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ABSTRACT 

This paper investigates numerically the bubble-type vortex breakdown 

apparition in the case of closed rotating flows of a viscous, axisymmetric, and 

incompressible fluid. First, a truncated conical/cylindrical cavity of spherical 

end disks is used to simulate and analyze the vortex structure under rigid surface 

conditions. The geometric effects of the enclosure are also studied. Vortex 

breakdown is demonstrated beyond the lower disk rotation rate threshold by 

introducing the no-slip condition imposed on the upper wall. The objective is to 

explore ways of controlling the evolution of this physical event by modifying 

the confinement conditions upstream of the vortex rupture. Particular attention is 

also paid to the effective kinematic viscosity, thermal diffusivity and geometric 

control of recirculation zones on the axis of rotation (axial bubble type). The 

second geometry consists of a spherical annulus formed by two concentric 

hemispheres in differential rotation under plat-free surface conditions. The 

results show that rotation of the inner hemisphere induces a vortex bubble on the 

polar axis. In contrast, the outer hemisphere rotation induces a toroidal vortex on 

the equator. 
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1. INTRODUCTION 

The confined swirling flows with vortex breakdown 

covers many engineering applications, such as 

biochemical combinations, substance transformations, 

pharmacology and mixture preparation. In the vicinity of 

the critical Reynolds number, the size of the central 

viscous core increases with the angular velocity imparted 

to it and gives rise to a type of bubble located on the 

polar axis of rotation, characterised by stagnation points, 

frequently referred to as vortex decomposition 

(Leibovich, 1978). Vortex breakdown has been 

considered as a key to understanding the fundamental 

mechanisms involved in the process of transition from 

flow to turbulence. A particular approach has been 

devoted to this physical event, characterised by a sudden 

change in fluid behaviour. It was first observed by Vogel 

(1968) in a flow pattern realised by the counter rotation 

of a single disc in a cylindrical enclosure. Vogel's flow 

visualisation tests clearly demonstrated the appearance of 

an individual recirculation zone. A perfect picture based 

on the visualisation of the flow field was determined by 

Escudier (1984). He noted different regimes where the 

flow is axisymmetric in the steady state and at notable 

penetrations into the unsteady domain. Most of the 

subsequent research (Escudier, 1984; Lopez, 1990) has 

been based on the Vogel experiment. It shows precisely 

the conditions of confinement and allows the comparison 

of numerical and experimental simulations. In this 

model, the occurrence of vortex ruptures (one, two or 

three) depends on the cavity aspect ratio and the 

Reynolds number. Several studies have applied it to the 

study of flows in close geometries. 

 Previous numerical or experimental investigations 

(Yalagach & Salih 2016) confirmed that vortex 

breakdown occurs for certain combinations of these two 

parameters (Ah, Re). Different areas of one or more 

vortex structures are mapped on the rotation axis. A 

three-dimensional flow pattern and the structure of the 

associated recirculation regions in a cylindrical enclosure 

with a large axial aspect ratio were studied numerically 

by Serre & Bontoux (2001). Bhaumik & Lakshmisha 

(2007) extended the work of Escudier (1984) using the 

lattice Boltzmann method (LBE). The authors reported a 

much wider range of parameters to trace the existence of 

one or more vortex bubbles and stable and unstable flow 

regions. While several numerical or  experimental  works   

http://www.jafmonline.net/
https://doi.org/10.47176/jafm.16.11.1767
mailto:ma.hachemi@univ-boumerdes.dz


A. Meziane et al. / JAFM, Vol. 16, No. 11, pp. 2277-2289, 2023.  

 

2278 

NOMENCLATURE 

Cp specific heat at constant pressure  Tb temperature of the lower disk 

Pr Prandtl number  α radius ratio 

Ra Rayleigh number  β thermal expansion coefficient 

Re rotational Reynolds number  θ0 angle of the sector 

Recr critical Reynolds number  λ thermal diffusivity coefficient 

R1 radii of upper disk  ν kinematic viscosity 

R2 radii of lower disk  ρ density 

R0t characteristic length of the upper disk  Ψ stram function
 

R0b characteristic length of the lower disk  Ω swirl function 

S cylindrical upper disk rotation rate ratio  Ωb, spherical bottom disk rotation rate 

S0 hemispheres rotation rate ratio  ΩL cylindrical sidewall rotation rate 

Sb spherical lower disk rotation rate ratio  Ωt spherical top disk rotation rate 

Sc top conical disk rotation rate ratio  VB vortex breakdown 

Tt temperature of the upper disk    

 

have been devoted to cylindrical cavities, other geometric 

shapes have not been well explored. Relatively little 

work is done that takes into account the problem of 

cavity asymmetry or symmetry. Bühler (2009) presented 

an experimental model of a rotating flow in a conical 

cavity with a rotating spherical wall. 

