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ABSTRACT 

Cycloidal propellers constitute a specialized category of underwater propulsion 

devices, widely employed in vehicles requiring exceptional maneuverability. 

The parameters of the blade-driving mechanism directly impact the propeller 

performance. Hence, the effect of variations in the geometric parameters of the 

blade-driving mechanism on the hydrodynamic performance of cycloidal 

propellers must be investigated. In this study, a specific set of four-bar and mixed 

four-bar/five-bar mechanisms are taken as examples, and the effect of linkage-

length variations on the hydrodynamic performance of cycloidal propellers was 

analyzed using numerical simulation methods. First, we established a physical 

model of the cycloidal propeller, and then derived the relationship between 

blade-rotation and revolution angles. Subsequently, by solving the Navier–

Stokes equations and employing computational fluid dynamics simulations 

based on viscosity, an analysis is conducted to reveal the trends in the impact of 

different linkage-length combinations on the hydrodynamic performance of the 

cycloidal propeller. Finally, the outcomes of the numerical simulations are 

interpreted using the wing element theory. In similar blade-driving mechanisms, 

the effects of varying linkage lengths on propeller hydrodynamic performance 

are determined through alterations in the blade rotation angle range and 

equilibrium position. An increase in the range of the blade-rotation angle 

significantly enhances the hydrodynamic performance of the cycloidal propeller. 

This research employs a more realistic auto-propulsion mode for numerical 

simulations, establishing a mapping relationship between the blade-driving 

mechanism and hydrodynamic performance of the cycloidal propeller, while 

analyzing the underlying influencing mechanisms. Furthermore, crucial 

numerical simulations and theoretical foundations are employed for designing 

the four-bar and mixed four-bar/five-bar mechanism cycloidal propellers. The 

findings of this study could also be used in similar cycloidal propellers with 

multilinkage mechanism.  
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1. INTRODUCTION 

As a critical component of marine engineering 

equipment and power positioning systems, underwater 

propellers directly determine the performance of power 

systems for marine engineering equipment. Commonly 

used underwater propellers include propeller thrusters, 

pump-jet propulsors, and biomimetic propellers. Among 

them, propeller thrusters are widely utilized owing to their 

simple structure and low cost in marine engineering 

applications (Bertram, 2012). Pump-jet propulsors 

generate thrust by using the reaction force of jetted water, 

significantly reducing noise during navigation (Qin et al., 

2019). However, these two types of propellers can only 

generate propulsion in a single direction, thus requiring 

coordination using rudders at a certain speed to achieve 

vessel maneuverability. Biomimetic propellers imitate the 

propulsion of marine organisms, offering good 

maneuverability; however, their maximum power is 

constrained by their structural characteristics (Raj & 

Thakur, 2016). In addition, cycloidal propellers constitute 

a specialized category of underwater propulsion devices. 

Their unique motion mechanism enables them to produce 

thrust in any direction within the horizontal plane, 

allowing rapid and flexible adjustment of thrust magnitude 

and direction (Desai et al., 2020). This feature allows 

vehicles to achieve  
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NOMENCLATURE 

C 
chord length of the blades in van Manen’s 

experiment 
 MS total torque on the cycloidal propeller 

CD drag coefficient of the blade profile  n unit vector along the normal direction of ds 

CL lift coefficient of the blade profile  n revolution speed of the blade 

D rotational diameter of the blades  p pressure 

d chord length of the blades  R radius of the blade revolution 

ds 
differential unit area on the surface of the 

propeller blade 
 u fluid velocity vector 

e eccentricity of the cycloidal propeller  ξ  fluid boundary velocity 

F fluid force acting on the vehicle  VA forward velocity of the cycloidal propeller 

FD drag acting on the unit length of blade  VR resultant velocity of the blade motion 

FL lift acting on the unit length of blade  W blade thickness 

FS total thrust on the cycloidal propeller  x  solid boundary velocity 

J advance coefficient    

KD thrust coefficient defined by Voith Company  δ 
angle between the OX and XC bars in the five-

bar mechanism 

KF 
thrust coefficient defined by scientific 

research 
 ΔV velocity difference 

KM 
torque coefficient defined by scientific 

research 
  efficiency 

KS torque coefficient defined by Voith Company  θ revolution angle of the blade 

L extension length of the blades  θ’ 
angle between OC and OA’ in the five-bar 

mechanism 

La 
length of a linkage in four-bar, mixed four-

bar/five-bar mechanism 
 λ advance coefficient (Voith Company) 

Lb 
length of a linkage in four-bar, mixed four-

bar/five-bar mechanism 
 μ dynamic viscosity 

Lb’ 
equivalent length obtained by connecting 

point O and point C in the five-bar mechanism 
 ρ density of the medium 

Lc length of a linkage in four-bar mechanism  σ  normal stress tensor 

Lc1 
length of a linkage in one part of Lc in mixed 

four-bar/five-bar mechanism 
 φ rotation angle of the blade 

Lc2 
length of a linkage in another part of Lc in 

mixed four-bar/five-bar mechanism 
 ω blade revolution angular velocity 

Ld 
length of a linkage in four-bar, mixed four-

bar/five-bar mechanism 
   

m total mass of the vehicle    gradient operator 

 

lateral movement and pivot without requiring rudders. 

Simultaneously, these propellers can attain high rotation 

speeds to generate a greater power output. Their 

significance is particularly pronounced for vehicles, such 

as tugboats, and power positioning platforms operating in 

congested inland harbors (Voith, 2019). This novel 

capability has garnered considerable research attention 

and found extensive application in engineering projects. 

The cycloidal propeller is designed based on the 

motion mechanism of “blades rotating around their own 

axis while revolving around a common axis, enabling 

them to meet the water flow at an appropriate angle.” 

(Kirsten, 1922). Typically composed of 3–6 high aspect-

ratio blades arranged parallel to the main axis, the 

cycloidal propeller’s blades exhibit epitrochoid or 

hypocycloid pattern along their axis owing to their 

simultaneous rotation around the main axis while 

revolving. By adjusting the blades’ self-rotation, the 

propeller can generate thrust in any direction within the 

vertical plane of its rotation axis (Jürgens et al., 2007). The 

kinematic behavior of each blade in the cycloidal propeller 

is governed by its blade-driving mechanism. Therefore, 

the design of the blade control mechanism constitutes a 

significant aspect of the overall propeller mechanism. The 

blade control mechanisms in the cycloidal propellers can 

be categorized into two main types: direct and mechanical 

controls. In the direct control approach, each blade is 

equipped with an individual control motor or hydraulic 

cylinder. However, owing to the revolution of the motor 

or hydraulic cylinder along with the blade, the complexity 

of the structural design increases (Valentini, 2001). 

Consequently, mechanical control mechanisms, such as 

those of gear, cam, and planar linkages, are more prevalent 

in practical applications. Among these, the planar linkage 

mechanism is prominent for its simplicity, compactness, 

and the flexibility to modify the blade rotation angle 

through adjustments in the linkage length. This confers 

significant engineering utility. Andrisani et al. (2016) 

demonstrated that from the perspective of unit power 

thrust analysis, the adoption of a sinusoidal motion pattern 

proves significantly advantageous for blade rotation. 

Based on fluid mechanics principles, further optimization 

of the blade’s rotation pattern was conducted under hover 

conditions. The optimized motion pattern is relatively 
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complex but can be well-fitted using a four-bar 

mechanism to achieve a sinusoidal motion pattern for the 

blades. Based on the four-bar mechanism, Qian (1963) 

proposed a “mixed four-bar/five-bar mechanism” 

cycloidal propeller, which further reduces the vertical 

thickness of the propeller’s driving mechanism. Laucks, 

R., & Blickle, (1983) developed a similar structural 

invention patent, which extended the engineering 

application of such cycloidal propulsion devices. 

The theoretical research on cycloidal propellers has 

primarily focused on modeling methods and parameter 

optimization. To accurately obtain the hydrodynamic 

performance parameters of cycloidal propellers, 

researchers have proposed various calculation methods 

based on theories, such as the wing element theory 

(Wheatley & Windler, 1935), binary potential flow theory 

(Isay, 1968), ternary lift line theory (Brockett, 1991), 

momentum theorem (Bakhtiari & Ghassemi, 2019), and 

vortex theory (Yu et al. 2003). These methods explain the 

principles underlying the generation of thrust in cycloidal 

propulsion devices and predict their hydrodynamic 

performance to some extent. However, owing to the 

complexity of the flow field around cycloidal propellers, 

the prediction accuracy is limited. The widespread use of 

computers has facilitated the extensive application of 

computational fluid dynamics (CFD) methods (Li et al. 

