 

basis functions (EBFs). Assuming the flow to be inviscid and irrotational, the 

velocity potential Laplace’s equation is spatially discretized and solved by 

considering the nonlinear Bernoulli’s equation for irrotational flow as the 

boundary condition on the free surface. The nonlinear boundary conditions are 

imposed through a semi-implicit iterative time marching. The fixed grid feature 

of the method, based on a Lagrangian description of fluid flow, allows for 

retaining the portion of the discretization performed in the first time step for the 

bulk of the fluid. Thus, the portion which pertains to the regions near the moving 

boundaries is reprocessed during the time marching.  The accuracy and 

efficiency of the existing solution is shown by simulating various problems such 

as liquid sloshing induced by external excitation of the reservoir or initial 

deformed shape of liquid, seiche phenomena and solitary wave propagation in a 

basin with constant depth or with a step, and comparing the results with those 

which are analytically available or those from available codes such as Abaqus.  

The proposed method shows far better stability of the results when compared 

with those of Abaqus which sometimes exhibit divergence after a relatively large 

number of time steps. For instance, in the propagation of the considered solitary 

wave in an infinite-like domain problem, the wave height is calculated by the 

maximum error of 1.6% and 9% using the present method and Abaqus, 

respectively. 
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1.     INTRODUCTION 

 Investigating free surface waves of fluids is of 

importance for designers, since its knowledge helps to 

increase preparedness and safety of engineering 

structures. For instance, liquid sloshing in tanker trucks or 

similar situations can cause overturning moments or other 

damaging forces. By calculating these moments and 

forces, it is possible to analyze the stability of the 

compound system, and if needed, to make changes in its 

design. Among these changes is the use of baffles in the 

tanks to change the natural frequency of the system, the 

liquid’s displacement and other flow’s characteristics. 

Consequently, many researchers have investigated such 

systems under sloshing phenomena. Tuned-liquid 

dampers (TLDs) are the samples of structural components 

which require a correct analysis of fluid behavior (see for 

instance Crowley & Porter, 2012; Love & Tait, 2014; 

Pandit & Biswal, 2019). 

 Regarding liquid sloshing in tanks, Abramson (1966) 

comprehensively investigated the problem using linear 

theories for the first time. In recent years, the sloshing 

phenomenon has been revisited using different 

approaches. Mandal and Maity (2016) analyzed the water 

sloshing in a rectangular tank using the finite elements 

method (FEM). In this article, the equation obtained by 

merging the momentum and continuity equations, and 

neglecting higher order terms, is solved through a 

Galerkin approach. The free surface boundary conditions 

are also considered assuming linear waves during the 

sloshing. Xue et al. (2019) studied the sloshing in 

reservoirs with various shapes using the OpenFOAM 

code. Rawat et al. (2019) investigated the sloshing 

problem in cylindrical and rectangular tanks using the 

FEM-based software, Abaqus, and two other numerical 

approaches. In this research, Bernoulli’s equation is used 

to calculate the pressure while ignoring the higher  

order terms. Also, the free surface is traced using a volume  
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NOMENCLATURE 

A  amplitude of excitation or wave  ,  su u  velocity vector of fluid/solid walls 

C  constant factors matrix  X  global Cartesian coordinate 

E  basis functions matrix  ,  X Y  components of X  

F  constants column vector  x  local Cartesian coordinate 
, D Nf f  Dirichlet/Neumann boundary 

conditions values 

 ,  x y  components of x  

g  gravity acceleration vector  t   time step 

K  coefficients matrix    free surface elevation 

N  shape functions matrix    fluid density 

n  outward normal vector    velocity potential 
p  fluid pressure    

 

fraction tool, which is somewhat similar to the volume of 

fluid (VOF) method. 

 Apart from sloshing in tanks, fluid flow simulation 

plays a prominent role in the studies of natural disasters. 

The occurrence of an earthquake in the seabed, and the 

induced vertical displacement, causes the displacement of 

a huge volume of water, within the order of 1 m of height 

and 300 km of length, and thus formation and movement 

of surface waves with the speed of 700 km/hr (Goring, 

1978) known as “tsunami”. The shape of these waves will 

change when they enter the shallow water regions near the 

coastal areas. The produced high-energy waves can cause 

destructive and deadly natural disasters if they hit 

industrial and urban areas. However, it is possible to 

control/reduce the power of the waves by constructing 

breakwaters if the fluid's behavior is fully understood. 

 Since 1970, the tsunami phenomenon has been 

investigated by many researchers using the model of a 

solitary wave (see Madsen et al., 2008; Domínguez et al., 

2019; Chao et al., 2021). For this reason, the propagation 

of solitary waves in the basins with different bottom’s 

topologies is widely studied. Kânoğlu and Synolakis 

(1998) examined solitary wave propagation over 

piecewise linear topography analytically and 

experimentally. Lo and Young (2004) simulated free 

surface flows such as solitary wave propagation and 

collision with rigid walls, interaction of two opposite 

solitary waves and propagation of a solitary wave passing 

over a submerged obstacle by using the arbitrary 

Lagrangian Eulerian (ALE) approach and also by solving 

velocity-vorticity equations through a weak FEM 

formulation obtained by the Galerkin method. Nakoulima 

et al. (2005) presented an analytical solution for the 

solitary wave passing over periodic topography. Shen and 

Chan (2008) studied the transformation of the solitary 

wave on trapezoidal and rectangular submerged obstacles 

using a numerical method based on the immersed 

boundary (IB). In this article, the VOF method was used 

to track the free surface. Also, Hsiao and Lin (2010), Wu 

et al. (2012), Xiao et al. (2013) and Zarruk et al. (2015) 

investigated the solitary wave propagation in various 

basins experimentally and also by using VOF numerical 

methods. Akbari (2017) studied the solitary wave 

breaking and its collision with vertical and inclined walls 

by using an improved version of smoothed particle 

hydrodynamics (SPH) method. Paprota et al. (2018) used 

a semi-analytical approach, as well as the SPH method, to 

investigate the propagation of a solitary wave and its 

collision with a vertical wall. 