 Different paths of inspecting vortex breakdown in 

confined flows have been proposed, employing various 

techniques. Escudier et al. (2007) numerically 

investigated the effects of converging and diverging 

geometry on secondary flow with wall rotation. Several 

experimental and numerical studies have proposed other 

geometric configurations, including a rotating conical 

bottom (Pereira & Sousa 1997; Rudolf, 2008; Sousa, 

2008) to stabilise the occurrence and evolution of 

recirculation zones. 

 Other non-intrusive methods of controlling vortex 

breakdown are founded on the effect of a small fixed rod 

placed in axis of the cylinder (Cabeza et al., 2005; 

Sturzenegger et al., 2012) or via the addition near the 

axis of a co-or-counter-rotation rod of different sizes with 

rotating bottom endwall (Husain et al., 2003; Jacono et 

al., 2008; Dash & Singh 2018) or based on the 

differential rotation of a small disk of different sizes 

migrated in the non-rotating upper disk (Mununga et al., 

2014). These methods show a suppressive or stimulating 

effect on vortex breakdown. Meunier & Hourigan (2013) 

studied experimentally and theoretically the effect of 

combining properties of the fluid in a cylindrical cavity 

with a tilt angle of the rotating or stationary disk. Their 

results indicate that the flow homogenization time is 

strongly influenced by the degree of inclination of the 

rotating end disks and by the absence and/or presence of 

a vortex breakdown. The stability and comportment of a 

reverse area were studied by Dash & Singh (2018) in a 

cylindrical annulus in the case of a thin axial rotating or 

stationary rod. 

 In a cylindrical geometry, the application of an axial 

temperature gradient while the sidewall is thermally 

insulated (Herrada & Shtern 2003) reveals that a small 

positive vertical temperature gradient suppresses bubbles. 

In contrast, a negative gradient tends to favour their 

appearance. Turan et al. (2018) numerically investigated 

the effects of wall heating in several classes of 

cylindrical vessels, where flows are driven by the 

rotation of one of the end discs. The latter are fixed at 

different thermal and kinematic boundary conditions. 

Their results indicate that the rate of heat transfer has a 

spectacular effect when the cavity lid is rotated and kept 

hot or cold. Dash & Singh (2016) studied the 

development of the recirculation bubble in the 

Boussinesq flow under axial heat flow when the sidewall 

is perfectly insulated. Their study was carried out in the 

case of rotation and heating of the upper disc. Yu et al 

(2013) analysed the influence of a uniform magnetic field 

in the axial direction on the vortex structure generated by 

the rotating upper disc of a confined cylindrical cavity. 

The authors concluded that the increase of the Hartmann 

number, leads to the disappearance of the vortex 

breakdown. 

 The objectives of this work are twofold. First, we aim 

to validate our numerical simulation results with the 

experimental work of Bühler (2009). Secondly, we study 

the rupture of vortices on the axis for cavities with 

curved walls and filled with a viscous fluid. 

 Depending on the nature of this work, a set of 

dimensionless parameters which are named as follows: 

Reynolds number, rotation rate ratio of an upper disk, of 

the conical disk and the sidewall, two hemispheres 

concentric, radius ratio, angle of the sector, and 

characteristic lengths of the cavity. They characterize the 

movement of the fluid and they are defined respectively 

by Re=ΩbR2
0b/ν, S= Ωt/ Ωb, SC= Ωc/ Ωb, SL= ΩL/ Ωb, 

So = Ωt/ Ωb, α= R2/ R1, θ0, R0t= R1sin θ0, R0b= R2sin 

θ0. They can be combined to give another common non-

dimensional group with the Rayleigh number Ra and 

Prandtl number Pr. We note Ra= g β(Tb-Tt) R3
0b/νλ, 

Pr=ν/ λ, where g, β and λ are named respectively: the 

acceleration due to gravity, the thermal expansion 

coefficient, and the thermal diffusivity. The effect of 

sidewall inclination is examined by varying the angle of 

the spherical sector. This leads to the variation of the 

characteristic length parameters in the truncated cone 

cavity.  In addition,  the sensitivity of on-axis bubbles in  
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Fig. 1(a) Base schematic of the problem with 

parameters in case of heating 

 

 
Fig. 1(b) Schematic of hemispheres with free surface 

 

the spherical sector geometry with a low-temperature 

gradient is investigated. 