2023), which not only allow the calculation of transient 

performance of propellers but also significantly enhance 

the accuracy of performance predictions (Hafiz, 2023). 

Furthermore, CFD methods allow for detailed calculations 

of parameters related to vortices (Hu et al. 2022), 

thermodynamic performance (Amin et al. 2023), and other 

complex flow-field characteristics within the surrounding 

flow environment (Ju et al. 2022). In addition, numerical 

methods have been widely employed to optimize the 

performance and provide design guidance for cycloidal 

propellers. For instance, Shi et al. (2022) numerically 

analyzed unsteady vortex shedding and separation-

induced transition of cycloidal propellers at low Reynolds 

numbers. Walther et al. (2019) investigated the impact of 

the asymmetric pitch of cycloidal propeller blades at ultra-

low Reynolds numbers on propeller performance. Such 

studies delve into the intricate flow field within cycloidal 

propellers, explaining certain physical phenomena, 

although offering limited direct design guidance. Hu et al. 

(2019) optimized the aspect ratio and taper of cycloidal 

propeller blades in a hovering state. In another study, 

Jakson & José (2018) enhanced the overall performance 

of propellers by geometrically optimizing the blades and 

introducing harmonic vibrations. However, these 

investigations primarily concentrated on the blades or 

directly specified blade-rotation patterns, without 

considering the role of blade-driving mechanisms. In 

addition, numerical simulations often utilize incoming 

flow velocities to simulate propeller advancement or 

hovering, which is in contrast to the actual conditions of 

auto-propulsion of cycloidal propellers. 

In this study, the effects of varying linkage lengths on 

the hydrodynamic performance of four-bar and mixed 

four-bar/five-bar cycloidal propellers were investigated. 

First, the physical model of the cycloidal propeller is 

established, and the corresponding rotation patterns of the 

blade’s self-rotation are derived. In addition, the lengths 

of the linkage mechanisms to the blade’s rotation angles 

were numerically derived. Subsequently, a viscosity-

based CFD numerical simulation method, grounded in 

solving the Navier–Stokes equations, is utilized to 

comprehensively analyze the influence of different 

linkage lengths on the hydrodynamic performance of the 

cycloidal propeller. Finally, this study explores the effect 

of the linkage-length ratios on the thrust coefficient, 

torque coefficient, efficiency, and speed fluctuation during 

stable navigation for both four-bar and mixed four-

bar/five-bar cycloidal propellers. This research bridges the 

gap between the hydrodynamic performance of the 

cycloidal propeller and the mechanical characteristics of 

the driving mechanism. Additionally, a more realistic 

auto-propulsion mode was employed for numerical 

simulations, offering crucial theoretical insights into the 

design of prototype cycloidal propellers with four-bar and 

four-bar/five-bar mechanisms. 

2. METHODOLOGY 

2.1 Computational Model 

To numerically simulate cycloidal propellers with 

four-bar and four-bar/five-bar mechanisms to control a 

blade’s rotation angle, a suitable numerical simulation 

model must be established for the cycloidal propeller. The 

propeller’s body is designed in a cylindrical shape for the 

installation of components other than the blades of the 

cycloidal propeller. There are four blades installed beneath 

the body, the blade section being a NACA0030 aero foil, 

as shown in Fig. 1. We used the center of mass of the entire 

propeller as the origin and established an inertial 

coordinate system, O-xyz. Radius R of the blade revolution 

is a crucial dimension determining the thrust magnitude of 

the cycloidal propeller, and thus we adopt it as a reference 

dimension; we estimate the dimensions of components 

such as motors, servos, transmission mechanisms required 

for the physical model, and have selected the body's 

diameter and height as 2/3R and 18/5R, respectively. 

Furthermore, the axis of revolution of the cycloidal 

propeller coincides with the body’s axis. To avoid the 

 

 
Fig. 1 Numerically simulated computational model of 

the cycloidal propeller 
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issue of insufficient thrust due to excessively short blades 

or the problem of bending caused by insufficient stiffness 

in overly long blades, the length of blade extension was 

set as L = 12/5R. When viewed from the negative direction 

of the z-axis, the blade revolves counterclockwise. 

2.2 Kinematics Model 

Various types of mechanisms can control the motion 

of cycloidal propeller blades, enabling simultaneous 

revolution and periodic self-rotation. This study focuses 

on two specific types of cycloidal propellers: the four-bar 

cycloidal propellers and mixed four-bar/five-bar cycloidal 

propellers. The mixed four-bar/five-bar mechanism is an 

evolution of the four-bar mechanism and serves as the 

blade control mechanism. Figure 2 provides a comparative 

illustration of the structures of the cycloidal propeller with 

four-bar and mixed four-bar/five-bar mechanisms. Figure 

2(a) depicts the three-dimensional (3D) structure of the 

cycloidal propeller equipped with a four-bar mechanism. 

As shown in Fig. 2(a), the four-bar mechanism 

comprises a control bar (1), revolution support (2), four 

connecting bars (3), and four blades (4). The revolution 

support adopts an “X” shape and is centrally mounted on 

the control bar, serving as the axis of revolution for the 

cycloidal propeller. Each extended end of the connecting 

bars is attached to a specific point on the chord line of the 

blades. The revolution support rotates around the 

rotational center, O, of the cycloidal propeller, inducing 

the blades to revolve around point O. One end of each of 

the four connecting bars is connected to a control point on 

the control bar, which differs from point O. The other end 

of each connecting bar is connected to a point on the chord 

line of the blade that is distinct from the connection point 

on the revolution support. The control point, also referred 

to as the eccentric point, is situated at distance e from point 

O, representing the eccentricity of this cycloidal propeller. 

Owing to the necessity of connecting multiple 

linkages at the control point of the four-bar mechanism 

cycloidal propeller, the thickness inherently increases 

along the axial direction, posing a challenge to the overall 

structural design. Subsequently, the mixed four-bar/five-

bar mechanism was derived based on the four-bar 

mechanism of the cycloidal propeller. The 3D structure of 

the cycloidal propeller with the mixed four-bar/five-bar 

mechanism is depicted in Fig. 2(b). The control bar (1), 

revolution support (3), and blades (5) in the cycloidal 

propeller with the mixed four-bar/five-bar mechanism 

remain the same as those used in the four-bar cycloidal 

propeller. However, the key distinction lies in the 

installation of a crossbar (2) at the control point on the 

control bar. This crossbar comprises one long end and 

three short ends. The long end is directly connected to the 

blade’s chord line, thereby forming the four-bar 

mechanism. In contrast, the three short ends are connected 

to the blade’s chord line via three connecting bars (4), thus 

forming the five-bar mechanism. This arrangement allows 

for the multiple links at the control point to be individually 

connected to the three short ends of the crossbar, thereby 

circumventing the issue of connecting all the linkages of 

the four-bar mechanism at a single point. Consequently, 

the axial space occupied by the driving mechanism of the 

cycloidal propeller is significantly reduced. 

 
(a) Structural diagram of the four-bar mechanism 

cycloidal propeller 

 
(b) Structural diagram of the cycloidal propeller with a 

mixed four-bar/five-bar mechanism  

Fig. 2 Comparison of cycloidal propeller 

structures with a (a) four-bar and (b) mixed four-

bar/five-bar mechanisms 

 

Figure 3(a) and (c) depict a comparative illustration 

of the principles between the cycloidal propellers with 

four-bar and mixed four-bar/five-bar mechanisms. Figure 

3(b) represents the planar schematic of a four-bar-

mechanism cycloidal propeller with a single blade. A 

portion of the control bar (OX) a portion of the revolution 

support (OA) a connecting bar (XB), and a portion of the 

blade’s chord length (AB) form the four connecting bars 

of the four-bar mechanism, as illustrated in Fig. 3(b). Here, 

OX serves as the frame, and OA functions as the driver 

arm. The driving torque of the cycloidal propeller acts 

upon the revolution support, driving the four blades in 

revolution. Simultaneously, under the influence of the 

control point and connecting bar, the blades rotate around 

rotation center A. In Fig. 3(b), θ and φ represent the 

revolution and rotation angles of the blade, respectively. 