 On a rather similar line of research, Tripepi et al. 

(2020) studied the horizontal and vertical forces acting on 

a submerged square barrier during the propagation of a 

solitary wave using the SPH method followed by a 

laboratory simulation for the validation of the results. 

Magdalena et al. (2020)  presented an analytical solution 

based on the linear shallow wave equations and then used 

it to examine the reduction of wave’s amplitude while the 

wave is passing over two rectangular obstacles. They 

compared the results with a numerical solution of the 

aforementioned equations based on the finite volume 

method (FVM). Han and Dong (2020), using the SPH 

method, investigated solitary waves passing over 

submerged barriers with semi-cylindrical and rectangular 

shapes. Chao et al. (2021) numerically and experimentally 

investigated the passage of waves over a single step while 

considering different dimensions for it. Ghafari et al. 

(2021) experimentally/numerically compared the wave 

passage over two submerged barriers. The numerical 

modeling has been performed using ANSYS Fluent based 

on the FVM. By using an analytical method and 

OpenFOAM, Mohapatra et al. (2022) studied the 

characteristics of a solitary wave passing over a rigid 

floating structure. 

 The investigations carried out in the field of fluid 

dynamics can be classified into three categories of 

analytical, numerical and laboratory studies or a 

combination of them. However, analytical solutions are 

generally limited to specific problems and conditions. 

Also, laboratory tests require special equipment and thus 

they are operationally expensive. Therefore, numerical 

modeling is the most accessible method for investigating 

engineering problems. 

 Due to relatively large, or even very large, 

displacements in most of the aforementioned problems, 

mesh-based numerical methods suffer from the 

fundamental defect of mesh distortion. As a result, in 

recent years, the development and use of mesh-free 

methods have been the focus of many researchers. Among 

these methods, as stated earlier, SPH has been used as one 

of the most powerful and well-known meshless methods 

in solving many such problems. However, requiring a 

huge number of particles, considering the limitation due to 

the Courant number, leads to an enormous computational 

burden (see Domínguez et al., 2022).  It is worth 
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mentioning that massive parallelization, use of graphics 

processing units (GPUs) power, and development of codes 

such as DualSPHysics for providing hardware 

acceleration possibility are part of the efforts that have 

been made to compensate for the shortcoming of the SPH 

method (i.e. increasing the computational power of the 

available equipment and not necessarily decreasing the 

computational cost of the method). 

 Another successful and widely used method to deal 

with the large displacement of fluid is the VOF, and its 

derivatives, which are used to track the moving 

boundaries. This method was presented by Hirt and 

Nichols (1981) and has been widely used in different 

researches with various approaches. However, in order to 

track relatively accurate and sufficiently smooth 

boundaries, high resolution meshes are needed. Again, 

this effect in turn leads to high computational cost and 

storage space. 

 The objective of this paper is to present a method with 

a relatively small number of variables (nodal values) for 

simulating nonlinear waves. In this study, Navier-Stokes 

equations for fully incompressible inviscid fluid are 

numerically solved by means of potential theory using the 

local form of the exponential basis functions (EBFs) 

method, for spatially discretization of the governing 

equation, equipped with a second-order time marching 

scheme to discretize the time domain. The flow is assumed 

to be irrotational and the free surface dynamic boundary 

condition is satisfied using the nonlinear Bernoulli's 

equation for irrotational flows. The solution method is 

employed to simulate problems such as fluid sloshing due 

to the external excitation of the container or the initial 

deformation of the fluid, high amplitude wave movement 

in a long tank (seiche phenomenon), and the propagation 

of a solitary wave in a basin with constant depth and with 

a step. It is worth noting that the EBFs method has been 

developed in different forms; by Soleimanifar et al. 

(2014), Shojaei et al.  (2015); Mirfatah et al. (2019) and 

used in the analysis of various engineering problems; by 

Zandi et al. (2012); Boroomand et al. (2016); Pary 

Abarghooei and Boroomand (2018); Movahedian et al. 

(2021); Motamedi et al. (2022). The application of EBFs 

in construction of absorbing boundary conditions can be 

found in the works by Shojaei et al. (2019, 2020),  

Mossaiby et al. (2020), Hermann et al. (2022). In this 

paper, as a part of the solution procedure to spatially 

discretize the governing differential equations, we employ 

the last version of the EBFs method introduced by 

Mirfatah and Boroomand (2021) which uses a fixed 

background grid as the location of the main degrees of 

freedom (DOFs) and satisfies the boundary conditions 

through a least square procedure. This feature results in 

the independence of the DOFs’ location from the 

boundaries, and thus, makes it possible to model problems 

with moving boundaries displaced with relatively large 

amplitude. As will be shown later, the method is capable 

of generating accurate geometry in fluid flow problems. 

The comparison of the obtained results with the available 

analytical and numerical results shows a good agreement 

between the two sets despite the use of much less DOFs  

 
Fig. 1 Domain of a generic problem and its 

boundaries 

 

and larger time steps compared to the SPH method. Also, 

the modeling of seiche phenomenon and solitary wave 

propagation is performed by using the FEM-based Abaqus 

through which the superior performance of the method, in 

terms of stability, has been confirmed. 

