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ABSTRACT 

A computational fluid dynamic (CFD) and machine learning approach is used 

to investigate heat transfer on NASA airfoils of type NACA 0012. Several 

different models have been developed to examine the effect of laminar flow, 

Spalart flow, and Allmaras flow on the NACA 0012 airfoil under varying 

aerodynamic conditions. Temperature conditions at high and low temperatures 

are discussed in this article for different airfoil modes, which are porous mode 

and non-porous mode. Specific parameters included permeability of 11.36 x 10-

10 m2, porosity of 0.64, an inertia coefficient of 0.37, and a temperature range 

between 200 K and 400 K. The study revealed that a temperature increase can 

significantly increase lift-to-drag. Additionally, employing both a porous state 

and temperature differentials further contributes to enhancing the lift-to-drag 

coefficient. The neural network also successfully predicted outcomes when 

adjusting the temperature, particularly in scenarios with a greater number of 

cases. Nevertheless, this study assessed the accuracy of the system using a 

SMOTER model. It has been shown that the MSE, MAE, and R for the best 

performance validation of the testing case were 0.000314, 0.0008, and 0.998960, 

respectively, at K = 3. However, the study shows that epoch values greater than 

2000 increase computational time and cost without improving accuracy. This 

indicates that the SMOTER model can be used to classify the testing case 

accurately; however, higher epoch values are not necessary for optimal 

performance.  
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1. INTRODUCTION 

The aerodynamic properties of fluid flow around a 

wing or airfoil are usually forecasted using numerical 

methods, which are crucial for aerospace industry design. 

Machine learning techniques (MLT) for forecasting, 

especially in fluid dynamics, have increased in recent 

years, reducing both the time and cost of using numerical 

methods. The study of fluid flow around airfoils is an 

important component of fluid mechanics because it can 

lead to improved airfoil designs, increased aerodynamic 

efficiency, and improved safety and stability in a variety 

of engineering systems. Fluid flow behavior around 

airfoils provides important information about fluid-

structure interaction, boundary layer separation, and 

vortex shedding, all of which are important aspects of 

hydro-aerodynamics. Flow separation occurs when the 

fluid flow around an airfoil detaches from the surface, 

leaving a wake of vortices behind it that can impair hydro-

aerodynamic performance by reducing lift and increasing 

drag. Various design modifications, such as 

trailing/leading edge extensions (Llorente & Ragni, 2020; 

Ethiraj & Pillai, 2021; Seyhan et al., 2021; Zadorozhna et 

al., 2021), vortex generators (Li et al., 2019; Yan et al., 

2019; Silva & Malatesta, 2020), and blowing/suction 

systems (Fahland et al., 2021; Chen et al., 2022; Wang et 

al., 2022), are utilized to maintain attached fluid flow over 

a greater portion of the airfoil's surface. 

Several different studies, such as (Mabey, 1990;Hinz 

et al., 2013; Samiee et al., 2018; Jordaan et al., 2021; Liu 

et al., 2023) suggest that heat transfer can have complex 

effects on the flow separation and aerodynamic 

performance of airfoils in subsonic flows, and the 

outcome depends on a variety of factors, including the speed,  
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NOMENCLATURE 

a speed of sound, a = √kRT   p pressure 

c airfoil chord length  Pr Prandtl number, Pr = μCP/kT 

CF inertia coefficient  Re Reynolds number, Re = U∞c/ν 

CP specific heat at constant pressure  T temperature 

Cv specific heat at constant volume  T∞ freestream temperature 

h specific enthalpy, h = e+p/ρ  U∞ freestream velocity 

kT thermal conductivity  T 
temperature difference between freestream 

and surface, ∆T = Th-T∞ 

Ma Mach number, Ma = U∞/a   dynamic viscosity  

 

temperature, and materials used. Heating of airfoil 

surfaces can lead to an increase in the thermal boundary 

layer thickness, where the temperature difference between 

the surface and the freestream causes spurious scale 

effects and hastens flow separation (Norton et al., 1973). 

Heat transfer can also change the pressure distribution on 

the airfoil surface, altering the flow separation and 

reattachment points. This separation can result in 

increased drag, decreased lift, and reduced 

stability (Landrum & Macha, 1987). Heating the airfoil 

surface can lead to an increase in the size of the separated 

region, which results in reduced aerodynamic 

performance (Landrum & Macha, 1987; Liepmann & Fila, 

1947). Depending on the pressure gradient, heating the 

airfoil surface can also influence skin friction as it affects 

the fluid viscosity and velocity gradient near the airfoil 

surface (Stock, 2002). Therefore, it appears that 

controlling heat transfer and temperature on the surface of 

airfoils could be a promising strategy for enhancing the 

aerodynamic performance of airfoils, particularly in 

subsonic flow conditions (Raghunathan & Mitchell, 

1995).  

A variety of design strategies, such as using advanced 

materials with high thermal conductivity and applying 

cooling techniques, are utilized to maintain the airfoil 

surface temperature within a desired range to enhance lift, 

reduce drag, and increase the envelope of operation for 

airfoils. Kim et al. and his team (Kim et al., 2003) showed 

that the aerodynamic performance of small-scale airfoils 

can be improved by varying the airfoil surface 

temperature. They found that heating the lower surface 

and cooling the upper surface of small-scale airfoils 

increases lift and decreases drag. Nevertheless, they 

restricted their attention to symmetric airfoils, and the 

simulation was completed at a Re = 104. Bekka et al. 