2.   MATHEMATICAL FORMULATIONS 

We consider the flow in a cone-shaped enclosure, enclosed 

by spherical lids, with radii R1 and R2= 300 mm. They 

rotate at different rotational speeds Ωbottom and Ωtop 

(Fig. 1a). The thermophysical properties are assumed to 

be constant and the flow is assumed to be quasi-

stationary in the laminar range. Numerical results 

obtained in confined cavities are presented in several 

geometrical configurations. We note that R0t= R1sinθ0, 

R0b= R2sinθ0 corresponds to the tronconical enclosure; 

R0t= R0b= R1sin θ0 corresponds to the cylindrical 

cavity, and the hemispherical ring geometry is considered 

when θ0 =90° (Fig. 1b). 

The velocity components in the three directions (r, θ 

and Φ) are (u, v and w) respectively. For an 

incompressible flow, in a two-dimensional plane (r,θ) the 

three components of the velocity in agreement with the 

continuity equation, being coupled with the current 

function Ψ(r,θ) and the vortex function Ω(r,θ), as 

follows: 
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 The non-dimensional border and starting conditions 

for the above governing assimilations are: 

at the axis θ0 =0: 

2
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at the sidewall of cylindrical cavity θ0 =20°, R0t= R1sin 
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at free surface of the hemispheres θ0=90°,  
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Thermal Boundary Conditions 
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(a)                                            (b) 

Fig. 2 Meridian streamlines for θ0= 15 (a) α= 3.06, Re= 5000; (b) α= 2, Re = 3600. In qualitative agreement with 

experimental flow visualisation taken from Bühler (2009) 

 

Table 1 Mesh characteristics for the case α=2, Re = 644 

(r×θ) A(60×30) B(80×40) C(100×60) D(150×110) E(200×150) 

Ψmax(10-5)Kg/S 1.66768 1.653139 1.643687 1.608053 1.59475 

Nodes used 1891 3200 6161 16761 30351 

 

3.   RESULTS AND DISCUSSIONS 

3.1 Numerical Method and Validation 

The equations governing the flow are discretised by 

the finite difference method, the numerical algorithm of 

this method consists of three steps (Imoula et al., 2016), 

to solve the partial nonlinear mathematical problem. 

Structured grids are used. It should be noted that the 

solution time obviously depends on the number of cells. 

The structured mesh consists of (120×60) elements for 

the truncated conical container. Numerical calculation 

tests were taken with A (60×30), B (80×40), D 

(150×110), and E (200×150) uniform cells to research 

the precision of our calculations in a cylindrical cavity. A 

series of quantitative estimations of a maximal contour of 

Ψ (Table 1) shows that the error between D (150×110) 

and E (200×150) is about 0.8% at more and that may be 

considered as negligibly weak. E (200×150) mesh grid is 

used for the results reported in our solution. 

 The visualisation shows the spiral character of the 

flow directed from the top to the bottom of the cavity 

(Bühler, 2009). The constitution of the vortex structure 

changes depending on the confining conditions and the 

physico-geometric parameters. Figure 2 shows a 

comparison with the experimental visualisations of 

Bühler (2009); the right and left meridians of the flow 

(symmetrical to the centre of the enclosure) are shown. 

They are obtained by modelling the confined flow 

specified by: θ0= 15 (a) α= 3.06, Re =5000; (b) α=2, Re= 

3600. The structure of the studied flow is in qualitative 

agreement with the axisymmetric flow pattern mentioned 

by Bühler (2009). The conical geometry allows to study 

this phenomenon also in a region between two concentric 

hemispheres with a free surface. 

 3.1.1 Influence of Rotation of the Top 

 A recirculation bubble is shown on the axis of 

rotation. This region is closer to the fixed lower disc at 

about R= 0.265 (Fig. 3a). The recirculation regions (Fig. 

3b) indicate that the co-rotation of the spherical bottom 

cover is sufficient to improve the dimensions of the 

recirculation zones. Thus, a bubble with an enlarged 

vortex structure is formed for Sb≤0.1. A corner vortex 

emerges in the lower right corner of the transverse 

division. For larger differential rotations (Sb>0.1), the 

outward flow over the lower disc causes a downward radial 

flow near the axis of symmetry of the truncated enclosure. The 

qualitative structure of the flow contains two dominant, co-

rotating cells resulting from the competition of centrifugal 

circulations induced by the two spherical discs and a single 

reduced zone attached to the axis of rotation, deduced from the 

influence of co-rotation (Fig. 3c, d). The cells are separated by 

a stagnation line ψ=0, connecting the stagnation points. 