 The layout of the paper is as follows: In section 2 the 

governing equations of the problem are mentioned. 

Section 3 describes the numerical method used to 

discretize the governing equations. Section 4 is dedicated 

to solving various problems of free surface flows and 

comparing the results, and in section 5, overall 

conclusions are presented. 

2. GOVERNING EQUATIONS 

 Consider a 2D domain,  , occupied by an 

incompressible inviscid fluid (Fig. 1). Assuming the fluid 

flow to be irrotational, the well-known potential theory 

states that the velocity vector, u , has a scalar potential 

function,  , such that =u  and the potential function 

satisfies the following equation 

2 0     in   =                                                              (1) 

in which 
2  is the Laplace operator. Also, the boundary 

conditions on the impermeable solid walls ( S ) can be 

expressed as 

. .        or       / .       on s s Sn=   = u n u n u n                 (2) 

where n  and su  are the outward normal vector and 

velocity vector of the solid wall, respectively. In addition, 

the nonlinear dynamic boundary condition on the free 

surface ( F ) is written as 

( )D / D 1/ 2 .       on Ft gy  = −                            (3) 

in which y  is the vertical coordinate. Finally, the 

governing equation and related boundary conditions can 

be summarized in 
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where, S  and F  are solid boundaries and free surface, 

respectively, so that S F =   . Note that 0  can be 

found by the initial velocity, which is zero for flows 

initiated from rest. 

3. NUMERICAL METHOD 

 In this section, we explain the EBFs method as a 

meshless approach, to spatially discretize the potential 

function, and a second-order scheme to discretize the time 

domain. 

3.1 Spatial Discretization, Using the EBFs 

 Several forms of methods using EBFs have so far been 

developed by researchers. Using a fixed grid to discretize 

the domain, and to reduce the sensitivity of the method to 

the boundaries’ placement, is expected to be beneficial for 

dealing with the problems that have moving boundaries. 

Accordingly, we employ the version recently presented by 

Mirfatah and Boroomand (2021) considering its potentials 

to handle such problems. Here, the method is further 

equipped with some numerical techniques to adapt to free 

surface sloshing problems. The solution procedure 

comprises a spatial solution, at each instance of time, for 

Eq. (1) along with the following generalized form of the 

boundary conditions, 

              on 

/      on 

D F

N S

f

n f





= 

  =                                                    (5) 

in which Df  and Nf  are used as the simplified forms of 

the values specified for the Dirichlet and Neumann 

boundary conditions, respectively, in Eqs. (4). The next 

section explains the spatial solution procedure. 

3.1.1 Spatial Discretization 

 Consider an arbitrary bounded 2D domain, like the one 

shown in Fig. 2, whose bounds are illustrated by a set of 

dots. Here, we name these points as the boundary points 

and do not define any degree of freedom on them. For 

spatial discretization and defining DOFs, we scatter a set 

of main points engulfing the computational domain and its 

boundaries. A regular grid is employed which in turn 

contributes to the method’s efficiency. In Fig. 2, the main 

points laying inside and outside the domain are indicated 

as blue and gray points, respectively. It is worth noting that 

we define the DOFs only at the main nodes placed inside 

the domain (internal nodes shown by blue points) and the 

impact of the external nodes (shown by gray points) will 

be taken into account during the numerical process 

through static condensation. 

 As the next step, to each main point inside the domain 

we assign a set of neighboring nodes to construct the 

node’s cloud. The neighboring points assigned to a main 

point may include points both inside and outside the 

domain. The presented work uses rectangular clouds 

consisting of eight neighboring nodes for each node, as 

shown in Fig. 2. The EBFs method in its local form uses 

the following approximation at each cloud to interpolate 

the field variable   

 

 
Fig. 2 Spatial discretization  
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  (7) 

 1 2, ,...,
T

mc c c=C                                                          (8) 

where i  and i  are constant coefficients, ic  are 

unknown coefficients and m  is the number of basis 

functions. The main idea of this method is to use some 

basis functions that satisfy the governing equation while 

finding the unknown coefficients in such a way that the 

boundary conditions are satisfied. Thus, the appropriate 

basis functions for Laplace’s Eq. (1) are those which 

2 2 0i i + =                                                                   (9) 

 Evaluation of Eq. (6) at the cloud’s nodes (except the 

central one) leads to 

R R=φ E C                                                                     (10) 

where 

 
1 2 n

T

, , ,R   = 
x x x

φ                                           (11) 

( ) ( ) ( ) 1 2, ,...,
T

R n=E E x E x E x                                 (12) 

in which ix  is the local coordinate of the i th node of the 

cloud with respect to the cloud’s central node and n  is the 

number of the cloud’s nodes (disregarding the central 

one). Note that RE  is an n m  matrix. Nonetheless, the 

specific way of choosing the basis functions in the present 

work leads to m n= . Therefore, the unknown coefficients 

can be evaluated from Eq. (10) as 

1
R R
−=C E φ                                                                     (13) 

 Now, Eq. (6) can be rewritten as 

ˆ ( ) R = N x φ                                                                   (14) 
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1( ) ( ) R
−=N E x Ex                                                            (15) 

in which ( )N x  is the shape functions row matrix which, 

for the sake of conciseness, is presented in the Appendix. 

 Remark 1. Although the governing differential 

equations are stated with respect to the global Cartesian 

coordinate system, ,X Y=X , the solution procedure 

can be continued with respect to the local Cartesian 

coordinate system, x , at each cloud. This is true because 

the only transformation required to map the X  coordinate 

system to the x  is just a translation and therefore, the 

Jacobian of this transformation is an identity matrix.■ 

3.1.2 Construction of the System of Algebraic 

Equations 

 As mentioned earlier, the used shape functions satisfy 

the governing PDE, and therefore, the spatial solution 

procedure can be completed by applying the boundary 

conditions and the continuity of the cloud’s 

approximations. The former will be explained in the next 

section, and the latter can be performed by evaluating Eq. 