(2009) found that the LRN range is more reasonable for 

thermal impacts. Additionally, they demonstrated how to 

utilize turbulence models; the findings are close to the 

experimental data obtained by simulating the flow around 

a NACA 0012 airfoil. CFD techniques and NS (Navier–

Stokes) equations are used at Re = 3000 (Hinz et al., 

2013); they studied how a flapping NACA 0012 airfoil's 

aerodynamic performance was affected by heat transfer. 

In their simulations, the airfoil's temperature was 

maintained as hot or cold on both surfaces. 

Several numerical investigations have been carried 

out through CFD simulation and machine learning in 

airfoil aerodynamics (Selimefendigil & Öztop, 2021). 

Ahmed et al. (Ahmed et al., 2022) used an artificial neural 

network to predict aerodynamic coefficients. First, they 

numerically investigated the NACA0012 airfoil for 

different conditions and used the results of the numerical 

solution to learn the neural network. Their neural network 

included one hidden layer with ten neurons, and the output 

layer of their network also included two values of lift 

coefficient and drag coefficient. Bhatnagar et al. 

(Bhatnagar et al., 2019) proposed a convolutional neural 

network  (CNN) to predict the flow field. First, they solved 

the flow around airfoil shapes with standard numerical 

methods. They used the results to learn the neural network 

and considered the velocity and pressure values of the flow 

field as the output values of the network. They analyzed 

the neural network results to predict the influence of the 

angle of attack, Reynolds number, and different shapes of 

airfoils. They concluded that the developed CNN could be 

used for design and optimization applications. 

To get on the right track, in this research, we have 

used an artificial neural network to predict the lift 

coefficient with acceptable accuracy. However, it 

examines how surface temperature and heat transfer 

enhance the aerodynamic performance of small-scale 

airfoils. This is a step toward improving physical event 

modeling and producing a forecasting device that will 

direct future studies toward the most effective 

performance environments. 

2. METHODOLOGY 

Using the developed neural network for optimization 

and other applications is much faster and less expensive 

than conventional numerical methods. Samples have been 

randomly selected by the Latin Hyperbolic Sampling 

(LHS) method, and the results of the numerical solution of 

these samples have been used in the modeling of artificial 

neural networks. In this study, first we extract the 

parameters of the lift and drag coefficients from the airfoil 

with and without porous mode, which have different 

temperatures. Then, we predict the value of lift 

coefficients with the aid of machine learning. 

2.1 Physical Description 

According to earlier research, the aerodynamic 

performance of microscale rotors is magnitudes lower 

than that of their full-scale equivalents. Spin testing was 

done on inch (15.24 cm)-diameter micro-rotors with both 

NACA 0012 standard geometry and Eppler-61 advanced 

geometry airfoil sections. The greatest L/D ratio generated 

by the Eppler-61 airfoil for the rotor was only 

approximately 10 (Cl = 0.96 and Cd = 0.1 at ReD = 

3.3×104). Still, the performance of the NACA 0012 airfoil 
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was much worse under the same test conditions, by more 

than 50%. These outcomes are consistent with the most 

recent test outcomes offered by (Oosedo et al., 2017). 

These performance indices are substantially lower than 

those of true high airfoils with an L/D ratio between 50 

and 150. Due to their poor aerodynamic performance (L/D 

= 10) and poor quality factor (ratio of inspired to total 

power less than 0.5), microscale rotors cannot provide 

MAVs with a flying envelope. The longest flying time for 

battery-powered MAVs was 22 minutes (Grasmeyer & 

Keennon, 2001), which is just 35% of the Space Research 

Agency's target of 60 minutes. Therefore, it's essential to 

identify strategies to increase the aerodynamic efficiency 

of MAVs to allow effective, manageable, and sustained 

microscale flight. This research presents a novel approach 

to controlling thermal performance and airfoil surface 

temperature, significantly enhancing MAV aerodynamic 

performance. The thermal boundary-layer thickness, as 

compared to the airfoil chord, is significant for 

microscopic-level aeronautical lifting surfaces and can 

influence the flow area beyond the viscous boundary 

layer. Therefore, by chilling the upper surface and 

warming the lower surface of an airfoil section, it is 

feasible to decrease the temperature on the upper surface 

and raise pressure just on the lower surface of an airfoil, 

particularly in the vicinity of the airfoil's nose (for 

instance, using a thermoelectric device). As a result, there 

may be greater lift and circulation, less pressure drags, and 

more suction from around the airfoil's nose. Lower 

topmost temperature and pressure also result in faster flow 

through the airfoil's upper surface, which minimizes flow 

separation and delays separation. 

2.2 Governing Equations 

The continuity equation, Navier stock equations (NS), 

and energy equation in terms of enthalpy control non-

isothermal two-dimensional flow fields around an airfoil. 

These equations need to be solved simultaneously to 

model the flow field accurately. This can be done using 

numerical methods, such as the finite volume or finite 

difference method. The numerical solution gives the 

pressure, temperature, and velocity distribution around the 

airfoil, which can be used to calculate lift and drag forces. 