OA rotates counterclockwise with an angular velocity of 

ω. Assuming that the lengths of the four bars in the four-

bar mechanism are denoted as La, Lb, Lc, and Ld, by 

drawing perpendicular lines from point X and B to OA, the 

geometric relationship can be used to derive the 

relationship between θ and φ: 

                                      (1) 

Through derivation, we obtained the corresponding values 

of φ for different angles, θ, representing the relationship 

between the rotation and revolution angles of the blade of 

the four-bar mechanism. As shown in Fig. 3(a), the 

structure of the four-bar mechanism driving each blade, 

frame position, and lengths of the connecting bars are 

identical in the four-bar mechanism cycloidal propeller. 

Therefore, the rotation patterns of each blade can be 

described using Eq. (1) with the addition of a phase 

difference. 

2

2 2

( sin sin )

( cos cos )

d b

a b d c

L L

L L L L

 
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− +
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(a) Schematic of the cycloidal propeller with a four-bar 

mechanism 

(b) Plan view of single blade four-bar control 

mechanism 

 

 
(c) Schematic of the cycloidal propeller with a mixed 

four-bar/five-bar mechanism  

(d) Plan view of a single blade mixed four-bar/five-bar 

control mechanism 

Fig. 3 Comparison of the principles of (a and b) four-bar and (c and d) mixed four-bar/five-bar cycloidal 

propellers 

 

Figure 3(d) depicts the planar schematic of the 

cycloidal propeller with a single blade driven by the mixed 

four-bar/five-bar mechanism. The diagram shows the 

principle similar to the previous explanation, where the 

long end of the crossbar corresponds to the blade driven 

by the four-bar mechanism, denoted as OXBA. During the 

rotation of the four-bar mechanism, the XB bar functions 

as the follower arm, and guided by the crossbar and active 

arm OA, the arm rotates in a specific pattern. The three 

short ends of the crossbar correspond to the three blades, 

forming a five-bar mechanism, denoted as OXCB'A'. This 

mechanism comprises a portion of the control bar (OX), 

the short end of the crossbar (XC), the connecting bar 

(CB'), a segment of the blade’s chord length (A'B'), and a 

portion of the revolution support (OA'). Within the five-

bar mechanism, OA' and XC function as the active arms, 

with OA' being a component of the revolution support and 

rotating around point O with an angular velocity of ω. The 

rotation of XC is determined by the motion of the four-bar 

mechanism and the geometric structure of the crossbar, 

both of which collectively determine the movement 

characteristics of the five-bar mechanism. Together, they 

drive the blade, while it revolves, to undergo periodic 

rotation around point A'. 

The five-bar mechanism is essentially obtained by 

dividing the Lc bar of the four-bar mechanism into two 

parts. Let La, Lb, Lc1, Lc2, and Ld represent the lengths of 

the five bars in the five-bar mechanism as shown in Fig. 

3(c). Consider an example of a blade driven by a five-bar 

mechanism, let δ be the angle between the OX and XC 

bars, we obtain the structure shown in Fig. 3(d). By 

connecting points O and C in the five-bar mechanism, OC, 

CB', A'B', and OA' form a four-bar mechanism. Through 

derivation, the following relationship is obtained: 

2

2 2

2

( sin sin )

( cos cos )

d b

a b d c

L L

L L L L

 

 

 − +

 − + =
                                          (2) 

where θ' and Lb' can be obtained by solving triangle OXC: 

2 2

1 12 cosb b c b cL L L L L  = + −                                        (3) 

1 sin
arcsin( )c

b

L

L


  = −


                                                    (4) 

Accordingly, the relationship between the rotation 

angle of the blade driven by the five-bar mechanism and 

the revolution angle can be obtained. The motion patterns 

of the remaining two blades can be derived by considering 

the change in angle δ, which is determined by the crossbar 

structure. The derivation process follows the same 

procedure as described earlier. 

In hydrodynamic numerical simulation of cycloidal 

propellers, several important dimensionless evaluation 

indices were introduced to assess the hydrodynamic 

performance of the propulsion device. These include are 
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the advance coefficient, thrust coefficient, and torque 

coefficient. The Voith Company (2021) provides the 

following definitions for these three parameters: 

2 2 3

2 2 4

2

4

A

S

S

S

D

V

nD

F
K

Ln D

M
K

Ln D




 

 


= 




= 



= 


                                                                 (5) 

In the equation, λ, KS, and KD represent the 

coefficients of advance, thrust, and torque defined by 

Voith Company, respectively. In addition, VA denotes the 

forward velocity of the cycloidal propeller, n represents 

the revolution speed, D is the revolution diameter of the 

blades, FS and MS are the total thrust and torque exerted on 

the cycloidal propeller, respectively. Furthermore, ρ 

represents the density of the medium (in this study, water) 

and L represents the blade span. 

In scientific research, it is common practice to 

analogously adjust the hydrodynamic performance 

parameters of propellers by multiplying the parameters in 

Eq. (5) by a certain coefficient, yielding the key 

parameters for evaluating the hydrodynamic performance 

of cycloidal propellers as shown in Eq. (6). 

2 4

2 5

A

S

F

S

M

V
J

R

F
K

R

M
K

R








= 




= 



= 


                                                                           (6) 

where J represents the advance coefficient, KF represents 

the thrust coefficient, and KM represents the torque 

coefficient. Furthermore, ω and R denote the revolution 

angular velocity and radius of the blade. 

In addition, propulsion efficiency η of the vehicle is 

introduced to evaluate its overall performance: 

S

S

F V

M



=                                                                                 (7) 

By introducing Eq. (6) into Eq. (7) and simplifying it, 

we can conclude that 

F

M

JK

K
 =                                                                             (8) 

When the underwater vehicle propelled by the 

cycloidal propeller accelerates to a stable average velocity 

over multiple cycles, it is considered to have entered the 

steady-state navigation phase. The aforementioned 

parameters were calculated based on the values obtained 

during this steady-state navigation phase. 

In addition to the three aforementioned parameters, 

the autonomous navigation of a vehicle propelled by a 

cycloidal propeller must be analyzed for the smoothness 

of navigation. This refers to the fluctuation of propulsive 

force generated by the cycloidal propeller during each 

revolution cycle, after the vehicle enters the steady-state 

navigation phase. In this study, the difference in forward 

velocity within one cycle of the steady-state navigation, 

denoted as ΔV, is used as a measure. The smaller the value 

of ΔV, the smaller the fluctuation of vehicle velocity 

within a cycle, indicating better stability in the generation 

of propulsive force by the cycloidal propeller. 

2.3 Control Equations, Numerical Simulation 

Methods and Computational Grids 

With the maturation of CFD methods, their 

application enables an accurate and efficient prediction of 

the hydrodynamic performance of cycloidal propellers, 

thus saving a significant amount of time and material costs 

associated with experimental testing (Bakhtiari & 

Ghassemi, 2020). Therefore, in this study, the CFD 

method was adopted to perform numerical simulations of 

cycloidal propellers. 

This study focused on the self-propulsion of 

underwater vehicles in a 3D flow. The Navier–Stokes 

equations are solved using the finite volume method, 

where spatial discretization is performed using a Green–

Gauss cell-based approach for gradient interpolation. The 

second-order central differencing scheme was employed 

to calculate the velocity and pressure gradients on the 

computational grid. The discretization of the 

Navier−Stokes equations by using the finite volume 

method can be described as follows: 

0 =u                                                                              (9) 

2( ) p
t

  


+  = − + 


u
u u u                                             (10) 

where u is the fluid velocity vector, ρ is the density, p is 

the pressure, μ is the dynamic viscosity, and   is the 

gradient operator. In this study, the coupled algorithm 

based on pressure solving was employed to calculate the 

pressure–velocity coupling in the continuity equation. In 

addition, the Reynolds-averaged Navier–Stokes (RANS) 

model was used to perform time-averaged numerical 

computations of the flow field around the cycloidal 

propeller at various Reynolds numbers. 

To solve the equations within the moving domain, a 

no-slip boundary condition must be imposed on the 

surface of the structure, which ensures that fluid velocity 

ξ  is equal to the solid boundary velocity, x . 