(14) at each cloud in the location of the cloud’s center and 

setting it equal to the nodal value at that location, i.e. 

0CC R − =N φ                                                             (16) 

where CN  and C  are the shape functions vector and 

nodal value at the cloud’s center, respectively. It is worth 

noting that this procedure is performed for those clouds 

whose all of their nodes lay inside the domain (for 

example, the cloud of node A in Fig. 2). Note that in the 

definition of the shape function, see Eq. (14), the central 

node was excluded from the set. Therefore, in Eq. (16), the 

DOF’s value associated with the central node is evaluated 

from the nodes surrounding it. 

 For the DOFs defined on the central node of the 

boundary clouds (those that contain at least one external 

node) Eq. (14) can be divided into two parts as 

( ) ( )ˆ    int int ext ext += N x N xφ φ                                      (17) 

where the subscripts int  and ext  denote the internal and 

external nodes of the domain, respectively. Since there is 

no DOF at the external nodes, the term 
extφ  should be 

condensed from the last equation. Hence, this term is 

evaluated in such a way that the boundary conditions of 

Eqs. (5) are satisfied by minimizing the following residual 

2
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in which 
D  and 

N  are the portion of the  Dirichlet and 

Neumann boundaries laying inside the cloud, and ix  is the 

local coordinates of the i th boundary point. Also,
Dw  and 

Nw  are the weight functions related to the Dirichlet and 

Neumann boundaries, respectively, and are considered as 

( )1/ +x  in which   is a small number to prevent the 

zero denominators. Substituting Eq. (17) and minimizing 

the residual as 

t/ ex  =φ 0                                                               (19) 

leads to 

t t   int int ex ex+ − =φA A Tφ 0                                          (20) 

in which 
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 Considering that the 
texA  is a square matrix, Eq. (20) 

can be solved for 
texφ  as 

( ) ( )t t

1
 ex ex int int

−
−= A T φAφ                                        (24) 

 Substituting Eq. (24) into Eq. (17) leads to 

( )

( ) ( )( )

1

1

ˆ

    

ext ext

int ext ext int int

 −

−

=

+ −

N x A T

N x A φN x A
                            (25) 

that can be used instead of Eq. (14) for the boundary 

clouds. Therefore, evaluating the above equation at the 

cloud's center location generates an equation equivalent to 

Eq. (16) that corresponds to the DOFs located at the center 

of the boundary clouds as 

( )1 1

, , ,c int c ext c ext int int ext c ext − −=− −N N A A N Aφ T
  

              (26) 

where the subscript c  denotes the location of the cloud’s 

center. Finally, the whole set of Eqs. (16) and (26) for all 

clouds appears as a system of algebraic equations as 

=Kφ F                                                                         (27) 

where K  is the coefficients matrix, φ  is a column vector 

consisting of unknown internal nodal values and F  is the 

constants column vector. Solving Eq. (27) for φ  

determines the internal nodal values and the nodal values 

of the external (but near the bounds) nodes can be 

evaluated by calculating the average of the values of Eq. 

(24) found from adjacent clouds containing them. 

Therefore, through writing Eq. (14) for all clouds, the field 

variable and its derivatives can be evaluated at any 
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location in the domain using the weighted average of the 

solutions within the nearby clouds. 

3.2 Time Discretization 

 The time marching starts from the initial conditions 

defined in Eqs. (4). Now consider an arbitrary time step, 

n , between the times nt , with the boundary points located 

in the available n
x  geometry and 1n n nt t t+ = +  , with the 

boundary points located in the yet-unknown 1n+
x  

geometry. Through the knowledge of the solid walls’ 

velocity and the values of the potential field on the free 

surface at the beginning of the time step, 
n

su  and 
n

F , Eqs. 

(1) and (5) can be solved to find the velocity field at this 

time, n
u , as 

n n=u                                                                       (28) 

 Assuming a constant velocity during the time step, the 

approximate position of the boundary points at the end of 

the step, which is named as “intermediate geometry”, is 

evaluated as the following equation. 

1n n n nt+ = + x x u                                                         (29) 

 The tilde mark denotes the approximation to the 1n+
x  

, and not its exact value. Also, an approximation to the 

potential values on the free surface at 1nt +  can be 

evaluated by using the linear finite difference in the time 

domain for Eq. (3) as 

1
F F

1
.

2

n
n n ngy t   +  

= + −  
 

                                (30) 

 Now, Eqs. (1) and (5) are solved again at the 

intermediate geometry, 1n+
x , using the corresponding 

boundary conditions, which leads to the attainment of an 

approximation to the velocity field at the end of the time 

step in terms of the evaluated potential as 

1 1ˆn n+ +=u                                                                  (31) 

 Finally, the position of boundary points at the end of 

the time step can be evaluated by assuming a linear 

variation of velocity between n
u  and 1n+

u  that leads to a 

second order geometry tracking as 

( )( )1 11/ 2n n n n nt+ += + + x x u u                                  (32) 

 Also, the velocity potential values on the free surface 

can be obtained by a similar approach and using a second-

order approximation as 

1/2
1

F F

1
.

2

n
n n ngy t   

+
+  
= + −  

 
                           (33) 

where the superscript 1 2n +  indicates an average 

between the quantities found at the beginning of the time 

step and the intermediate geometry. 