These equations are given by the following equations 

(Ferziger et al., 2002): 

i

i

(ρu )
= 0

χ



                                (1) 

j i ij

j j i

(ρu u ) ( ) ρ
=

χ χ χ

   
−

  
     

(2) 

j T
j

j j p j i

(ρu h) k h ρ
= ( ) u

χ χ C χ χ

  
+ 

   
    

(3) 

where Eqs. (1) and (2) represent the x and y-coordinates, 

respectively, and 𝑢𝑖 is the velocity in the i direction. 𝑘𝑇 is 

the thermal conductivity and 𝐶𝑃 is specific heat capacity, 

respectively. The enthalpy is defined as ℎ = 𝑒 + 𝑝/𝜌 , 

where e is internal energy, p is pressure, and 𝜌 is density. 

The energy equation includes the component 𝐷𝑝/𝐷𝑡. 

The amount of kinetic energy that is transformed into heat 

via viscous dissipation is relatively small compared to the 

other variables in the energy equation; thus, it is ignored. 

The viscous component of the stress tensor 𝜏𝑖𝑗 for a 

Newtonian fluid is defined as follows, under the 

assumption that the fluid is Newtonian: 

ji
ij ij

j i

uu 2
= ( di u)

χ χ 3


  + −  

 
    

(4)
 

Eq. (4) shows a relationship between the dynamic 

viscosity 𝜇, and the velocity gradient perpendicular to the 

wall. 𝛿𝑖𝑗 is the Kronecker symbol, and mu is the fluid's 

dynamic viscosity. Eq. (5) illustrates a simplified 1-D 

representation: 

u
=

n


 


      

(5)
 

It is assumed that gravitational forces are not present 

in the flow. However, gravitational forces may impact the 

flow and cause natural convection when there are enforced 

temperature variations between the surface and the free 

stream, which the model mentioned above will be unable 

to account for. The ideal gas equation is used to relate the 

thermodynamic state variables p, 𝜌, and T under the 

assumption that the fluid is an ideal gas. The 

thermodynamic equation of state is used to connect the 

specific enthalpy and temperature to the temperature, as 

shown in Eq. (7): 

ph = C T       
(6) 

p = RT       
(7)

 

where T and R stand for temperature and the particular gas 

constant, respectively. 

Drag and lift coefficients, which are dimensionless 

representations of forces, are: 

D 2

ref

D
C =

1/ 2(A U 
     

(8) 

L 2

ref

L
C =

1/ 2(A U 
     

(9)
 

The Spalart-Allmaras model (Crivellini & 

D’Alessandro, 2014) is a one-equation turbulence model. 

Under the dimensional analysis presumptions, the eddy 

viscosity transport equation is created. The following is 

the eddy viscosity transfer equation: 

~ ~
~

j IFF ES

v v
u P D D

t t

 
+ = + +

 
             

(10) 

where 𝐷𝐸𝑆,P and 𝐷𝐼𝐹𝐹  are respectively destruction, 

production, and dissipation terms of 𝜈 expressed as: 
~ ~

b1P c SV=                
(11) 

~ ~ ~
~
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(12) 
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~

2

ES 1D c ( )
d

 


= f               

(13) 

To ensure that 𝜈 = 𝑘𝑦𝑢𝜏 in the logarithmic part of the 

boundary layer, the damping function 𝑓𝑣1is defined as: 
3

1 3 3

1

x

x c




=
+

f                
(14)

                                                                                     

Where 𝑋 =
𝜈̃ 

𝜈
 , however, S is modified to 𝑆̃ in order 

to maintain the correct behaviour (𝑆̃ = 𝑢𝜏/𝑘𝑦): 

~
~

ij ij 3 22
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With Ω = 0.5 (
𝜕𝑢𝑖

𝜕𝑥𝑗
−

𝜕𝑢𝑗

𝜕𝑥𝑗
), 𝑓𝑣2 = 1 −

𝑋

𝑋+𝑓𝑣1
  and 𝑓𝑣3 =

1. The function 𝑓𝜔 introduced by (Kim et al., 2003): 

1/6
6

3

6

3

1 c
(g) g

g c






 +
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where g acts as a limiter, avoiding 𝑓𝜔 from become too 

high, and is expressed as: 𝑔 = 𝑟𝑐𝜔2(𝑟6 − 𝑟) with 𝑟 =
𝜈̃ 

𝑆̃𝑘𝑑2 . r, 𝑓𝜔 = 1. The constants of the model are :𝑐𝑏1 =

0.1355, 𝑐𝑏2 = 0.622, 𝜎 = 2/3 , 𝐾 = 0.41, 𝑐𝜔1 =
𝑐𝑏1

𝑘2 +
1+𝑐𝑏2

𝜎
, 𝑐𝜔2 = 0.3 , 𝑐𝜔3 = 2 𝑎𝑛𝑑 𝑐𝑣1 = 7.1. 

2.3 Computational Domain 

We demonstrate numerical flow simulations using the 

NS flow solver, FLUENT. Polynomial extrapolation 

functions to the supplied airfoil shape are used to 

characterize the upper and lower surfaces of the airfoil. 

The length of the airfoil chord is 20 mm in Fig. 1.  