=ξ x                                                                                   (11) 

The motion of an underwater vehicle in water can be 

described by Newton's second law as follows: 

m =x F                                                                                  (12) 

where F represents the fluid force acting on the cycloidal-

driven underwater vehicle, and m denotes the total mass of 

the vehicle. Fluid force F can be expressed as follows: 

S
ds= F σ n                                                                    (13) 

where σ  is the normal stress tensor, ds is the differential 

unit area on the surface of the propeller blade, and n is the 

unit vector along the normal direction of ds. 

In this study, the flow field is divided into inner and 

outer domains near and farther away from the underwater  
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Fig. 4 Computational domain and grid 

 

vehicle, respectively. The rotation of the cycloidal 

propeller blade, the forward movement of the vehicle, and 

the solution of the Newton’s motion equations were 

implemented using user-defined functions (UDFs). 

During the transient solution process, to achieve the 

autonomous motion of the underwater vehicle driven by 

the cycloidal propeller, UDFs are called at each time step 

to define the overall translational and rotational motions 

of the shared contact surface between the outer and inner 

domains. Additionally, another UDF was used to define 

the custom motion of the grid region. The motion laws of 

the revolution and rotation of the cycloidal propeller blade 

are implemented using the sliding mesh method. All 

dynamic results, including acceleration, velocity, and 

displacement, are computed using Eq. (12). To ensure the 

connectivity between the inner and outer domains, a 

dynamic mesh and sliding mesh techniques were 

employed in the outer domain. These techniques ensure 

that the shared contact surface between the outer and inner 

grids moves at the same velocity, achieving a real-time 

docking effect at the interface between the outer and inner 

domains. 

The computational domain and grid used in this study 

are shown in Fig. 4. The computational domain is a cubic 

water tank with dimensions of 4 m × 4 m × 1 m. In 

addition, the boundary conditions were set for the 

computational domain, with the right side of the tank set 

as a pressure outlet, and the remaining sides set as no-slip 

wall conditions. The entire computational domain was 

divided into four regions, namely A, B, C, and D, from the 

outer to inner domains, for numerical simulation. Region 

A represents the outer flow domain, region B represents 

the inner flow domain, region C represents the cycloidal 

propeller section, and region D represents the blade 

section. To facilitate the grid restructuring during the 

dynamic mesh process, the grid in the outer flow domain, 

A, was set as unstructured, while in the inner flow domain, 

B, and the sections of the cycloidal propeller C and blades 

D, the sliding mesh technology was applied, thus utilizing 

hexahedral structured grids. To enhance computational 

accuracy, local grid refinement was implemented in the  

Table 1 Validation parameters for numerical 

simulation 

Parameter Name Parameter Value 

Rotational diameter D 200 mm 

Number of blades 4 

Blade spreading length L 0.6 D 

Blade chord length C 0.18 D 

Blade thickness W 0.026 D 

Blade shape Rectangle 

Blade section profile Symmetries 

Blade motion Cycloidal motion 

Eccentricity 0.5 

Rotational speed 6 rps 

Reynolds number 1.4 × 105 

 

blade region of the propeller to improve the calculation 

precision. 

2.4 Validation of Numerical Simulation Effectiveness 

To validate the accuracy of the proposed numerical 

simulation method, the numerical results of the 

hydrodynamic performance of the cycloidal propeller 

were compared with that of the experimental data.  Manen 

(1966) conducted comprehensive experimental research 

on the thrust coefficient, torque coefficient, and efficiency 

of a 4-blade cycloidal propeller. 

Therefore, this study adopted the above-mentioned 

modeling method, and the geometric parameters were set 

to the same values as in Van Manen’s experiments, as 

shown in Table 1. Rectangular blades with symmetric 

NACA 4-digit profiles were used, and multiple sets of 

numerical simulations were performed by varying the 

advance coefficient. Note that the cycloidal propeller used 

in Van Manen’s experiments employed normal-

orthogonal motion patterns. Therefore, we used the same 

normal-orthogonal motion patterns for verifying blade 

rotation.  

The numerically obtained thrust coefficient, torque 

coefficient, and efficiency were compared with Van 

Manen’s experimental data, and the comparison curves are 

shown in Fig. 5. The figure reveals a close match between 

both the results in terms of various hydrodynamic 

performance parameters. The values are in close 

proximity, exhibiting similar trends, and overall 

consistency with the experimental findings. Therefore, the 

proposed numerical method to predict the hydrodynamic 

performance of the cycloidal propeller can be considered 

reliable. 

3.  RESULTS 

3.1 Determination of Linkage Length for the Four-

Bar Cycloidal Propellers 

In designing a four-bar cycloidal propeller, 

appropriate lengths of the four linkages, namely La, Lb, Lc, 

and Ld must be initially selected. Among these, La 

determines the revolution radius of the propeller blades, 

and is itself calculated based on the dimensions of  

the mechanism and design requirements. To enhance the  
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Fig. 5 Comparison curve of effectiveness verification  

 

 

generality of this research, the lengths of the 

remaining linkages are provided as ratios with respect to 

the revolution radius, R. In this study, considering factors 

such as maximum available motor power, convenience of 

component manufacturing and assembly, the revolution 

radius of the blades was determined as R = 45 mm. 

Therefore, La was set as R = 45 mm. 

In the design of conventional four-bar cycloidal 

propellers, the number of variables is generally reduced by 

imposing additional constraints on the four-bar 

mechanism. In general, when Lb = 0, indicating that the 

control point of the cycloidal propeller mechanism 

coincides with the axis of rotation, the propeller does not 

generate thrust. This condition implies that the rotational 

angles of the four blades are all 0°. Under this requirement, 

the geometric relationship can be derived as Lc
2 = La

2 + 

Ld
2. By introducing this constraint, the length of Lc can be 

determined by the values of La and Ld. Therefore, only 

lengths Lb and Ld must be determined. 

 

Fig. 6 Illustration of the range of values for lengths, Lb 

and Lc 

 

Furthermore, considering that the Ld bar in the four-

bar mechanism represents a portion of the blade’s chord 

length, and given that the chord length itself has a limited 

range of variation, the proposed approach initially sets Ld 

as a constant. Based on the determined values of La and 

Ld, the study first investigated the influence of variations 

in Lb and Lc on the hydrodynamic performance of the 

cycloidal propeller. After determining the values of Lb and 

Lc, the impact of varying Ld on the performance of the 

cycloidal propeller was examined. 

According to the principles of mechanics, in a four-

bar mechanism, where the lengths of two linkages are 

determined, the lengths of the other two linkages must 

satisfy the following condition: 

c b a d

a d

c0  0

c b

b

L L L L

L L L L

L L

+  + 


−  − 
  ，

                                                              (14) 

To provide more options for Lb and Lc, while 

considering the limitation of the blade chord length, the 

initial value of Ld was selected as 4/15R = 12 mm. By 

substituting La = R = 45 mm, the values of Lb and Lc were 

plotted on the x- and y-axes, respectively. The shaded 

region in Fig. 6 represents the range of values for the 

points that satisfy the inequality in Eq. (14). 

As shown in Fig. 6, 15 points represented by “+” were 

uniformly selected. The Lb and Lc lengths were used to plot 

the coordinates of these points, resulting in the 

construction of a cycloidal propeller with the four-bar 

mechanism, as described in Section 2.1. Under the 

numerical simulation conditions described in Section 2.3, 

a self-propelled numerical simulation of the cycloidal 

propeller-driven underwater vehicle was conducted with a 

rotational speed of 5 rps, as shown in Fig. 7 with symbol 

“+.” For the convenience of data analysis, a least squares 

method was used to fit the data points to 3D planes. The 

equations of the fitted planes are listed in Table 2.  