 Obviously, while marching in time, and as the 

nonlinearity of the solution becomes prominent, the 

differences between the values evaluated by two 

assumptions pertaining to the linear variations and the 

second-order variations during the time step, Eqs. (30) and 

(33) also Eqs. (29) and (32), may grow. Hence, this 

deviation can be used as a criterion for the accuracy of the 

algorithm. Thus, the following relations must be satisfied 

1 1
x

n n + +− x x                                                           (34) 

1 1
F F
n n

  + +−                                                           (35) 

in which x  and   are small values acting as the 

precision. If the above relations are not satisfied, the final 

geometry, which is evaluated by a second-order scheme, 

can now be considered as intermediate geometry as 

1 1n n+ +=x x                                                                    (36) 

1 1
F F
n n + +=                                                                    (37) 

and the next iteration is performed by using Eq. (31). It is 

worth mentioning that the number of iterations at each 

time step can be used as another criterion to determine the 

sufficiency of the step length, nt . Therefore, the time 

step’s length will be decreased if the number of iterations 

exceeds a given value. Moreover, the Courant number 

defined as 

 /
max minxc t= u                                                       (38) 

is also used to control the length of the time step. In this 

regard, the following Courant condition must be satisfied 

c                                                                              (39) 

in which   is a constant. Although 1 =  theoretically 

guarantees the stability of the used numerical scheme, 

practically, the value of   may be decreased to increase 

the accuracy of the time discretization scheme as its value 

is often limited to 0.5 or even 0.1. This value is limited to 

0.2 in the present work. Also, we restrict the Courant 

number to be greater than a minimum value to speed up 

the simulation. 

It is noted that in some cases, particularly problems with 

rather large deformations, the arrangement of boundary 

points may become irregular greatly due to the movement 

of the points in a manner in which some points are 

separated from each other and some are pressed into 

together. Hence, another skill which may improve the 

quality of results is the rearrangement of boundary points. 

This is performed by equalizing the distances between the 

nearby boundary points and linearly interpolating the 

boundary conditions on the new points. 

4. NUMERICAL SIMULATIONS 

 Numerical models related to the free surface fluid flow 

subjected to various forms of excitation are presented in 

this section. The fluid, water, is assumed to be inviscid and 

incompressible and the only body force is gravity. Thus, 

the fluid motion is due to the presence of gravity and initial 

velocity or deformation of the fluid or even due to the 

movement of the fluid container. 
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(a) 

 
(b) 

 
(c) 

Fig. 3 Wave height at right wall of the rectangular tank subjected to harmonic excitation of frequencies 

(a) 1.9 = , (b) 3.79 =  and (c) 11.38 /rad s =  

 

4.1 Rectangular Reservoir Subjected to Harmonic 

Excitation of Base 

 This example explains the behavior of a rectangular 

tank subjected to a harmonic excitation as 

( ) ( )(1 cos )s t A t−=
                                                   (40) 

 The specifications of the model are the same as that 

given by Chen et al. (2007). i.e., the tank has a length of 

80L cm=  and a still water depth of 10h cm=  while  the 

excitation has an amplitude of 0.04A cm=  and various 

frequencies,  , of 1.9, 3.79 and 11.38 rad/s. These 

frequencies are chosen to simulate under-resonant, 

resonant and over-resonant conditions, with the 

knowledge of the first natural frequency of the container, 

which is equal to 3.79 rad/s for the mentioned tank 

through the following formula 

( )1 ( / ) tanh /g L h L  =
                                        (41) 

based on the linear wave theorem. 

 The example is solved using the presented method by 

means of a main grid with the point spacing of

2x y cm =  = , boundary points with the spacing of 0.4 

times the main grid’s node spacing, and time steps of 

length 0.01 0.02t s = −  that is 10-20 times the time steps 

used in the mentioned reference. The wave height at the 

right wall, obtained by using the present method and that 

reported in the reference, is shown in Fig. 3. 

 The results show a good agreement between the 

results of the present work and those of the mentioned 

reference despite the fact that larger time steps were used 

which in turn indicates the efficiency of the proposed 

time marching. 

4.2 Sloshing of Water with Inclined Initial Free 

Surface 

 This example deals with the sloshing of water with an 

initial inclined free surface and zero initial velocity. An 

inclined free surface can be decomposed into infinite 

standing waves. Thus, the initial free surface is expressed 

defined as 

1

( ,0) sin( )n n

n

x A k x


=

=                                                 (42) 

and the free surface elevation at any time t  is evaluated as 

Eq. (43) using the linear wave theorem 

1

( , ) sin( )cos( )n n n

n

x t A k x t 


=

=                                   (43) 
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where 

2 2/ ( )(4sin( / 2) 2sin( ))nA SL n n n  = −

  
                 (44) 

tanh( )n n ngk k h =

  
                                                 (45) 

in which S  is the inclined surface slope, L  is the tank’s 

length, h  is the still water depth and /nk n L=  is the n

th mode’s wave number. As stated by Lin and Li (2002), 

it is sufficient to use the first 40 modes to reach an 

acceptable accuracy. Nonetheless, due to the nonlinear 

nature of the problem and the linear analytical solution 

expressed in Eq. (43), the simulation is also performed 

using the Abaqus software to achieve another nonlinear 

solution in addition to the present method. For a tank with 

1L m= , 0.2h m=  and 0.02S =  the free surface profiles 

found by using the presented numerical method, the 

Abaqus model and also the linear analytical solution 

expressed in Eq. (43) are shown in Fig. 4 named as EBFs, 

Abaqus and linear wave theory, respectively. The 

simulation is performed for 7.5 seconds which is about 5 

times the first mode’s period. The Abaqus model uses 

2007 Q4 elements with dimensions of about 1cm and the 

presented method uses a grid of main nodes with the 

spacing of  2cm along X and Y directions, and boundary 

points with the spacing of about 0.4 times the main grid’s 

node spacing. Also, our code adapts the time steps 

automatically at the interval of 0.005-0.02 seconds in 

order to satisfy the conditions stated in Section 3.2. 