The ideal gas law is used as the equation of state, 

specific heat is held constant, and the Sutherland law 

characteristics are employed. Even with the steady 

specific heat assumption, the model is still valid; assuming 

a constant specific heat, the model is correct since 

temperature gradients are usually minimal. The far-field 

circumstances mimic a mean flow of uniform airflow with 

a consistent pressure gradient, velocity, and freestream 

Mach number. The initial conditions of no penetration, no-

slip, and a predetermined temperature 

 

 
Fig. 1 (a) Computational mesh around the airfoil and 

(b) computational domain 

 
Fig. 2 Density (isobar), dynamic and kinematic 

viscosity dependence on temperature (Eucken, 1940; 

Bergman et al., 2011) 
 

distribution are all applied to the airfoil surfaces. The 

relatively stable fields of velocity, warmth, density, and 

pressure are calculated using an implicit and iterative 

second-order approach that integrates the continuity, 

momentum, and energy equations. The modeling is done 

in Spalart-Allmaras turbulence mode. Moreover, about 20 

airfoil chords separate the far-field (outer) control surface 

from the leading edge of the airfoil.  

2.4 Fluid Properties 

In general, fluid characteristics change as the 

temperature changes. A study of fluid characteristics at 

various temperatures is conducted to prepare for the 

simulations. Figure 2 demonstrates how the physical 

characteristics of the air change as the temperature 

changes (Eucken, 1940; Bergman et al., 2011). With their 

reference values set at 300 K, the values are then 

normalized. When the temperature rises, the density of the 

air drops, assuming an isobar change of condition. The 

Prandtl number (Pr=𝜇𝐶𝑃/𝑘𝑇) slightly decreases, too. Over 

the range of temperatures being investigated, the specific 

heat Cp is essentially constant. The values of the dynamic 

viscosity m and thermal conductivity kT significantly rise 

as the temperature increases from 300 K to 400 K. 

Dynamic viscosity and kinematic viscosity are connected 

by 𝜈 = 𝜇/𝜌. The kinematic viscosity considerably rises in 

the given temperature range due to the density decreasing 

and the dynamic viscosity growing. The relationship 

between thermal conductivity 𝑘𝑇 and thermal diffusivity 

𝛼𝑇  is given by 𝛼𝑇 = 𝑘𝑇/𝜌𝐶𝑃  and exhibits the same 

characteristics as the fluid's kinematic viscosity. 

Examining air's physical characteristics leads to the 

conclusion that fluid properties vary significantly 

throughout the range of temperatures under consideration, 

and the simulation model must account for this. The 

following models and assumptions are found: 

P PC const C (300K) 1007J / kgK= = =             
(17) 
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S

S

A T
(T)

1 T / T
 =

+
                       

(18) 

T Euckenk (T) (T)C=                
(19) 

Concerning the temperature range under 

consideration, the specific heat capacity CP exhibits a 

slight fluctuation. (Fig. 2) and is believed to be constant as 

a result. The Sutherland model is used to analyze the 

dynamic viscosity 𝜇. (Eq. (18)) (Sutherland, 1893) with 

the parameters of 𝐴𝑠  and 𝑇𝑠  for air are 1.4792×106 

kg/sm√𝐾 and 116 K, respectively. The Sutherland model 

empirically correlates dynamic viscosity as a function of 

temperature. The correlation demonstrates excellent 

agreement regarding the air's tabulated qualities 

(Sutherland, 1893). 

2.5 Machine Learning 

A multilayer perceptron (MLP) neural network has 

been developed to predict the lift coefficient values. Due 

to the fact that the data related to the drag in the 

investigated area does not show significant changes, the 

focus of the neural network on the prediction of the lift 

coefficient and especially on the stall area has been 

considered. The schematic of the neural network used is 

given in Fig. 3. This type of neural network consists of an 

input layer, an output layer, and one or more hidden layers, 

which are the connections between the input and output 

layers. The values of the neurons of the input layer are 

transferred to the neurons of the first hidden layer after 

multiplying by the values of the corresponding weights. 

After each hidden layer, there is an activation function to 

cover the nonlinear conditions of the problem. Various 

activation functions, such as sigmoid, Tanh, and ReLU, 

can be used. After passing through the first hidden layer 

and the activation function, those values are multiplied by 

corresponding weights and transferred to the next hidden 

layer; this process continues until the numerical values are 

finally transferred to the output layer. 

 

 
Fig. 3 Schematic representation of the fully 

convolutional neural network (FCNN) used in this 

study 

The inputs, Reynolds number (Re), temperature 

difference between upper and lower airfoil surfaces (ΔT), 

and angle of attack (α), are fed into the network to predict 

the lift coefficient (CL). In MLP neural networks, the 

number of hidden layers and the number of suitable 

neurons in each of the hidden layers vary according to the 

complexity of the problem. The effect of the number of 

hidden layers and the number of neurons has been 

investigated. The neural network learning process is 

performed with MATLAB software. The adaptive 

moment estimation (ADAM) optimizer with a learning 

rate of 0.001 has been used to increase the speed and 

stability of the learning process. 

The values of the Reynolds number, the temperature 

difference of the upper and lower surfaces, and the angle 

of attack are considered inputs, and the value of the lift 

coefficient is the output of the neural network. Also, two 

hidden layers with 64 neurons have been used. For 

Reynolds numbers 3.3e4 and 1.7e6, temperature 

difference from 0 to 200 °C, angle of attack from 0 to 14, 

and the number of 335 samples have been randomly 

selected by the Latin Hyperbolic Sampling (LHS) method, 

and the results of the numerical solution of these samples 

have been used in the neural network. 