Figure 7(a) presents the variations in the thrust 

coefficient with respect to Lb and Lc. As shown, within the 

linkage-length range considered in the numerical 

simulation, the thrust coefficient shows a monotonically 
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(a) Variation in the thrust coefficient with respect to 

lengths Lb and Lc 

 

(b) Variation in the torque coefficient with respect to 

lengths Lb and Lc 

 

(c) Variation in efficiency with lengths Lb and Lc 

 

(d) Variation of maximum velocity difference within one 

cycle with lengths Lb and Lc 

Fig. 7 Variations in the performance parameters of 

the four-bar cycloidal propeller with lengths Lb and Lc 

 

increasing trend along the positive x-axis (i.e., in the 

direction of increasing Lb) and along the positive y-axis 

(i.e., in the direction of increasing Lc). The comparison of 

the coefficients in the corresponding fitted-plane 

equations (Table 2) demonstrates that the slope of  

the fitted plane along the positive x-axis is significantly  

Table 2 Data point fitting plane equation shown in 

Fig. 7 

Figure 

number 

in Fig. 7 

Performance 

parameter 
Fitting plane equations 

Fig. 7(a) 
Thrust 

coefficient KF 

z = 0.06659x + 0.00385y 

– 0.2554 

Fig. 7(b) 
Torque 

coefficient KM 

z = 0.24680x + 0.00946y 

– 0.6683 

Fig. 7(c) Efficiency η 
z = 0.01940x + 0.00196y 

– 0.0851 

Fig. 7(d) 
Velocity 

difference ΔV 

z = 0.00090x – 0.00002y 

+ 0.0006 

 

greater than the slope along the positive y-axis. This 

indicates that increasing both Lb and Lc will result in an 

increase in the thrust coefficient of the cycloidal propeller. 

However, the effect of Lb variation on the thrust 

coefficient is more pronounced than that of Lc variation. 

To achieve a higher thrust coefficient, a combination of 

larger values of Lb and Lc is recommended. In the selected 

dataset, Lb should be set to 2/9R (10 mm) and Lc should be 

set to R (45 mm). 

Figure 7(b) presents the variations in the torque 

coefficient with respect to Lb and Lc. As shown, within the 

range of linkage lengths considered in the numerical 

simulation, the torque coefficient shows a monotonically 

increasing trend along the positive x-axis (i.e., in the 

direction of increasing Lb) and along the positive y-axis 

(i.e., in the direction of increasing Lc). The comparison of 

the coefficients in the corresponding fitted-plane 

equations (Table 2) demonstrated that the slope of the 

fitted plane along the positive x-axis is significantly 

greater than the slope along the positive y-axis. This 

indicates that an increase in both Lb and Lc would increase 

the torque coefficient of the cycloidal propeller. However, 

the effect of Lb variation on the torque coefficient is more 

pronounced than that of Lc variation. In practical 

applications, to generate greater propulsion force while 

minimizing the resistance moment, a combination of 

smaller Lb and Lc values must be selected. In the dataset 

selected in this study, Lb should be set to 2/45R (2 mm) 

and Lc should be set to 4/5R (36 mm). This conclusion 

differs from that shown in Fig. 7(a); therefore, further 

analysis of the efficiency of the cycloidal propeller system 

is required to make a final judgment. 

Figure 7(c) illustrates the variation in the efficiency of 

the cycloidal propeller with respect to Lb and Lc. Similar 

to Fig. 7(a) and 7(b), the efficiency of the cycloidal 

propeller exhibits a monotonic increasing trend with 

increasing values of Lb and Lc. The comparison of the 

coefficients before x and y in the corresponding fitting 

plane equations in Table 2 showed that the slope of the 

fitting plane along the x-axis is significantly larger than the 

slope along the y-axis. This indicates that an increase in 

both linkage lengths, Lb and Lc, increases the efficiency of 

the cycloidal propeller. However, variations in Lb display 

a more pronounced effect on the efficiency of the cycloidal 

propeller than variations in Lc. To achieve higher 

efficiency, a combination of larger values of Lb and Lc 

must be selected. Therefore, based on the data considered  
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(a) Variation in the thrust coefficient with length Ld 

 

(b) Variation in the torque coefficient with length Ld 

 

(c) Variation in the efficiency with length Ld 

 

(d) Variation of maximum velocity difference within one 

cycle with respect to length Ld 

Fig. 8 Variation of performance parameters of the 

four-bar cycloidal propeller with respect to Ld 

 

in this study, Lb should be set to 2/9R (10 mm) and Lc 

should be set to R (45 mm). 

Figure 7(d) presents the variation of the maximum 

velocity difference within one cycle of stable navigation 

for the self-propelled cycloidal propeller with respect to Lb 

and Lc. The graph and equations of the fitting plane show 

that the fluctuation within one cycle of the cycloidal 

propeller after stabilization increases slightly with the 

increase of Lb, while the variation in Lc is not significant. 

The coefficients of the fitting plane are several orders of 

magnitude smaller than the coefficients of the fitting 

planes of thrust force, torque moment, and efficiency. 

Therefore, considering the numerical simulation data 

selected in this study, the velocity difference within one 

cycle after stabilization of the cycloidal propeller is 

minimally affected by Lb and Lc.  

Accordingly, the linkage-length combination of Lb = 

2/9R = 10 mm and Lc = R = 45 mm was selected to further 

study the value of linkage length, Ld, in the four-bar 

cycloidal propeller. In addition, considering the geometric 

relationship of the three linkage lengths determined for the 

four-bar mechanism and the practical situation of the blade 

chord length in the cycloidal propeller, Ld was varied as 

11/45R, 12/45R, 13/45R, 14/45R, and 15/45R for 

numerical simulations. Figure 8 shows the obtained 

results. 

Moreover, Fig. 8(a), (b), and (c) respectively illustrate 

the variation in the coefficients of thrust force, torque, and 

the efficiency of the four-bar cycloidal propeller with 

respect to the linkage length, Ld. As shown, with the 

increase in Ld, the thrust coefficient, torque coefficient, 

and efficiency exhibit a monotonically decreasing trend. 

In the data considered in this study, the maximum values 

of the thrust coefficient, torque moment coefficient, and 

efficiency are achieved when Ld = 11/45R = 11 mm. 

Therefore, from an efficiency perspective, a smaller value 

of Ld should be selected for the four-bar cycloidal 

propeller. The validated data present the optimal linkage 

lengths for the four-bar mechanism as La = R = 45 mm, Lb 

= 2/9R = 10 mm, Lc = R = 45 mm, and Ld = 11/45R = 11 

mm, resulting in the highest efficiency for the cycloidal 

propeller. Figure 8(d) shows that with the increase in Ld, 

the velocity difference within one cycle during stable 

navigation decreases; however, the magnitude of the 

decrease is very small. Therefore, we can conclude that the 

velocity difference within one cycle after stabilization of 

the cycloidal propeller is minimally affected by Ld, which 

is only slightly affected by the selection of appropriate 

linkage lengths. 

 3.2 Determination of Linkage Length for Mixed 

Four-Bar/Five-Bar Cycloidal Propellers  

Based on the determination of the influence of 

varying linkage lengths on the four-bar cycloidal propeller 

on the hydrodynamic performance, the effect of linkage 

lengths on the mixed four-bar/five-bar cycloidal propeller 

on the hydrodynamic performance. As analyzed in Section 

2.2, the mixed four-bar/five-bar mechanism is an 

improved version of the four-bar mechanism, with the 

main difference being the division of Lc into Lc1 and Lc2, 

forming the five-bar mechanism. Therefore, based on the 

linkage lengths determined in Section 3.1 for the four-bar 

mechanism, further research was conducted on the impact  
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(a) Variation of thrust coefficient with respect to length 

Lc1 

 
(b) Variation of torque coefficient with respect to length 

Lc1 

 
(c) Variation of efficiency with respect to length Lc1 

 
(d) Variation of the maximum velocity difference within 

one cycle with respect to length Lc1 

Fig. 9 Variations in the performance parameters of 

the four-bar cycloidal propeller with respect to Lc1 

of dividing Lc on the hydrodynamic performance of the 

mixed four-bar/five-bar cycloidal propeller. 

The four-bar mechanism was modified into the five-

bar mechanism mainly to reduce the vertical installation 

thickness of the cycloidal propeller. Considering the 

installation dimensions, length of Lc1, which is closer to 

the control point, should not be extremely small. 

Therefore, Lc1 was set at 11/45R, 13/45R, 15/45R, 17/45R, 

and 19/45R for the hydrodynamic simulations, and the 

obtained results are shown in Fig. 9. 

Figures 9(a), (b), and (c) present the variation patterns 

of the thrust coefficient, torque coefficient, and efficiency, 

respectively, of the mixed four-bar/five-bar cycloidal 

propeller with respect to Lc1. As shown, with variations in 

Lc1, these parameters fluctuate within a small range. 