Although a good agreement between the presented results 

can be seen, the linear solution exhibits some deviations 

from the nonlinear ones in some cases that can be justified 

due to the linear nature of this solution which neglects the 

nonlinear terms. Obviously, larger amplitudes and thus, 

larger velocities will increase the effect of nonlinear terms 

and the mentioned deviation. Also, the Abaqus results 

have an obvious noise in the middle of the free surface 

profile in the simulation’s final frames (Fig. 4h), which in 

turn indicates the stability of the present method compared 

to this powerful software. 

4.3 Waves with Larger Amplitudes 

 In this example, chosen from the papers by Zandi et al. 

(2012) and Lo and Young (2004), the previous problem is 

analyzed using a trigonometric initial free surface as 

( )( ,0) cos / / 2x A x L  = +
                                      (46) 

in a larger reservoir with the length of 98L m=  and the 

still water height of 5h m= . For small initial wave’s 

amplitudes, 𝐴, the velocity field of fluid can be evaluated 

by the shallow water theory presented by Neumann and 

Pierson (1966) as 

( ), , sin sin
2

ghg x
u x y t A t

h L L

    
= +        

             (47) 

( ), , cos sin
2

A gh y ghx
v x y t t

hL L L

     
= − +        

         (48) 

 As such, the wave elevation at the left and right walls 

can be evaluated using the vertical velocity at / 2x L=  . 

The simulation is performed using various amplitudes of 

0.1, 0.5, 1.0 and 1.5 meters and the results are shown in 

Fig. 5. The results reported by Zandi et al. (2012) for the 

amplitudes of 0.1 and 0.5 meters and the results of the 

Abaqus simulation for all the amplitudes are also 

presented to provide a better comparison. The 

aforementioned reference uses 294 boundary points, 400 

basis functions and 0.02t s =  while  Lo and Young 

(2004) use 4137 elements and similar time steps. Also, the 

Abaqus modeling is performed using various element 

sizes and finally, the value of 0.1 meters (49012 Q4 

elements) is chosen as an acceptable optimal value, which 

provides relatively good accuracy in the case of the 

smallest amplitude, 0.1A m= . For larger amplitudes, the 

value of 0.5 meters is chosen as the optimal element size. 

The presented method uses a grid of main nodes with the 

spacing of 1x y m =  = , boundary points with the 

spacing of 0.2 times the main nodes spacing and large time 

steps of 0.02 0.64t s = −  which is possible thanks to the 

adaptive time marching and the low nonlinearity of the 

problem in the small amplitudes (the initial value set to 

0.02t s = , the code increased it to 0.64s  and finally, 

used the fixed value of 0.32t s =  from 3.4t s=  

onwards). The larger amplitudes have been simulated 

using smaller time steps at the interval of 

0.01 0.32t s = − . 

 As can be observed, as the excitation amplitude 

increases from 0.1 to 0.5 meters, the difference between 

the analytical and numerical results increases, which can 

be justified due to the increase in the nonlinear effects of 

the problem. Therefore, while the results of shallow water 

theory become invalid for the larger amplitudes, the 

simulation is performed using the Abaqus software to 

provide another measure to verify the accuracy of the 

obtained results by the presented method. Very good 

agreement between the results of Abaqus and those of the 

present method is observable in Fig. 5. This is true except 

for the cases of the small amplitude of 0.1 and the rather 

large amplitude of 1.5 meters. In the former case, the 

Abaqus results become noisy at some intervals. This effect 

probably occurs because of the nature of the FEM method 

that requires small elements to accurately capture the 

small deformations during the time. Whereas, this greatly 

increases the computational cost due to the large 

dimensions of the reservoir. Also, as the time marching 

proceeds, the results of Abaqus in the mentioned case 

deviate from the other solutions. Nevertheless, the good 

agreement between the results of the presented method 

and the those reported by Zandi et al. (2012) indicates the 

right path of the solution. 

 In the case of the rather large amplitude of 1.5 meters, 

the results meet a little difference at some extremes. But, 

refining the Abaqus mesh, to check the accuracy and 

convergence of its results, leads to numerical instability 

resulting from mesh distortion which is predictable due to 

the rather large displacements of the mesh. 
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4.4 Solitary Waves in an Infinite-Like Domain 

 The movement of fluid particles subjected to initial 

velocity and gravity in a very long tank is investigated in 

this section. The free surface elevation and initial 

horizontal velocity are considered similar to those 

mentioned in the reference Li et al. (2012) as 

( ) ( )2 3
0( , ) sech 3 / 4x t A A d x x ct

 
= − − 

 
             (49) 

/ ( ,0)u g d x=
                                                         (50) 

 
(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

 

 
(f) 

 
(g) 

 

 
(h) 

Fig. 4 Free surface profile of the tank with initial inclined surface at the time (a) 0t = , (b) 0.3t = , (c) 0.6t = ,  

(d) 0.9t = , (e) 1.2t = , (f) 1.5t = , (g) 4.5t =  and (h) 7.5 (sec)t =  
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(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

Fig. 5 Wave height on the left and right walls of a tank with initial trigonometric surface of amplitude (a) 0.1,  

(b) 0.5, (c) 1.0 and (d) 1.5m 
 

where 0x  is the initial position of the solitary wave’s crest, 

d  is the water depth in the absence of wave, 

( )c g d A= +  is the solitary wave celerity and the other 

parameters are the same as those in the previous examples. 