The total number of data points obtained from the 

numerical solution is 335, of which 70% (equivalent to 

234) were used for training and 30% (equivalent to 101) 

was used for testing. To increase the accuracy of the 

network and the stability of the neural network, all the data 

are scaled by the largest available values. Also, the input 

values have been normalized with standard scores (z -

scores). To check the accuracy of the neural network, 

mean squared error (MSE), mean absolute error (MAE), 

and correlation coefficient (R) parameters have been 

checked. The relationships related to MSE, MAE, and R 

are given below, where N is the total number of data, 
^

iy is 

the measured value (measured) of ith data, yi is the 

predicted value (predicted) of ith data, and 
^

 , μ, 
^

  and σ 

are the mean and standard deviation values for (measured) 

and (predicted) data (Eq. (20), (21) and (22)). 

^
2N

i i

i 1

(y y )
MSE

N=

−
=                    

(20) 

^
N

ii

i 1

| y y |
MAE

N=

−
=                        

(21) 

^ ^
N

i i

^
i 1

y y1
R

N 1 =

  
− −  =

  −    

              
(22) 

3.  RESULTS AND DISCUSSIONS 

3.1 Model Verification 

The approach is first used to explore a range of basic 

airfoils without any surface heating or cooling at low 

Reynolds numbers. Cl and Cd projections match the 

results from the literature ideally in these conditions  
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Fig. 4 Grid check for the lift coefficient of a NACA 

0012 airfoil in free stream flow with a Mach number 

of 0.0725, 300 K temperatures, 1 atm pressure, 

3.3×104 Reynolds number, and different angles of 

attack 

 

 

Fig. 5 The pressure coefficient vs. chord length 

for the NACA 0012 section in a fluid flow with a 

Mach 0.0725, a temperature of 300 K, pressure of 1 

atm, and Reynolds number of 3.3 × 104 at an angle of 

attack of 8 degrees, comparison of the current results 

with the data of Kim et al. (Kim et al., 2003) 

 

(Burns & Muller, 1982; Mueller & B. Jansen, 1982; 

O'Meara & Mueller, 1987). Simulations with several mesh 

refinement levels are performed for numerical validation. 

Variations in temperature normal to the wing's surface are 

much more significant than those perpendicular to the 

airfoil. As a result, cells far from the surface have larger 

aspect ratios.  

Mesh convergence tests are carried out on a NACA 

0012 blade with lower and upper surface temperatures of 

260 K and 340 K (ΔT = 40 K) and a homogeneous air flow 

with a Mach number of 0.0725, pressure of 1 atm, and 

temperature of 300 K. The Reynolds number of the flow 

is 3.3×104. Figure 4 illustrates the results of computations 

with various meshes. The velocity profile as a function of  

 

Fig. 6 Simulation results for pressure gradient 

compared to experimental and theoretical results 

 

the angle of attack is depicted in Fig. 4. Using a coarse 

mesh underestimates the lift coefficient (8100 cells). 

However, no detectable change in the solution is apparent 

at all angles of attack with finer meshes of 100×50 (35,000 

cells) and higher (Fig. 4). The findings with 8100 cells 

reveal that the velocity profile is overestimated. The 

pressure distributions are almost identical to 35000 cells 

or higher. According to Fig. 4, a mesh number of 35,000 

is adequate for a converged (mesh-independent) flow 

solution. This mesh number is utilized in all of the 

following flow simulations: The highly pressurized zone 

encompasses the stagnation point. It reduces the airflow 

velocity along the nose's lower part, causing the nose's 

upper part to accelerate and produce suction. As a 

consequence, drag force decreases and airfoil lift force 

increases. Because of the comparably quasi-steady Re and 

its further reduced value modified Reynolds number in the 

nose area, this effect significantly affects the airfoil 

compact size and nose.  

Figure 5 depicts the pressure coefficient solutions 

along the airfoil surface and compares them with the data 

of (Kim et al., 2003) to observe a cooperative agreement 

between the present and literature data. Validation of 

porous media was done based on (Lage et al., 1997) 

experimental work, which assessed the pressure gradient 

of airflow through porous media (Fig. 6). Porous media 

are homogeneous and isotropic. Thus, the permeability is 

11.36 × 10−10m2, the porosity is 0.64, and the inertia 

coefficient is 0.371, respectively. 

3.2 Effect of Temperature On Airfoil 

In Fig. 7 (a), we compare different airfoil cases based 

on temperature. It can be observed that the airfoil increases 

as the temperature difference between the upper and lower 

surfaces is delayed. Also, in this figure, we compared two 

different Reynolds numbers: Reynolds 3.3 × 104, where 

the chord length is 0.2 m, and Reynolds 1.7 × 106, where 

the chord length is 1 m, respectively. Figure 7 (a) displays 

the lift coefficient as a function of the angle of attack for 

full-scale and micro-scale airfoils. At a 12° angle of attack,  
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Fig. 7 The lift coefficient (a), drag coefficient (b), and 

lift-to-drag ratio (c) variations versus angle of attack 

for a NACA 0012 airfoil at 300 K with a Mach 

number of 0 

 

the micro-scale airfoil is expected to have a substantially 

higher increase in lift coefficient. Due to the upper  

 
Fig. 8 NACA 0012 airfoil lift coefficient variation, 

simulation analysis, Mach number of 0.0725, 

Reynolds number of 3.3×104, at 0° angle of attack 

 

surface's low temperature, flow separation is reduced, and 

stall is postponed to a higher angle of attack (from 

approximately 11° to nearly 12°). However, no discernible 

improvement in lift force response is expected for the full-

scale airfoil. Figure 7 (b) contrasts the findings of the drag 

coefficient variation in Reynolds number Re = 3.3 × 104, 

𝑇𝑈= 200 K, 𝑇𝐿= 400 K.  