3.1.2 Influence of Rotating Conical Endwall 

 The truncated conical cavity validated above is changed by 

inserting an upper cone-shaped lid of elevation hc in lieu of 

spherical disc. The cone can revolve with a spinning report of 

Sc within the field -0.2≤ Sc ≤0.2. The sidewall is stationary. 

The conical top lid has a dominant influence on vortex 

breakdown formation (see Fig. 4). With the identical 

parameters of Re and R0b, calculations exhibit that, considering 

it increases, the motionless cone-shaped lid (Sc=0) causes a 

displacement down of the recirculation zone. Then, it 

diminished in size (Fig. 4c) and eventually suppressed at hc 

=0.04. The latter is not displaced, since the distance of its 

trailing edge stagnation point to the rotating disk remains 

constant.  

 Regarding the impact of changing the kinematic status 

upstream of the recirculating region, the meridianal stream 

contours reveal that co-rotation enhances the vortex structure, 

giving rise to another enlarged vortex breakdown bubbles (Fig. 

5b, c).  
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(a) Sb=0                         (b)Sb=0.1                         (c)Sb=0.2                        (d)Sb=0.3  

Fig. 3 Stream contours presents the effect of differential rotation of rotating bottom disk for α=2, θ0=15°, 

Re=3600. The rotation rate ratio Sb is indicated 

 

 
(a)hc=0                        (b)hc=0.01                        (c)hc=0.02                            (d)hc=0.04 

Fig. 4 Stream contours presents the effect of top conical lid for α=2, θ0=15, Re=3600. The height of the cone hc is 

indicated 
 

 By contrast, the Fig. 5d shows that a relatively feeble 

counter-motion of the upper cone-shaped lid is adequate to 

eliminate the vortex breakdown while sustaining stable flux. A 

radial displacement is viewed in the process. The vortex 

structure is removed when the cone counter- spinning arrives 

roughly 1.3% of the background disc. The differential rotation 

leads a significant modification on the flow, in particular, the 

meridian movement generated by the co-counter-rotating of the 

two end discs provokes to accelerate the transport of the 

angular movement and the axial flow, which prevents the fluid 

from stagnating on the axis and consequently eliminates or 

promotes the reverse splitting zones. In addition,  

co-rotation stimulated to push the breakdown bubble upwards 

away from the rotating end wall, while counter rotation  

causes the bubble to migrate downwards. 

 

     
(a) Sc=0                      (b) Sc=0. 13                       (c) Sc=0.2                        (d) Sc=-0.13 

Fig. 5 Stream contours presents the effect of differential rotation of top conical disk for 

 Re=3600, α=2, θ0=15°at hc=0.02. The rotation rate ratio Sc is indicated 
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 (a)                                 (b)                                (c)                           (d) 

Fig. 6 Streamlines for narrowing geometry for Re= 3600, α=2, (a) θ0= 15, R0b= 77.65 mm, (b) θ0= 14, R0b= 72.56 

mm, (c) θ0=13, R0b =67.48 mm, (d) θ0= 12, R0b= 62.37 mm 
 

3.1.3 Influence of the Narrowing Sidewall 

 A spherical lid-driven swirling flow 2 in the above-

described truncated cone cavity radius ratio at Reynolds 

number Re = 3600 is considered to investigate the effect 

of narrowing stationary sidewall. For a specified 

ensemble of parameters, it   shows a single bubble on the 

rotating axis of the cavity. To modify the radial eddy 

upstream of the vortex structure, the characteristic 

lengths parameter of lower disk R0b of the resulting 

narrowing truncated conical enclosure is changed in the 

gamut 62.37 mm ≤R0b ≤77.65mm (who equivalent to an 

incline geometrical relation 12°≤ θ0≤15°) (Fig. 6). The 

case with θ0=15°, R0b=77.65 mm corresponds to the 

situation where there is no slope on the immobile side 

wall of the truncated conical pattern (Fig. 6a). It clarifies 

the lines of current correspond to the exemplary of flux 

conducted   per the spherical background end disk. It is 

remarked that a relatively feeble disturbance causes great 

and   pertinent alterations to the vortex breakdown 

phenomena.  As a matter of fact, for R0b= 72.56 mm, 

θ0=14° and R0b= 67.48 mm, θ0= 13°, Fig. 6b and Fig. 6c 

indicate a substantial dimension depletion of the vortex 

structures, accompanied by a displacement radially 

down. The significant value R0b= 62.37 mm (θ0= 12°) 

(Fig.6d) provokes the cancellation of vortex breakdown 

bubble.  

