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ABSTRACT 

Murray’s law, as the best-known optimal relationship between bifurcation 

calibers, is obtained based on the assumption of steady-state Poiseuille blood 

flow and is mostly accurate in small vessels. In middle sized and large vessels 

such as the aorta and coronary arteries, the pulsatile nature of the flow is 

dominant and deviations from Murray law have been observed. In the present 

study, a general scaling law is proposed, which describes the optimum 

relationship between the characteristics of bifurcations and pulsatile flow. This 

scaling law takes into account the deviations from Murray law in large vessels, 

and proposes optimal flow (i.e. less flow resistance) for the full range of the 

vascular system, from the small vessels to large ones such aorta. As a general 

scaling law, it covers both symmetrical and asymmetrical bifurcations. One of 

the merits of this scaling law is that bifurcation characteristics solely depend on 

the Womersley number of parent vessels. The diameter ratios suggested by this 

scaling law are in acceptable agreement with available clinical morphometric 

data such as those reported for coronary arteries and aortoiliac bifurcations. A 

numerical simulation of pulsatile flow for several Womersley numbers in 

bifurcation models according to the proposed scaling law and Murray law has 

been performed, which suggests that the general scaling law provides less flow 

resistance and more efficiency than Murray law in pulsatile flow.  
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1. INTRODUCTION 

 Arterial bifurcations are prone to atherosclerosis due 

to abnormal hemodynamics (Asakura & Karino, 1990; 

Kimura et al., 1996; Morbiducci et al., 2016; Murasato et 

al., 2022). Considering the risk of restenosis, 

interventional treatment of these lesions is also a major 

concern (Tanabe et al., 2004; Lefèvre et al., 2005; 

Arquizan et al., 2011; Lammeren et al., 2011; Müller et 

al., 2019; Elsayed et al., 2021). Therefore, it gets higher 

priority to avoid abnormal hemodynamics. The 

bifurcation angle and diameter ratio effectively determine 

the hemodynamic parameters at bifurcations (Huo et al., 

2012). The principle of optimal design states that 

biological structures are optimally selected in nature and 

should be maintained to avoid any abnormal variation in 

hemodynamic stresses (Rossitti & Löfgren, 1993). Murray 

was one of the first who established a relation for the 

optimal branching pattern of a vascular system based on 

the steady-state Poiseuille blood flow assumption 

(Murray, 1926b). Murray’s law also known as cubic law 

expresses that minimum energy is achieved when 

volumetric flow is directly related to the third power of 

vessel radius. This relation is derived from a cost function, 

using the calculus of variations. The cost function 

comprises frictional and metabolic energies. These two 

terms should be compromised since their relation to the 

radius of the vessel is opposite. Murray’s law might be 

regarded as pumping power with the volume constraint 

which results in a cubed diameter expression as 

D0
3=D1

3+D2
3. The exponent in Murray’s law is supported 

for all trees whose internal flows obey steady-state 

Poiseuille blood flow assumption such as small arteries, 

arterioles, and bronchial trees of lungs (Horsfield & 

Cumming, 1967; Zamir et al., 1983; Kassab & Fung, 

1995; Kaimovitz et al., 2008). However, deviations have 

been observed and different exponents have been reported 

in bifurcations of the aorta, the pulmonary trunk, coronary 

arteries, common carotid artery, and major arteries within 

the Circle of Willis (Sherman, 1981; Ingebrigtsen et al., 

2004; Finet et al., 2008; Beare et al., 2011; Huo et al., 

2012;  Baharoglu et al., 2014). Several studies have been 

carried out to determine the optimum exponent by 

assuming different constraints for the cost function which  
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NOMENCLATURE 

𝜗 kinematic viscosity  l length of vessel 

𝜇 dynamic viscosity  n 
natural number, optimal exponent of diameter 

ratio 

𝜌 density  N Fourier series modes 

𝜆 Lagrange multiplier  p pressure 

𝜑 aggregate function  Q blood flow rate 

β daughter to mother diameter ratio  r radius direction 

𝛼 complex form of Womersley number  R vessel radius 

𝛾 daughter to mother diameter ratio  Res flow resistance 

𝜃 half of bifurcation angle  t time 

𝜔 angular frequency of the oscillation  u the axial component of velocity 

A amplitude of oscillation  Wo dimensionless Womersley number 

D vessel diameter  x dummy variable, length direction 

 

usually ranges between 2 and 3 (Mayrovitz, 1987; 

Uylings, 1977; Dawson et al., 1999; Cebral et al., 2003; 

Huo & Kassab, 2009). Most of these studies focused on 

steady-state Poiseuille blood flow assumption, while, 

typically in large vessels, which deviate from Murray’s 

law, the pulsatile nature of flow is dominant. 