Only in the micro-scale airfoil does the drag force 

coefficient dramatically reduce. The drag decrease rate is 

more pronounced than the lift coefficient increase rate and 

the transverse stall angle. Figure 7 (c) shows a similar 

trend for the sectional L/D ratio for Reynolds number 

=3.3 × 104, 𝑇𝑈= 200 K, 𝑇𝐿= 400 K and Reynolds number 

= 3.3 × 104, 𝑇𝑈= 300 K, 𝑇𝐿= 300 K. At a total angle of 

attack of 12°, the micro-scale airfoil L/D increases from 1 

to 20. 

Figure 8 shows the lift coefficient at the zero angle of 

attack for different temperature differences. On the upper 

surface of the airfoil, the temperature is less than 300 K, 

and on the lower surface of the airfoil, the temperature is 

higher than 300 K. Due to the interchange of thermal and 

kinetic energy in the flow zone outside of the velocity 

boundary layer, the flow is accelerated in comparison to 

the baseline. 

In comparison to the baseline, the flow in this area 

moves at a substantially faster axial velocity. This 

indicates that the upper cooler surface has a lower pressure 

at the velocity boundary layer's edge than in the base case, 

which is also the airfoil surface pressure at this point 

(Fahland et al., 2021; Chen et al., 2022). This differential 

pressure is what causes the increased lift to be produced. 

The delay of flow separation at greater angles of attack 

also occurs from the acceleration of the flow on the upper 

surface. 

Figure 9 shows the temperature, pressure, and 

velocity contours for two cases with a temperature 

difference between the upper and lower of the airfoil 

surface and lower airfoil surfaces and without a 

temperature difference between the airfoil surfaces. When  
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Fig. 9 Velocity, temperature, and pressure contour for 

two cases with and without temperature differences 

on the airfoil surface 

 

compared to the heated airfoil, Fig. 9 (Pressure 

Distribution) shows that the cooled airfoil has 

significantly increased pressure, leading to increased lift. 

The relevant velocity profiles are shown in Fig. 9 

(Velocity Variation). The heated airfoil has significant 

flow separation near the leading edge and is mostly in 

stalled flow. However, the cooled airfoil obviously 

exhibits far less separation, which results in more lift and 

a lower airfoil drag penalty. 

Figure 10 depicts the thermal and velocity barrier 

layers on the upper (240 K) and lower (400 K) sides of the 

microscale airfoil at a 10% chordwise station. For 

comparison, the original condition (including both edges 

at 300 K) is also illustrated. The flow is accelerated in 

reference to the baseline due to the transmission of thermal 

and angular velocity on the top surface of the airfoil that 

has been cooled to 240 K as shown in Fig. 10. The 

opposite behavior is observed on the bottom surface, 

which has now been heated to 400 K. 

The effect of the temperature difference on the 

Reynolds number is 0.3×104 when we consider the flow 

to be laminar (Fig. 11). To see the influence of the surface 

temperature on the drag coefficient, a NACA 0012 airfoil 

at Reynolds 3000 with the angle of attack 𝛼 = 0, and the 

surface temperature changing within the range of 200–300 

K is considered. Results show that 𝐶𝐷 increases by 6.8% 

when the surface temperature changes from 200 K to 300 

K (Fig. 11).  

The pressure drag and the viscous drag are two crucial 

components that make up the drag force. Since the drag 

force for a symmetric airfoil at zero angle of attack  

 

 

Fig. 10 Thermal and velocity boundary (a) upper (240 

K) and (b) lower (400 K) layers at the 0° angle of 

attack station of the NACA 0012 section, which is in 

freestream and has a Mach number of 0.0725, a 

temperature of 300 K, a pressure of 1 atm, and a 

Reynolds number of 3.3×104 

 

 

Fig. 11 NACA 0012 airfoil drag coefficient change, 

simulation analysis, Mach number 0.0034, Reynolds 

number 0.3×104, at 0° angle of attack 
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Fig. 12 Porous media location on airfoil 

 

 
Fig. 13 shows the lift coefficient (a), drag coefficient 

(b) and lift-to-drag ratio, (c) variations versus angle of 

attack for a NACA 0012 airfoil at 300 K, Mach 

number of 0.0725, and pressure of 1 atm 

primarily results from momentum loss in the viscous 

boundary layer, its increase with rising surface 

temperature is explicable in terms of the altered fluid 

characteristics in this layer. It is evident that when the 

temperature increases, the drag coefficient and shear stress 

also increase. In Fig. 11, when the temperature is raised 

from 260 K to 380 K, the dynamic viscosity rises by over 

24%. High fluid velocities (Mach higher than 0.3), as well 

as a change in the fluid's temperature, density, and 

pressure due to heating, can produce compressibility 

effects. Because of the extremely low Mach number, there 

are no compressibility effects brought on by fast fluid 

velocities. As a result, it is presumed that the heating has 

little to no impact on the normal gradient velocity 𝜕𝑢/𝜕𝑛 

on the wall. However, the heating's effects on 

compressibility necessitate using a compressible solution 

to mimic the correct behavior. 