Considering the condition of lengthy-reservoir is due to 

the validation of the non-reflection boundary condition 

that states there is no reflected wave from walls within the 

domain. By such assumptions, the solitary wave should 

travel steadily while maintaining its initial shape. 

Therefore, monitoring the solitary wave shape, as time 

goes on, will provide a suitable tool for judging on the 

accuracy and stability of the solution method. 

 In the present example, a numerical wave tank with the 

water depth of 0.2d m= , length of 150L d=  and 

0.1825 0.0365A d m= =  is simulated using the Abaqus 

software (15032 Q4 elements with an approximate size of 

0.02 meters). Also, the simulation is done using the 

present method (a grid of nodes with spacing of 

0.05y m =  in order to place 4 main nodes in the height 

of the tank, 0.1x m = , 0.01t s = , 1505 initial DOFs 

and boundary points of spacing 0.1 times the minimum of 

main nodes distances) and took around 7.5 hours on a 64 

bit computer (CPU specification: Intel Core i7-4790k). 

Figure 6 shows the free surface profiles obtained by the 

present method, Abaqus and the analytical solution (Eq. 

49). In this figure, the coordinate’s origin lies on the 

middle of the tank’s length and depth, the initial position 

of solitary wave’s crest is 
0 9x m= −  that is 24 meters far 

away from the right wall mimicking the non-reflecting 

walls. It is noted that this problem was solved using a 

WCSPH model in a 24 meters long tank and 

approximately 250,000 particles, which took around 6 

days, as reported in the reference Li et al. (2012). 

 As can be seen, proceeding the time will decrease the 

quality of Abaqus results; while, the present method 

maintains the shape of the solitary wave with a good 

agreement up to the end of the simulation. To establish a 

quantitative comparison, the crest’s height at different 

times is reported in Table 1, which indicates the good 

accuracy of the presented method’s results while 

approximating the exact value of 0.0365m. 

 

Table 1 Comparison of wave amplitude at different 

times using Abaqus and present method 

Time 

(sec) 

EBFs Abaqus 

Wave 

height (m) 

Error 

(%) 

Wave 

height (m) 

Error 

(%) 

2.5 0.0366 0.27 0.0361 1.1 

5.0 0.0363 0.55 0.0353 3.29 

7.5 0.0361 1.1 0.0346 5.21 

10 0.0359 1.64 0.0332 9.04 
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(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

Fig. 6 Free surface profile of solitary wave propagation in an infinite-like domain at the times (a)2.5, (b) 5.0,  

(c) 7.5 and (d) 10 seconds 

 

 

Fig. 7 Initial geometry of solitary wave passing over a 

step 

 

4.5 Solitary Wave Passing Over a Step, Fission 

Phenomenon 

 The abrupt changes in the water depth like the one 

illustrated in Fig. 7 influences the solitary wave passing 

over the step. This leads to the fission phenomenon, which 

means decomposition of the initial wave into some 

subsequent waves (called “solitons”). The abrupt change 

in the water depth and the specific conditions at the step 

location lead to critical conditions for the mesh-based 

methods such as the FEM used in the Abaqus which result 

in the mesh distortion and termination of the simulation. 

Hence, we could not simulate such a problem with Abaqus 

due to its limitations. 

 In this example, which is simulated in the reference Li 

et al. (2012) using an SPH approach, the propagated wave 

in a tank with abrupt change in the water depth, as  

shown in  Fig. 7  with 1 00.5d d= ,  is tracked.  The wave’s  

 
Fig. 8 Formation of solitons after passing a non-

breaking solitary wave over a step 

 

specifications are the same as those expressed in Eqs. (49) 

and (50) in which 
00.104A d=  and 

0 0.2d d m= = . It is 

noted that 
0d  and 

1d  are the depth of the water before and 

after the step position, respectively. 

 The solution of this example is performed using the 

present method by means of a main grid with node spacing 

of 0.05x y m =  = , boundary points with spacing of 0.1 

times the main point spacing and adaptive time steps as 

0.005 0.02t s = − . The problem has also been solved by 

Li et al. (2012) using a set of particles with initial spacing 

of 0.005m. Figure 8 shows the solitons in an area around 

the step at the normalized times of 0.7, 3.7, 6.7, 9.7 and 

12.8 of the simulation (the normalized time corresponds to 

the dimensionless parameter 0/t t g d = ). The 

evolution of wave is also shown in Fig. 9 which provides 

a comprehensive overview of the state of wave movement 

at different times. 
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Fig. 9 Evolution of solitary wave after passing over 

the step (dashed line) 

 

 As can be observed, the formation of solitons and the 

movement of the secondary waves are clearly discernible. 

Also, after passing the wave over the step, a part of the 

wave is separated from the main wave, travels in the 

opposite direction and reflects from the left wall after 

hitting it. This effect is not observed in a mesh-based 

simulation, as the mentioned reference states. This 

example clearly demonstrates the capabilities of the 

presented method compared with some well-established 

ones. 

5. CONCLUSIONS 

 In this paper, free surface flows of incompressible 

inviscid fluids have been studied numerically through a 

fixed grid method. Among the salient features of the 

proposed method is that it is truly meshfree, and also, it 

has relatively low sensitivity to the arrangement of the 

boundary points. The latter feature not only increases the 

method’s versatility in dealing with boundaries with 

various configurations, but also increases the results’ 

stability in the solution of problems with moving 

boundaries. In contrast to mesh-based methods, the fact 

that the discretization does not need degrees of freedom 

for the boundary points further improves the versatility of 

the method in the solution of problems with very larger 

deformations. 