 Quantitatively, the axial speed profile component, on 

the axis of the cavity (Fig. 7) clearly explains the 

vanishing of stagnation points on the axis, characterizing 

confined vortex bursts.  It can be remarked that the axial 

velocity profiles confused in the vicinity of the spherical 

end discs (0.15 ≤R≤ 0.16, 0.29 ≤R≤ 0.3) indicated a 

similar axial acceleration of fluid in these regions. At 

exterior of these axial regions, │w│ increases under the 

control of narrowing of the sidewall and the flow is 

down, without inverse regions. As a result, we note that 

that the inclination effect helped to intensify the axial 

flow descending from the fixed disc. 

3.1.4 Control of Vortex Breakdown by Thermal 

Convection 

 This numerical step consists the controlling the vortex 

breakdown behaviour under the influence of parietal thermal 

forcing using a radial temperature gradient on the truncated  

 
Fig. 7 Axial velocity profiles at θ0= 0, forRe= 3600, α= 

2 
 

conical enclosure together with a rotation of the bottom lid. The 

confined swirling flow motifs in addition to the heat transfer 

effect are numerically examined below the Boussinesq 

hypothesis. The underlying mechanism of such recirculating 

region supervision is based on centrifugal and gravitational 

convection. Steady-state axisymmetric solutions are obtained at 

the identical parameter values like in the (Fig. 2a):  Reynolds 

number 5000, Prandtl number 1.0 and for a cavity of radius 

ratio 3.06. We note that (Ra< 0) is referred to when the surface 

of the bottom rotating disk is preserved in at lower temperature   

as compared to the top unmoving disk, while (Ra>0) is referred 

to a warmer bottom rotating lid than the spherical top. With the 

addition of a temperate positive and/or negative radial 

temperature gradient, a coupling between heat flow and the 

flow velocity begins affecting each other, which can 

significantly diminish (enforce) the vortex breakdown bubble. 

Let us talk in the next paragraph on process of vortex 

breakdown development and cancellation. Let us talk in the 

next paragraph on process of vortex breakdown development 

and cancellation. For a positive vertical temperature gradient 

(Ra > 0), the sense of the control flow (analogous to that in Fig. 

2a) is converse to that of the basis flow outside the recirculation 

bubble region (Fig. 8b, c). 

 The effect of such a check flow decreases the force of 

meridional movement. As results, both the radial and tangential 

swirls transport from the revolving lower disc to the top gets 

poor.  An  extra  essential  characteristic  of check flows is their  
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(a)                       (b)                             (c)                             (d) 

Fig. 8 Contours of steam function for different Ra: a) Ra = 0, b) Ra =7.12×10 3, c) Ra = 1×104, d) Ra = -1.2×104, 

for  Re =5000, θ0=15, α=3.06. 
 

mass convergence towards the rotation axis. It decreases the 

distribution of the lines of current away from the center, which 

is characteristic of a main flow. For a negative (Ra< 0) radial 

temperature gradient, the supervision flow has the same sense 

as the main meridional current. It strengthens the angular 

momentum transportation from the base disk toward the top 

disk and afterwards to the centre. It causes a greater 

accumulation of vorticity in the vortex nucleus. Such 

concentration ensues from the enhancement of vortex 

breakdown (Fig. 8 d). 

 Stages of bubble suppression as the Rayleigh number 

increases are shown in Fig. 9. The motion of the fluid in the 

wide part, apart from the discs, tends to slow down 

considerably as indicated by the distribution of the speeds in 

Figs. 9. This comportment is contrary to the isothermal case 

(Ra = 0), where the wide part of the fluid undergoes a motion of 

angular velocity intermediate to that of the discs. Examining the 

change in the axial component of the velocity alongside of 

truncated conical center for the curve Ra = 1×104 (Fig. 9) and 

the vortex structure presentation (Fig. 8c), it can be seen that 

the pumping of Ekman be disposed to vanish due to the 

blocking of the axial movement due to the impacts of 

buoyancy. 

3.2 Basic Flow in a Cylindrical Cavity  

3.2.1  Description of a Cylinder Flow Driven by a 

Spherical Bottom Disk (Sb=0) 

 The stable exemplary flow entrained by a cylindrical 

enclosure’s spherical bottom is exhibited for a range of 

particular parameters 1.48≤ α ≤3.06, 418≤Re≤767. It 

should be noted that these geometries correspond to these 

parameters are an extension of the conical sector 

validated above. 