3.3 Effect of Temperature and Porous Media on 

Airfoil 

Porous media have different results on the airfoil 

based on location. Porous media on the leading edge and 

trailing edge are hard to build. For this reason, a narrow 

strip has been considered porous to minimize its structural 

problems. In Fig. 12, we chose four different places to 

choose the most optimal mode. P1, P2, P3, and P4 are at a 

distance of 0.25c, 0.5c, 0.75c, and 0.25c from the trailing 

edge, respectively. 

We placed porous media in different parts of the 

airfoil and checked the effect of temperature on its lift, 

drag coefficients, and lift-to-drag, as shown in Fig. 13. 

As can be seen, most of the porous media cause the 

stall angle of attack to increase. In Fig. 13, the lift 

coefficient, it can be seen that P1, P2, and P3 have good 

performance and have increased the lift coefficient, but P4 

has a weaker performance compared to the state without 

press. It is observed that the effect of temperature and 

porous media on the airfoil compared to the mode without 

temperature and porous media has very good performance 

and has a higher lift coefficient and a lower drag 

coefficient. Also, as a result, it can be seen that most of the 

porous media have more lift-to-drag than normal airfoils. 

3.4 Effect of Temperature and Porous Media on 

Airfoil 

In order to find the best and most optimal network 

architecture, the effect of the number of layers and neurons 

on the MSE, MAE, and R is given in Table A1 (Appendix) 

and Fig. 14. It can be seen that the best network 

architecture belongs to three hidden layers with 15, 20, and 

20 neurons, respectively. The number of weights in this 

network is not very high, and on the other hand, its value 

of MSE is less than the other investigated architectures. 

Table A2 and Fig. 15 also show the effect of the 

number of epochs. It can be seen that the time required to 

learn the network increases almost linearly with the 

increase in the number of epochs, but the amount of MSE 

in epochs below 2000 is noticeably reduced, and for 

epochs higher than 2000, it does not lead to significant 

improvement. Therefore, choosing an epoch value greater  
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Fig. 14 The effect of the number of hidden layers and 

the number of neurons on MSE (Testing Data) 

 

 
Fig. 15 The effect of the number of epochs on MSE 

 

than 2000 only increases the computational time and cost 

without any improvement in the accuracy of the network. 

To check the obtained results, regression charts are 

given in Fig. 16 (a) and (b). It is observed that despite the 

value of R being very close to 1, which indicates a 

regression with high accuracy, the data distribution is not 

balanced, and a large number of them are related to drag 

coefficients close to zero. On the other hand, according to 

Fig. 16 (c), for the 200-degree temperature difference, the 

accuracy in the area shown is not suitable, which is the 

stall area. In contrast, in CL areas close to zero, a very 

accurate prediction has been made. On the other hand, 

according to the nature of the problem, the area of concern 

and criticality is around the stall. 

Several methods have been proposed to overcome 

such problems in machine learning. Among the most 

important of them are cost-sensitive learning (Sutherland, 

1893; Bergman et al., 2011) and the synthetic minority 

over-sampling technique for regression applications 

(SMOTER) (O'Meara & Mueller, 1987). For cost-

sensitive learning methods to be efficient, it is necessary 

that the rare data of interest can be separated by a function 

of the output (the lift coefficient in the present problem).  

 

 

 

Fig. 16 (a) shows the Regression plot for CL (Training 

Data), (b) Regression plot for CL (Testing Data) and 

(c) Lift coefficient – Angle of Attack (Without 

SMOTER) 

(a) 

(b) 

(c) 
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Fig. 17 Lift coefficient – Angle of Attack (with 

SMOTER) 

 

At the same time, this is not possible in this research with 

the available data. Therefore, the second method, 

SMOTER, has been used. In this method, in general, 

frequent data is reduced (under-sampling) and rare data is 

added (over-sampling). Adding synthetic data is done with 

the help of K-nearest neighbors (K-NN) and interpolation. 

A description of the algorithm is available in (O'Meara & 

Mueller, 1987). 

For the implementation of SMOTER, the data related 

to the stall areas, which are limited to 7 numbers, has been 

selected as rare data and the rest as frequent data. To check 

the effect of oversampling value and K value on K-NN, 

MSE, MAE, and R values for training and testing data are 

given in Table A3. It can be seen that the best results are 

related to K=3, and an oversampling of 1000%. 

Also, in Fig. 17, the graphs of the changes in the lift 

coefficient concerning the angle of attack are given. It can 

be seen that increasing the amount of oversampling 

increases the accuracy in the desired area. But raising it 

too much will cause problems like overfitting, so by 

estimating the results and considering the importance of 

accurately predicting the stall area, it is appropriate to 

choose oversampling = 3000%. Also, K = 3 has been used 

in the K-NN algorithm to generalize the newly generated 

synthetic data. Another noteworthy point is that despite 

the fact that the stall region for Re = 1.7×106 was not used 

for the learning process of the neural network, the network 

has an accurate prediction of this region, which starts at 

about 14 degrees. CFD results separately confirm this 

value. 