Therefore, within the considered data range, the variations 

in the Lc1 value does not significantly affect the thrust 

coefficient, torque coefficient, and efficiency of the mixed 

four-bar/five-bar cycloidal propeller. However, Fig. 9(d) 

shows that with increasing Lc1 length, the velocity 

difference within one cycle after stabilization of the 

underwater vehicle increases significantly, especially 

when Lc1 = 17/45R or 19/45R, the magnitude of velocity 

difference is noticeably larger. Therefore, considering the 

smooth navigation of the watercraft, a smaller length for 

Lc1 is recommended. 

3.3 Comparison Between the Hydrodynamic 

Performances Of Four-Bar and Mixed Four-

Bar/Five-Bar Cycloidal Propellers  

This section presents the comparison between the 

hydrodynamic performances of the closely sized four-bar 

and mixed four-bar/five-bar cycloidal propellers under 

stable cruising conditions. Considering the actual 

dimensions of the cycloidal propeller in this study, the 

available power from the driving motor was limited, and 

the actual stable operating speed underwater was 

approximately 5 rps. Therefore, for the four-bar 

mechanism (with linkage lengths of La = R = 45 mm, Lb = 

2/9R = 10 mm, Lc = R = 45 mm, Ld = 11/45R = 11 mm) 

and the four-bar/five-bar mechanism (with linkage lengths 

of La = R = 45 mm, Lb = 2/9R = 10 mm, Lc1 = 11/45R = 11 

mm, Lc2 = 34/45R = 34 mm, Ld = 11/45R = 11 mm), the 

cycloidal propellers are subjected to a revolution speed of 

5 rps, and then compared horizontally in terms of thrust 

coefficient, torque coefficient, efficiency, and velocity 

difference after reaching the steady-state navigation 

phase, as shown in Table 3. 

 

Table 3 Comparison between the hydrodynamic 

performances of the four-bar and mixed four-

bar/five-bar cycloidal propellers 

Performance 

parameter 

Four-

bar  

Mixed four-

bar/five-bar 

Thrust coefficient KF 0.6912 1.3178 

Torque coefficient KM 2.2090 3.3066 

Efficiency η 0.2608 0.3621 

Velocity difference ΔV 

(m/s) 
0.0138 0.0286 



H. Yan et al. / JAFM, Vol. 17, No. 3, pp. 628-645, 2024.  

 

639 

 

Fig. 10 Comparison of forward velocities within a 

single cycle for the four-bar and mixed four-bar/five-

bar cycloidal propellers 

 

We compared the hydrodynamic performance 

parameters of the four- and mixed four-bar/five-bar 

cycloidal propellers at a revolution speed of 5 rps. As 

shown, compared to the mixed four-bar/five-bar cycloidal 

propeller, the thrust coefficient, torque coefficient, and 

efficiency of the four-bar cycloidal propeller has lower 

values. However, the vehicle equipped with the four-bar 

cycloidal propeller experiences smaller velocity 

difference within one cycle during steady-state navigation 

phase compared to the mixed four-bar/five-bar cycloidal 

propeller. The velocity variation curves within one cycle 

during steady-state navigation phase for the vehicle  

 

equipped with the four-bar and mixed four-bar/five-bar 

cycloidal propellers at a revolution speed of 5 rps are 

shown in Fig. 10. The vehicle equipped with the mixed 

four-bar/five-bar cycloidal propeller achieves a higher 

forward velocity. However, it also experiences larger 

velocity differences within a single revolution cycle. In 

other words, the mixed four-bar/five-bar cycloidal 

propeller generates greater thrust force but with larger 

fluctuations during each cycle. Therefore, for a higher 

thrust force, the mixed four-bar/five-bar cycloidal 

propeller must be used. However, if a smoother propulsion 

effect is preferred, the four-bar cycloidal propeller is 

recommended. 

4. DISCUSSION 

4.1 Influence of the Linkage Lengths on the Blade's 

Rotation Angle of the in the Four-Bar Cycloidal 

Propellers  

The most direct effect of varying the lengths of the 

individual linkages in the four-bar and mixed four-

bar/five-bar mechanisms on cycloidal propellers is the 

alteration of the rotational motion patterns of the blades 

about their own axis. Therefore, to determine the influence 

of linkage-length variations in the four-bar and mixed 

four-bar/five-bar mechanism on the hydrodynamic 

performance of cycloidal propellers, one must first analyze 

 
Fig. 11 Variation law of blade’s rotation angle for a 

four-bar cycloidal propeller in a single cycle 

 

the impact of linkage-length variations on the blade-

rotation angles. 

In a four-bar cycloidal propeller, the rotational angles 

of the four blades exhibit a waveform within one cycle that 

resembles a sinusoidal curve with a phase difference of 

π/2. Therefore, by plotting the variation curve of the 

rotation angle for any one blade throughout a cycle, the 

variations in the rotation angles of all blades can be 

obtained. For example, consider a four-bar mechanism 

with linkage lengths of La = R = 45 mm, Lb = 2/9R = 10 

mm, Lc = R = 45 mm, and Ld = 11/45R = 11 mm; then, the 

rotation angle curve of a blade within one cycle is shown 

in Fig. 11. 

Within each cycle, the curve of the blade's rotation 

angle follows a pattern similar to a sinusoidal curve. For 

the aforementioned linkage lengths, the variation range for 

the blade’s rotation angle is between 21.52° and 152.6°, 

with the equilibrium position at 89.94°. By using a similar 

approach, we plotted the curves of a blade’s rotation angle 

variation within one cycle for all combinations of linkage 

lengths of Lb and Lc. As observed, all the curves exhibited 

a similar sinusoidal pattern. However, the amplitudes of 

the angle variations and equilibrium positions differ 

depending on the variations in Lb and Lc. The variation 

range and equilibrium positions for the blade’s rotation 

angle obtained by changing Lb and Lc are shown in Fig. 12, 

and the fitted-plane equations are provided in Table 4. 

As shown in Fig. 12, an increasing Lb results in a 

significant increase in the amplitude of blade’s rotation. 

Within the dimensions selected for this study, an increase 

of Lb by 1/45R = 1 mm results in an approximate 20° 

increase in the blade’s rotation amplitude. Similarly, the 

increase in Lc gradually increases the equilibrium position 

angle of the blade’s rotation. Within the dimensions 

selected for this study, an increase of Lc by 4/45R = 4 mm 

results in an approximate 20° increase in the equilibrium 

position angle of the blade’s rotation. Based on the 

aforementioned discussions, the increases in Lb and Lc 

result in the expansion of the range of blade rotation and 

an increase in the equilibrium position angle of blade 

rotation, respectively, which, in turn, enhance the thrust 

coefficient, torque coefficient, and efficiency of the 

cycloidal propeller. However, the impact of this increase 

is not as significant as the variation in blade-rotation 

amplitude. 
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(a) Variation of angular range with respect to the length 

of Lb and Lc 

 

(b) Variation of equilibrium position with respect to the 

length of Lb and Lc 

Fig. 12 Variation of (a) angular range and (b) 

equilibrium position of the four-bar cycloidal 

propeller with respect to the length of Lb and Lc 

 

Table 4 Data point fitting plane equation for the 

data in Fig. 12 

Figure 

number 

in Fig. 

12 

Angular 

parameter 
Fitting plane equations 

Fig. 

12(a) 

Angular 

range 

z = 10.94x – 0.04712y + 

2.097 

Fig. 

12(b) 

Equilibrium 

position 

z = 0.7082x + 5.049y – 

143.3 

 

For a unit length of the blade, let CL and CD represent 

the lift and drag coefficients of the blade profile, 

respectively, d denote the chord length of the blade, and 

VR represent the resultant velocity of the blade motion. In 

a medium with density ρ, the lift FL and drag FD acting on 

this segment of the blade can be expressed as follows: 

2

2
L L RF C V d


=                                                                     (15) 

2

2
D D RF C V d


=                                                               (16) 

As shown, the medium density and blade chord length 

were taken as constant in this study. The lift and drag 

coefficients of the blade vary with respect to the angle of 

attack of the blade. The resultant velocity of the blade 

motion is influenced by the blade’s revolution speed and 

rotation speed. By using Eq. (15) and Eq. (16), the 

relationship between the rotation pattern of the blade and 

the magnitude of lift and drag produced by a unit length of 

the blade can be established. The integration of the lift and 

drag of a unit length of the blade yields the total lift and 

drag generated by each blade. If the interaction between 

the blades is not considered, the propulsive force and 

torque of the cycloidal thruster can be approximated as the 

vector sum of forces acting on multiple blades. 