 In addition to an azimuthal movement, which the 

fluid gains initially at the rotating bottom disk, it evolves 

a secondary movement together with a concentrated 

centric vortex kernel. The latter ruptures to donate birth 

to single, double, and triple distinct on-axis bubbles as 

defined by Escudier (1984) and reminiscent of a B-type 

vortex breakdown defined by Leibovich (1978) (Fig. 10 

and Fig. 12).  

 When meridian steam contours are plotted, they are 

non-uniformly discarded to underline the relatively 

feeble but appropriate backflow regions. The evolution of 

the vortex breakdown can be associated with a  

 
Fig. 9. Axial velocity variation along the truncated 

conical axis at θ0=0, for Re =5000 α=3.06. 
 

centrifugally unbalanced redistribution of the angular 

momentum in the central swirl core flow (Lopez, 1990). 

The aim is to study the effect of Reynolds number and 

radius ratio on the formation, development, and 

breakdown of vortex bubbles in this type of type of 

geometric configuration. 

Reynolds Number Effects 

 Figure 10 shows a series of streamlined plots at 

various critical Reynolds numbers. It represents a typical 

sequence for the appearance and the disappearance of the 

recirculation bubble for a fixed aspect ratio α=1.68. 

Figure 10a shows that the stagnation points and 

recirculation zones are not observed below rotational Re 

= 418. Below this rotation rate, the flow has a simple 

cellular structure similar to the previous case (low Re for 

α=1.68). The size of the central viscous core increases 

with increasing angular velocity imparted to it. With 

further increase in the swirl, a single breakdown bubble 

appears (Fig. 10b) at Re = 456. Two upstream and 

downstream stagnation points appear when the rotation 

rate increases to Re = 644. There are two well-defined 

vortex breakdown bubbles with distinct recirculation 

zones (Fig. 10c). The size of the recirculation zone 

upstream and downstream breakdown bubbles are 

diminished  and  separated  with  an  increase  in  rotation 
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(a)                           (b)                                (c)                             (d)                           (e)                               (f) 

Fig. 10 A ‘‘typical’’ set of streamline plots showing the appearance and disappearance of the recirculation for 

α=1.68, θ0=20° and for different Re: (a) Re = 418, (b) Re =456, (c) Re =644, (d) Re =697, (e) Re =767, (f) Re =885 

 

rate (Fig. 11d). They collapse to a single vortex 

breakdown as the Reynolds number increases to Re = 

767 (Fig. 10e). When rotational rate reaches Re=885, 

vortex breakdown bubbles disappear. Steady results 

reveal that the occurrence of breakdown bubbles 

indicates the existence of a regime diagram analogous to 

those reported by Escudier (1984). The flow becomes 

unstable when the Reynolds number exceeds the critical 

Reynolds number Rec2>767.  

 Figure 10 shows that when moving from top to the 

bottom wall for a given Reynolds number, the axial 

component of velocity alongside the axis in the 

beginning rises to its highest value at a short range from 

the fixed upper disk. After, it begins to decrease and then 

exhibits the oscillating configuration. Furthermore, the 

speed component disappears at each stagnation point 

before changing the signs. It indicates a change in an 

axial flow direction that highlights the occurrence of 

vortex failure. These zones appear spontaneously, 

following to a break of the balance between the 

centrifugal force and the radial pressure gradient 

characterizing the cylindrical core in quasi-solid rotation. 

The occurrence of recirculation zones is promoted by the 

formation of an adverse pressure gradient on the axis of 

the cavity causing the slowing down of the axial velocity 

until the formation of a stagnation point, followed by a 

deviation (divergence) of current lines. Within the 

bubbles thus evolved, the flow changes direction. 

Radius Ratio Effects  

 The vortex region results are examined to highlight 

the changes that occur with increasing radius ratio in the 

range 1.48<α<3.06 and for a fixed value of Reynolds 

number Re=644. These particular parameters were 

chosen for both reasons; first to highlight and analyze the 

phenomenon of vortex breakdown in new geometries, 

second can present show one, two well-configured 

axisymmetric reverse zones. The aim is to explore a 

wider range of parameters. The steam contours (Fig.12) 

exhibit the flow comportment in the plan (r,θ) are 

coherent with the regions and boundary diagram made by 

Escudier (1984). For α=1.48 case, streamlines nearby of  

 
Fig. 11 Axial velocity on the axis of cylinder for 

α=1.68, θ0=20° and for different Reynolds number: 

Re=418,456,644,697,767 

 

the center of symmetry are aligned, indicating no sign of 

vortex breakdown (Fig. 12a). For the case α =1.58, only 

one vortex structure appears (Fig. 12b), while for a value 

of radius ratio equal to α =1.78, two breakdowns well 

developed occur in succession along the axis rotation 

(Fig. 12d). At the highest value of α (α>1.78), the 

suppression of the bubble can be observed. Figure 13 

clearly confirms the disappearance of the two bulbs 

beyond radius ratio equal to 2. 