4.  CONCLUSION 

According to the current models, although changing 

the surface temperature has little influence at full scale due 

to the thinness of the thermal and velocity boundary layers 

compared to the airfoil chord, it has a substantial impact 

on lift coefficient. The heat transfer in the considerably 

smaller nose area of the small-scale airfoil really accounts 

for the majority of the effect. By directly using heat 

transfer, which dominates microscale systems, we show 

how to improve lift, lower drag, and expand the 

operational envelope of airfoils. And we get these results 

from the neural network: 

• The MLP neural networks have been developed 

to accurately predict the lift coefficient. 

• The SMOTER algorithm was applied to increase 

the accuracy of the network in the area with very little data 

but of interest. This algorithm helps to predict the stall area 

with much more accuracy. 

• The developed neural network can be used to 

predict the stall region at different Reynolds numbers and 

different temperature differences. 

The significant findings of our study reveal that the 

lift-to-drag coefficient can be enhanced by raising the 

temperature. Moreover, the utilization of the porous state 

and temperature differential further contributes to an 

increase in the lift-to-drag coefficient. Additionally, we 

successfully employed a neural network to accurately 

predict the outcome when altering the temperature, 

particularly when dealing with a higher number of cases. 
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APPENDIX 

Table A1 The effect of the number of hidden layers and the number of neurons 
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3 10 0 0 0 1 40 8.16E-03 9.62E-03 6.58E-02 7.07E-02 0.971487 0.968163 

3 100 0 0 0 1 400 4.79E-04 3.01E-04 7.31E-03 7.42E-03 0.998348 0.999048 

3 200 0 0 0 1 800 3.23E-04 1.64E-04 5.06E-03 4.75E-03 0.998886 0.999487 

3 500 0 0 0 1 2000 2.39E-04 1.01E-04 4.03E-03 3.55E-03 0.999175 0.999679 

3 5 4 0 0 1 39 3.76E-03 2.90E-03 3.25E-02 3.11E-02 0.986944 0.990643 

3 20 15 0 0 1 375 3.80E-04 2.11E-04 7.06E-03 6.32E-03 0.998689 0.999336 

3 25 25 0 0 1 725 3.49E-04 2.11E-04 6.45E-03 6.29E-03 0.998797 0.999324 

3 45 40 0 0 1 1975 3.65E-04 2.44E-04 6.40E-03 6.56E-03 0.998742 0.999230 

3 3 5 3 0 1 42 4.84E-03 5.03E-03 3.43E-02 3.64E-02 0.983191 0.983867 

3 10 20 10 0 1 440 4.94E-04 3.17E-04 8.77E-03 8.59E-03 0.998298 0.999064 
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3 15 20 20 0 1 765 2.05E-04 5.94E-05 5.04E-03 3.94E-03 0.999297 0.999811 

3 30 35 25 0 1 2040 3.89E-04 1.90E-04 6.08E-03 5.79E-03 0.998659 0.999418 

3 2 4 4 2 1 40 2.94E-02 3.21E-02 6.97E-02 6.81E-02 0.896686 0.895007 

3 5 20 10 5 1 370 4.66E-04 3.18E-04 9.21E-03 8.70E-03 0.998394 0.998974 

3 10 20 20 10 1 840 3.25E-04 1.77E-04 6.82E-03 6.77E-03 0.998881 0.999478 

3 25 30 25 20 1 2095 2.57E-04 1.11E-04 4.91E-03 4.56E-03 0.999117 0.999645 

 

Table A2 The effect of the number of Epochs 

Epoch 
Training 

Time (sec) 

MSE MAE R 

Training Testing Training Testing Training Testing 

20 1.00 6.86E-02 7.92E-02 1.85E-01 1.94E-01 0.852320 0.826788 

50 2.00 1.37E-02 1.48E-02 8.37E-02 8.64E-02 0.953834 0.950702 

100 3.00 2.14E-03 1.32E-03 2.61E-02 2.42E-02 0.992662 0.995806 

200 5.00 9.88E-04 6.33E-04 1.60E-02 1.62E-02 0.996600 0.998009 

500 8.00 3.88E-04 1.96E-04 7.39E-03 6.67E-03 0.998666 0.999376 

1000 15.00 2.05E-04 5.94E-05 5.04E-03 3.94E-03 0.999297 0.999811 

2000 29.00 1.73E-04 5.42E-05 4.54E-03 4.01E-03 0.999407 0.999831 

5000 64.00 1.41E-04 4.36E-05 3.62E-03 2.91E-03 0.999516 0.999867 

 

Table A3 The effect of SMOTER on the system accuracy 

Dataset 
MSE MAE R 

Train Test Train Test Train Test 

Original Data (335) (7 Rare) 2.05E-04 5.94E-05 5.04E-03 3.94E-03 0.999297 0.999811 

SMOTER (405) (77 Rare) K=3 o=1000% 3.45E-04 3.14E-04 8.20E-03 8.05E-03 0.998895 0.998960 

SMOTER (405) (77 Rare) K=5 o=1000% 4.53E-04 5.14E-04 9.00E-03 8.51E-03 0.998558 0.998298 

SMOTER (405) (77 Rare) K=7 o=1000% 3.81E-04 3.02E-04 9.11E-03 8.09E-03 0.998782 0.998998 

SMOTER (545) (217 Rare) K=3o=3000% 5.06E-04 4.79E-04 1.32E-02 1.27E-02 0.998381 0.998433 

SMOTER (685) (357 Rare) K=3 o=5000% 9.98E-01 6.43E-04 1.65E-02 1.60E-02 0.997594 0.997774 

 