As shown in Eq. (15) and Eq. (16), the lift and drag of 

a unit length of the blade are positively correlated with the 

square of the resultant velocity, VR, of the blade relative to 

the incoming flow. Further, the resultant velocity of the 

blade is obtained by vector addition of the blade's 

revolution velocity, rotation velocity, and relative velocity 

of the incoming flow. In this study, the revolution speed 

of the cycloidal thruster was set constant at 5 rps during 

the numerical simulation of the blade’s dimensions, Lb and 

Lc. Therefore, in each dataset, the revolution speed of the 

blade at the same revolution position is identical in 

magnitude and direction. Although the relative velocities 

between the propeller in self-propulsion and the stationary 

water flow vary, their differences compared to the 

velocities generated by blade revolution and rotation can 

be neglected. Hence, the variation in the resultant velocity, 

VR, of the blade can be approximated as primarily 

influenced by the angular velocity of blade rotation. As 

shown in Fig. 12(a), within the same revolution period, a 

larger amplitude of the rotation angle requires a 

corresponding increase in the rotation angular velocity. 

Therefore, the influence of Lb variation on the 

hydrodynamic performance of the cycloidal propeller can 

be summarized as follows: increasing Lb expands the 

range of the rotation angle of the blade within a single 

cycle, allowing the blade to achieve a greater angular 

velocity of rotation within the same revolution cycle. This, 

in turn, increases the resultant velocity of blade motion, 

thus enhancing the lift and drag generated by the unit 

length of the blade, and ultimately improving the overall 

coefficients of thrust and torque of the cycloidal propeller. 

Different rotation-angle patterns of the blade’s 

rotation will also alter the angle of attack relative to the 

incoming flow at the same revolution position, which in 

turn affects the lift and drag coefficients of the blade in Eq. 

(15) and Eq. (16). The angle of attack of the blade is 

determined by the blade’s revolution angle, rotation angle, 

and the relative angle between the blade and incoming 

flow. When the revolution position is the same, the 

magnitude of the attack angle is also primarily governed 

by the rotation angle. As shown in Fig. 12(b), increasing 

the length of Lc elevates the equilibrium position of the 

rotation angle of the blade without changing its amplitude, 

thereby altering the angle of attack. However, the 

relationship between the lift coefficient, drag coefficient, 

and attack angle is relatively complex and non-monotonic. 

When the angle of attack increases considerably, the 

phenomenon may be stalled. Therefore, the variation 

pattern and stall angle are closely related to the blade’s 

shape. Therefore, the impact of changes in the equilibrium 

position of the rotation angle of the blade on the 

hydrodynamic performance of the cycloidal propeller is 

not straightforward. According to the aforementioned 

numerical simulation results, the increase of the length  

of Lc significantly raises the equilibrium position of the  
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blade’s rotation angle, consequently altering the angle of 

attack. However, this only results in a minor improvement 

in the coefficients of thrust and torque of the cycloidal 

propeller. 

Note that owing to the combined effect of the blade’s 

rotation, revolution, and relative motion with respect to the 

water flow, it is not possible to accurately calculate the lift, 

drag, thrust coefficient, and torque coefficient of the blade 

or the cycloidal propeller solely based on the rotation 

angle and angular velocity. However, in the numerical 

simulations conducted with the same set of parameters for 

the revolution speed and phase, the obtained rotation angle 

curves show similar shapes. Under this premise and by 

comparing the rotation angular velocities, we can achieve 

a qualitative comparison of the hydrodynamic 

performance of the cycloidal propeller based on the blade 

element theory. 

We further studied the influence mechanism of the 

variation in linkage length, Ld, on the coefficients of thrust 

and torque of the cycloidal propeller. In Section 3.1, 

numerical simulations were conducted with different 

values of Ld, resulting in similar curves for blade rotation 

angle. However, the range of rotation angle and the 

equilibrium position differ, as presented in Table 5. 

Table 5 shows that as Ld increases, the range of blade-

rotation angles within one revolution significantly 

decreases and the equilibrium position slightly decreases. 

Consequently, the thrust and torque coefficients of the 

cycloidal propeller significantly decrease with the increase 

in Ld; this result is consistent with the results obtained 

from numerical simulations. 

4.2 Influence of the Linkage Lengths on the Blade's 

Rotation Angle for the Mixed Four-Bar/Five-Bar 

Cycloidal Propellers. 

Based on the discussion about the influence of 

linkage-length variation on blade rotation and 

hydrodynamic performance of a four-bar mechanism 

cycloidal propeller, this section provides an analysis on 

the effect of linkage-length variation on blade rotation 

angle and hydrodynamic performance in a mixed four-

bar/five-bar mechanism cycloidal propeller. According to 

the modeling presented in Section 2.2, the rotation patterns 

of the four blades in the mixed four-bar/five-bar cycloidal 

propeller were influenced by the geometric structure of the 

crossbar owing to mechanical reasons. Each blade has  

a distinct rotation pattern, and Fig. 13 shows the curves  

depicting the variation of blade rotation during one cycle 

for different Lc1 values selected for numerical simulations 

in this study. 

 

 
(a) Variation law of the rotation angle for blade 1  

 
(b) Variation law of the rotation angle for blade 2  

 
(c) Variation law of the rotation angle for blade 3 

  
(d) Variation law of the rotation angle for blade 4 

Fig. 13 Variation curve of the rotation angle of each 

blade of the mixed four-bar/five-bar cycloidal 

propeller with different Lc1 lengths 

Table 5 Range, amplitude, and equilibrium 

position of blade rotation angle under different Ld 

values 

Ld (mm) 
Angular range 

(°) 

Amplitude (°)/ 

Equilibrium position 

(°) 

11 21.52–152.60 131.08/89.94 

12 29.07–142.40 113.33/89.79 

13 34.09–135.30 101.21/89.56 

14 37.77–129.60 91.83/89.27 

15 40.60–125.00 84.40/88.94 
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As shown in Fig. 13, an increase in the Lc1 length 

minimally effects the amplitude of blade deflection and 

equilibrium position during one cycle. Based on the 

previous discussion, changes in the Lc1 length would not 

significantly affect the coefficients of thrust and torque of 

the cycloidal propeller. This observation is further 

supported by the conclusions obtained from the numerical 

simulations presented in Section 3.2. 

Figure 13 shows that blade 4 exhibits an abrupt 

change in its rotation angle near a revolution angle of 

180°, which is not observed in the four-bar mechanism of 

the cycloidal propeller. This irregularity is caused by a 

singularity occurring at the connection between the Lc1 

portion of the five-bar mechanism and connecting bar Lc2. 

As the Lc1 length increases, an irregular change occurs at 

an earlier time point in the rotation angle of blade 4. When 

the length of Lc1 exceeds 17/45R, blade 3 exhibits a similar 

irregular change. This irregular transition inevitably 

results in a sudden change in the blade’s angular velocity, 

resulting in increased thrust variation and velocity 

difference within one cycle. This observation aligns with 

the results obtained from numerical simulations in 

Sections 3.2 and 3.3, indicating that the velocity 

differences within one cycle of the five-bar mechanism 

increase with the length of Lc1. Overall, the velocity 

differences in the five-bar mechanism are greater than 

those in the four-bar mechanism. 

4.3 Difference in the Hydrodynamic Performances of a 

Four-Bar and Mixed Four-Bar/Five-Bar 

Cycloidal Propellers 

Under the same revolution speed, we compared the 

four-bar cycloidal propeller comprising parameters La = R 

= 45 mm, Lb = 2/9R = 10 mm, Lc = R = 45 mm, and Ld = 

11/45R = 11 mm with the mixed four-bar/five-bar 

cycloidal propeller comprising parameters La = R = 45 

mm, Lb = 2/9R = 10 mm, Lc1 = 11/45R = 11 mm, Lc2 = 

34/45R = 34 mm, and Ld = 11/45R = 11 mm. The ranges, 

amplitudes, and equilibrium position of the blade's 

rotation within a single revolution period for both cases 

are shown in Table 6. Under these parameters, the rotation 

amplitude of blade 1 in the mixed four-bar/five-bar 

mechanism is the same as that in the four-bar mechanism. 