3.2.2 Differential Rotation Effect of the Spherical 

Endwalls 

 The fundamental flow comportment, motivated per 

the two end disks of a cylindrical enclosure, is showed in 

Fig. 13, for the following specific parameters Re= 440, 

0.07≤S≤-0.045, α=1.58. This case was selected because 

exceptional results are observed and the rotation of the 

bottom of the cavity acquires the fluid an azimuth 

movement, consequently, a development of the 

secondary circulation which breaks to give a well 

developed zone called burst (Fig. 14a). 
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(a)α=1.48                    (b) α=1.58                        (c)α=1.78                       (d)α=3.06 

Fig. 12 Meridian streamlines showing the effect of radius ratio for Re=644, θ0=20. The radius ratio α is indicated 

 

 
Fig. 13 Axial velocity on the axis for different cylinders for Re=644, θ0=20 

 

 
(a)                              (b)                               (c) 

Fig. 14 Contours of stream function showing the effect of differential rotations of the spherical end walIs :  (a) 

without rotation, (b) with co-rotation, (c) with counter-rotation for Re=440, α=1.58, θ0=20° 
 

 Qualitatively, the results indicate that for a weak co-

rotation of the top spherical disk (0.070=S=0.2), the 

dimension of the bubble swells significantly with the 

growing velocity ratio with appearance a wedge vortex in 

the upper right-side corner of the meridian plan. The 

competition of the outward circulations induced by end 

disks produces a great pertinent change to the vortex 

breakdown by coalesces of the two regions zones.  

It provokes a stagnation point on the cylindrical wall and 

a decollement  point on  the axis of rotation of  the cavity 
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Fig. 15 Axial velocity along axis for Re=440, α=1.58, 

θ0=20° 

 

 (Fig. 14b). By contrast, the flow induced per the 

counter-rotating of both endwalls of the cylindrical 

cavity tends to diminish the bubble slowly when the 

velocity ratio is increased. It completely vanishes (Fig. 

14c).  

 Figure 15 shows the difference between co- and 

counter-rotation, where axial velocities along the 

cylinder axis are plotted. The recirculation region 

extending up to 72% of the cylinder height develops for 

the co-rotation of the upper and lower disc. In contrast, 

there is no backflow for counter-rotation. The stagnation 

point separating the dominant zone results from the 

competition of centrifugal contra-rotating circulations 

coupled with each rotation disc. Indeed, the flow 

centrifuged by the fastest disc is channelled axially by 

the fixed side wall to the slower disc. At the same time, 

the flow adhering to the latter undergoes centrifugal 

counter-rotating circulation at a rotation rate ratio. Also, 

Fig. 15 illustrates the upper wall without rotation with a 

vortex breakdown bubble. It shows the contrast between 

these two diverse cases.  

3.2.3 Differential Rotation Effects of the Sidewall 

Regarding the kinematical control of the 

breakdown, it can be noted that a differential rotation of 

the sidewall with the physical parameter SL=ΩL / Ωb 

could cause a modification of the vortex structure, 

depending on the rate and direction of rotation. In this 

study, a new model of a rotating flow in an enclosure of 

radius ratio α=2 is controlled, whereas Re=590. This 

behaviour is favoured because of the appearance of two 

separate bubbles on polar axis and hence a more 

challenging one. To investigate the impact of varying the 

kinematic provisos upstream, the vortex bubbles (Fig. 

16b) get stretched in the axial direction and slightly shifts 

upward for weak sidewall co-rotations sufficient to 

suppress, successively, the two bubbles beyond SL=0.07 

(Fig. 16c). We note that a strong co-rotation, promotes 

balance in the central body of the flow. The 

representations of Fig. 17 show that by increasing the 

rate of co-rotation of the side wall, the core expands and 

the whole fluid takes on a quasi-solid rotation. 

 In the case of a counter-rotation of the wall 

cylindrical, as shown by the iso-lines of the current 

function in the Fig. 16d, there is an intensification of the 

descending axial flow of the Bôdewadt shear layer 

formed on the fixed spherical disc, which pushes the 

stagnation points downwards by successively 

suppressing the two bubbles. 