 Another feature of the presented method is that it 

provides a relatively smooth and noise-free solution by 

using exponential functions along with some techniques to 

increase the solution’s smoothness. Among these 

techniques are the use of interpolation functions for 

calculating the approximate values and also an averaging 

process for finding such values from the adjacent clouds. 

Also, despite the zero-order continuity of the 

approximated field, it can be seen that the obtained 

solution has smooth derivatives. For example, Fig. 10 

demonstrates the vertical velocity of the free surface in a 

problem with a rather large wave amplitude, i.e. a wave 

with an amplitude of 1.0A m=  at 20t s= . For such a 

problem good agreement is observed between the  

obtained  and  available  results  (see Fig. 5-c).  In the same  

 

Fig. 10 Vertical velocity of free surface at t=20s using 

Abaqus and present method 

 

 
Fig. 11 Vertical velocity of the upper left corner of 

free surface 

 

path, Fig. 11 shows the variation of the vertical velocity of 

the upper left point of the free surface versus the time. It 

is observable that the graphs related to Abaqus generally 

have significant amount of noise in time and space which 

adversely affects the accuracy and stability of the solution. 

Fig. 11 also confirms the effectiveness of the spatial and 

time discretization used in the proposed method. As far as 

the time discretization scheme is concerned, it has been 

observed that the corrective adaptive time marching 

algorithm can make the solution stable to an acceptable 

extent. An important point in this regard is the solution’s 

iteration which apparently increases the computational 

cost. But, regarding the automatic selection of the length 

of the time steps, it was finally observed that this increase 

in the cost is compensated by the increase in the length of 

the time steps. The reader may note that the semi-implicit 

nature of the algorithm allows the user to employ larger 

time steps. In addition, checking the difference between 

the first two consecutive intermediate geometries, which 

are obtained based on two assumptions of constant and 

linear velocity during the time step, can play the role of a 

criterion to find the number of required time steps. 

Obviously, in problems with lower amounts of 

nonlinearity, or at some instances of time in  more general 

nonlinear problems in which the whole system exhibits 

nearly linear behavior, the two assumptions lead to some 

close results and thus there will be no need of numerous 

iterations. Therefore, the algorithm's ability to check this 

criterion can decrease the computational cost. Finally, a 

combination of checking processes (i.e. for the Courant 

 

-0.2

0

0.2

0.4

-50 -30 -10 10 30 50

v
 (

m
/s

)

x (m)

EBFs

ABAQUS

-3

-1

1

3

0 10 20 30 40 50

v
 (

m
/s

)

t (s)

EBFs

ABAQUS



A. Ebrahimi and B. Boroomand / JAFM, Vol. 16, No. 10, pp. 2054-2068, 2023.  

 

2066 

number, the number of required iterations and the 

difference between two consecutively-evaluated 

intermediate geometries in a time step) makes a sort of 

balance between the accuracy and the computational cost.  

 In summary, due to the use of the exponential bases 

which satisfy the governing equation, and regarding the 

aforementioned points pertaining to the smoothness and 

stability of the results, the proposed method can be 

considered effective compared to the methods available in 

the literature. Nevertheless, reduction of the 

computational cost, e.g. in the form of using parallel 

processing, or further development of the method, e.g. for 

dealing with multiphase media, can be considered in the 

future research works. Moreover, the fixed grid feature of 

the method may make it an ideal candidate for dealing 

with more general problems involving moving 

boundaries. 
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APPENDIX 

 Consider a typical cloud consisting of the central node 

and eight adjacent nodes. Now, we need eight basis 

functions corresponding to eight adjacent nodes with 

respect to the local coordinate system,  ,x y=x  and so, 

for each adjacent node we define an ancillary coordinate 

system,  ,x y  =x  as seen in Fig. A-1. 

 Then the rational exponential basis function can be 

written as 

( , ) ( ). ( )E x y G x H y   =
                                              (A-1) 

where ( )G x  is an exponential function as 

( ) n x
G x e

  =
                                                               (A-2) 

and ( )H y  is the Fourier expansion of a hat function, like 

( )T y , as 

 

Fig. A-1 A typical cloud and its local coordinates. 
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 In which Bl  and Cl are the minimum non-zero distance 

between the considered adjacent node and the other 

auxiliary nodes along y−  and y   directions, 

respectively. Also, the parameters 1  and 2  determine 

the shape of the hat function. Therefore, the function 

( )H y  can be written as 
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where /j j l = ,  max ,B Cl κ l l=   and κ  is a 

parameter that determines the length of the zero part of the 

Fourier expansion and satisfies the sampling theorem. 

Also, the coefficient 
j  can be evaluated from Eq. (9) as 

j j =
                                                                    (A-7) 

in order to have an ascending trend along x  direction. 

Now, we can construct the shape functions using Eq. (15) 

and mapping the x  to the x  coordinate system. 

However, we can add  1, ,x y=p  to consider the double 

roots of Eq. (9) and improve the shape functions behavior. 

This can be done by using the following approximation 

instead of Eq. (6) 

( ) ( )1 2 3

1

ˆ
n

T

i i

i

c c x c y E d
=

= + + + = + x p c E x d
         (A-8) 

in which ic  and id  are the new coefficients that differ 

from the previously used ones. The procedure initiates 

with finding the ic  coefficients so that the approximation 

passes near the nodal values using a least squares scheme 

and passes the exact values with the aid of the id  

coefficients. This procedure finally leads to an equation 

similar to Eq. (14) in which 
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T T

T T
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x x x
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 The reader may refer to Mirfatah and Boroomand 

(2021) for more detailed explanations. 
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