Blade 3 exhibits a similar rotation amplitude to the four-

bar mechanism, whereas blade 2 has a slightly smaller  

 

Table 6 Range, amplitude, and equilibrium 

position of blade rotation angle of the four-bar 

and mixed four-bar/five-bar cycloidal propellers 

Cycloidal propeller 

mechanism 

Angular 

range (°) 

Amplitude 

(°)/ 

Equilibrium 

position (°) 

Four-bar 21.52–152.6 131.08/89.94 

Mixed 

four-

bar/five-

bar 

Blade1 
21.52–

152.60 
131.08/89.94 

Balde2 
22.67–

143.19 
120.52/- 

Blade3 
21.43–

152.60 
131.17/- 

Blade4 3.58–152.10 148.52/- 

amplitude. In contrast, Blade 4 has a significantly larger 

rotation amplitude than that of the four-bar mechanism. 

Therefore, under the same revolution speed, the thrust and 

torque coefficients of the four-bar cycloidal propeller with 

the aforementioned parameters are slightly smaller than 

those of the mixed four-bar/five-bar cycloidal propeller. 

The numerical simulation results in Section 3.3 strongly 

support the validity of the aforementioned discussion. 

Based on the numerical simulation results and 

discussions, we can conclude that in a series of cycloidal 

propellers developed based on the four-bar mechanism, 

the key to altering the hydrodynamic performance of the 

cycloidal propeller lies in modifying the range and 

equilibrium position of the blade’s rotation. Changes in 

the mechanism’s structure (from a four-bar to a mixed 

four-bar/five-bar) or alterations in the mechanism's 

parameters (such as modifying the linkage lengths) results 

in variations in the shape of the blade’s rotation curve. 

However, if these changes do not affect the range and 

equilibrium position of the blade’s rotation curve, their 

impact on the coefficients of thrust and torque of the 

cycloidal propeller is limited along with their influence on 

efficiency.  

4.4 Impact of a Blade’s Rotation Angle Variations 

within One Cycle on the Hydrodynamic 

Performance of the Cycloidal Propellers 

In this section, we consider blade 4 of a mixed four-

bar/five-bar mechanism cycloidal propeller as an example 

with the following linkage lengths: La = R = 45 mm, Lb = 

2/9R = 10 mm, Lc1 = 11/45R = 11 mm, Lc2 = 34/45R = 34 

mm, and Ld = 11/45R = 11 mm. Then, the influence of the 

variation in blade angles during stable self-propulsion of 

the underwater vehicle on the hydrodynamic performance 

of the cycloidal propeller is discussed. Figure 14 presents 

the variation curves of the rotation angular velocity and 

resultant force generation of blade 4 within one cycle 

during stable uniform propulsion of the self-propulsion 

cycloidal propeller. The horizontal axis represents the 

revolution angle. Additionally, transient pressure 

distribution was observed around the cycloidal propeller 

blade during different discrete moments within the cycle. 

As shown in Fig. 15, the six dotted lines represent the 

pressure distribution cloud diagrams at selected angles 

with an interval of 60°. In addition, the revolution angles  

 

 
Fig. 14 Comparison of rotational angular velocity and 

resultant force of blade 4 within a single cycle  
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Fig. 15 Cloud chart of blade pressure of the mixed 

four-bar/five-bar cycloidal propeller 

 

corresponding to the discrete moments are indicated with 

degrees. 

The force exerted on an individual blade is generated 

according to the pressure difference between the inner and 

outer sides of the blade. As shown in Fig. 15, the blade 

displays a low-pressure region on one side and a high-

pressure region on the other side. The greater the pressure 

difference between the low- and high-pressure regions, the 

greater is the force exerted on the blade. The combined 

force of the four blades is the propulsion force of the 

cycloidal propeller. As shown in Fig. 14, the magnitude of 

the resultant force of blade 4 can be well approximated by 

the pressure difference between the inner and outer sides 

of the blade, as shown in the corresponding pressure cloud 

diagram in Fig. 15. Therefore, the propulsion force of the 

cycloidal propeller blades can be qualitatively assessed 

based on the pressure cloud diagram. 

The comparison of the curves in Fig. 14 evidently 

shows that when the revolution angle reaches 145°, blade 

4 undergoes a sudden transition in its rotational swing, 

resulting in a significant peak in its angular velocity. 

Consequently, the resultant force acting on blade 4 also 

exhibits a peak. This observation is further supported by 

Fig. 15, which clearly shows a pronounced pressure 

difference between the inner and outer sides of blade 4 at 

a revolution angle of 145°. 

However, note that in Fig. 14, the rotation angular 

velocity of the blade does not fully correspond to the 

resultant force acting on the blade. The relationship 

between the blade’s rotation angle and the revolution 

position, as depicted through the discrete pressure cloud 

map (Fig. 15), indicates that the relative angle of attack 

and velocity of the blade with respect to the water flow 

depend not only on the blade’s rotation angle and angular 

velocity but also on the revolution position and water-flow 

direction. Additionally, the resultant thrust produced by 

the cycloidal propeller is a composite of multiple blades, 

and interactions exist among the blades themselves. The 

synthesis of thrust from multiple blades further 

complicates the accurate calculation of the total thrust of 

the cycloidal propeller. Therefore, the proposed 

relationship between the amplitude of the blade’s rotation 

and the thrust and torque of the cycloidal propeller is 

primarily applicable for qualitatively estimating the 

average hydrodynamic performance over multiple cycles 

for a group of cycloidal propellers with similar rotation 

pattern curves within a certain range. For calculating the 

instantaneous hydrodynamic performance of the cycloidal 

propeller in specific cases, such as transient simulations, 

CFD, or other similar methods must be employed to obtain 

accurate numerical results.  

5. CONCLUSION 

This study models and conducts numerical 

simulations on a four-bar and mixed four-bar/five-bar 

cycloidal propeller in the auto-propulsion mode, with 

multiple sets of linkage lengths variations. This study 

applied the wing element theory to analyze the effects of 

linkage-length variations in four-bar and mixed four-

bar/five-bar configurations on the hydrodynamic 

performance of the propeller. Furthermore, the research 

elucidates the relationship between linkage-length 

variations and hydrodynamic performance of the cycloidal 

propeller in the auto-propulsion mode, and the underlying 

mechanisms were analyzed. Additionally, this paper 

presents a method for estimating the hydrodynamic 

performance of the cycloidal propeller based on blade 

rotation. The main conclusions of this study are as follows:  

(1) For the four-bar cycloidal propeller, following the 

linkage naming convention provided in this paper: 

- The length of linkage La determines the rotational 

radius of the cycloidal propeller and should be chosen 

based on the actual installation dimensions of the vehicle. 

- The length of linkage Lb increases the rotation 

amplitude of the blades. Considering the thrust coefficient 

and efficiency, a relatively longer Lb should be selected. 

However, an increase in Lb slightly increases speed 

fluctuations. 

- The length of linkage Lc raises the equilibrium 

position of blade rotation in the cycloidal propeller. In 

terms of thrust coefficient and efficiency, a relatively 

longer Lc should be chosen. However, the impact of 

increasing Lc is not as significant as that of Lb. 

- The length of linkage Ld reduces the rotation 

amplitude of the blades. Considering thrust coefficient and 

efficiency, a relatively shorter Ld should be selected. 

However, a decrease in Ld slightly increases speed 

fluctuations. 

(2) Based on the conclusions in (1), for the mixed 

four-bar/five-bar cycloidal propeller, length variations of 

Lc1 do not exert a significant influence on the rotation 

amplitude and equilibrium position of the blades. The 

thrust coefficient, torque coefficient, and efficiency of the 

cycloidal propeller also do not exhibit significant changes 

with variations in Lc1. 

(3) At the same rotational speed, the mixed four-

bar/five-bar cycloidal propeller is advantageous in that its 

displays better thrust coefficient and efficiency. However, 

in terms of navigation stability, the four-bar cycloidal 

propeller outperforms the mixed propeller. 
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(4) Within a set of similar multilinkage cycloidal 

propellers, variations in linkage lengths affect the 

hydrodynamic performance of the cycloidal propeller by 

altering blade-rotation angular range and equilibrium 

position. The thrust coefficient, torque coefficient, and 

efficiency of the propeller increase with a larger blade-

rotation angular range and higher equilibrium position. 

Notably, the impact of blade-rotation angular range is 

more pronounced. 

In a future study, we plan to improve the 

hydrodynamic performance of the cycloidal propeller, 

design a more reasonable blade-rotation curve, and 

develop a corresponding control mechanism. 
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