3.3 Investigation in the Hemispherical 

 The basic flow comportment is performed systematically 

for a region between two hemispheres concentric with a 

free surface condition when the internal hemisphere 

revolves with a specific value of rotational speed Ωt. In 

contrast, the outside hemisphere is immobile in the 

second case, when the outer hemispherical shell revolves 

with a specific value of rotational speed Ωb , whereas the  

inner hemisphere is at standstill. The numerical 

simulation shows various secondary flow structures due 

to the combined effects of the rotating and/or stationary 

boundaries, whose nature depends on the physical 

parameters Re=ΩbR2
0b/ν (the Reynolds number). 

 

           
(a) SL=0              (b)SL=0.05             (c) SL=0.07            (d) SL= -0.02 

Fig. 16 Effect of differential rotation of the sidewall. Streamlines pattern for Re=590, α=2, θ0=20°. The rotation 

ratio SL is indicated 
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 (a)SL=0                  (b)SL=0.08                 (c)SL=0.3                  (d)SL=0.5 

Fig. 17 Effect of differential rotation of the sidewall. Contours of angular momentum pattern for Re=590, α=2, 

θ0=20°. The rotation ratio SL
 
is indicated 

 

 
(a)Re=766                                                           (b) Re=100 

Fig. 18 Contours of Ψ for α= 3.06, θ0= 90° 
 

 For a couple of particular parameters (α= 3.06, Re= 

766) corresponding to the first case, the stream 

comportment is sleek for (Re< Recr). When the value of 

the dynamic parameter greater than the critical Reynolds 

number, a closed recirculating region in their structure 

limited by two stagnation points on the rotating axis, as 

show in Fig. 18a. However, the configuration 

corresponds to the second case, a clockwise toric 

segregated type of overturned flow, attached to the open 

surface under a couple   particular parameters a=3.06, 

Re=100, as evidenced quantitatively in Fig. 18b. 

 Calculations show that the kinematics conditions 

considerably affect the topology on the vortex flows. For 

a particular parameter pair 0.01≤So≤0.05, Re= 1222, α= 

3.06, the impact of altering the kinematics provisos 

upstream of the vortex breakdown (Fig. 19b) denotes that 

a relatively feeble co-rotation of the inner hemisphere is 

sufficient to suppress the toroidal vortex on the equator 

while maintaining steady flow. We also note that the 

streamlines are practically vertical in the vicinity of the 

polar axis, indicating near-uniform axial velocity, after 

control. 

 Conversely, meridian streamlines show that a weak 

counter-rotation (So= -0.01) tends to suppress the toroidal 

structure, accompanied by forming a recirculation zone 

near the outer hemisphere’s surface (Fig. 19c, Fig.19d). 

Moreover, this separated region extends considerably 

with the stagnation and reattachment points approaching 

respectively the axis of rotation and the surface of the 

plane of the equator as the rate │S│ grows. 

4. CONCLUSION 

This study investigated axisymmetric vortex flows 

generated by rotating spherical end discs of different 

cavities. The structure of multiple zones (axis bubbles 

and/or toroidal vortex decomposition) was investigated 

as a function of varying specific parameters (α, Re). 

Furthermore, we analysed how these zones are controlled 

in their development. The following conclusions are 

therefore drawn from this study: 

 The introduction of a conical lid high above hc 

=0.04m in place of the spherical disc has a dominant 

influence on the removal of vortex failure. Therefore, a  
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(a)So =0                                                     (b) So =0.05 

 
(c) So =-0.008                                                       (d) So =-0.01 

Fig. 19 Contours of Ψ for Re=1222, α=3.06, θ0=90°, S0 is indicated 
 

flow pattern that is dominated by a co-rotation of an 

upper tapered cover intensifies the vortex and accelerates 

the creation of bubbles. While counter rotation functions 

in opposite ways, the formation of bubbles is delayed.  

 The solutions based on the influence of a slight 

inclination of the conical side wall revealed acceleration 

and an intensification of the axial flow emanating from 

the fixed disc, causing the progressive disappearance of 

the burst zones under the influence of a slight inclination 

gradual side wall. 

 Depending on the direction and the rate of differential 

rotation of the walls of the cylindrical cavity, we have 

shown that the induced meridian circulation can 

stimulate the formation of burst ones or contribute to 

eliminate them. 

 An axial temperature gradient, directed in the 

direction of the base flow (Ra > 0) reduces the Ekman 

pumping effect so that the meridian flow remains 

confined to the vicinity of the rotating disc, as a result 

eliminates the vortex structure; while that directed in the 

opposite direction to the basic flow (Ra < 0), stimulates 

their appearance. For these gradients, convective 

transport is dominant in the flow. 
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