 A fundamental functional parameter of a vascular 

system is the hydraulic resistance, which determines the 

transport efficiency. Efficiency means maintaining the 

continuity of flow at a low energy cost, minimizing the 

specific constraint of the system, and simultaneously 

avoiding abnormal hemodynamics. In the present study, 

we propose an optimum relation between the 

characteristics of parent and branch vessels based on the 

minimization of the hydraulic resistance to a pulsatile 

flow. What we believe is a novel scaling law, extends 

beyond the arterial trees and covers the full range of 

vascular system from aorta to capillaries. The major 

significance of the present study is that bifurcation 

characteristics are solely related to the Womersley number 

of parent vessels. Unlike most previous studies, the 

corresponding exponent of the optimality relationship is 

determined according to the location and diameter of the 

parent vessel. The scaling law is provided in the 

symmetrical and asymmetrical bifurcations. The scaling 

law is validated through numerical simulation of flow for 

several Womersley numbers in bifurcations modeled 

according to the proposed scaling law and Murray law 

diameter ratios and their respective angle rules. It is 

illustrated that flow resistance in the proposed scaling law 

bifurcations is less than that of Murray. 

2. MATERIAL AND METHOD 

2.1 Analytical Method 

 The governing equation for blood flow in large arteries 

is the Navier-Stokes equation for laminar incompressible 

Newtonian fluid, which is simplified and expressed as Eq. 

(1). Womersley solved this equation and stated the 

velocity profile as prescribed in Eq. (2) (Womersley, 

1955), regarding an oscillating pressure gradient like as 

𝐴𝑒𝑖𝜔𝑡. 
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 The blood flow rate can be obtained according to Eq. 

(3) by integrating the velocity profile on the tube’s cross-

section (Painter et al., 2006). Where 𝜌 is the fluid density, 

R is vessel radius, and J0 and J2 are the Bessel functions of 

order 0 and 2, respectively. Regarding 𝜗 as kinematic 

viscosity and 𝜔 as the angular frequency of the oscillation, 

the Womersley number, Wo, is a dimensionless number 

that relates pulsatile flow frequency to viscous effects and 

is defined as R



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 Based on this equation, the hydraulic resistance to 

pulsatile flow for a cylindrical tube, as the ratio of overall 

pressure drop to the total flow rate, can be derived through 

Eq. (4). 

0
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 In human arteries under normal physiological 

conditions, the pressure cycles from systolic to diastolic 

values, resulting in a forward pumping pressure gradient, 

and oscillating pressure gradients. Consequently, the 

blood flow rate is a periodic function of time. With 

sufficient regularity, and also regarding the superposition 

principle, the blood flow rate can be treated as steady and 

oscillating parts approximated by N complex Fourier 

modes given in the form of Eq. (5). 

( )
0

N
i nt

n s osc

n

Q t Q e Q Q

=

= = +                                          (5) 

 The relationship between flow rate and pressure drop 

in a fully developed laminar regime is expressed in Eq. (6) 

(Razavi et al., 2014). For a symmetrical bifurcation 

illustrated in Fig. 1, the global flow resistance was 

obtained as Eq. (7), which is an aggregate of steady and 

oscillating parts (see Appendix). 
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Fig. 1 Schematic of a symmetrical bifurcation 

 

 According to constructal theory (Bejan & Lorente, 

2008), optimum flow structure is obtained through 

minimizing the flow resistance. Therefore, Rest was 

analytically minimized subjecting to a constant volume 

constraint, by the use of the method of Lagrange 

multipliers, which is equivalent to seeking the extremum 

of the aggregate function of   in Eq. (8). This way, the 

diameter ratio between daughter and mother in a 

bifurcation is achieved. 
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2.2 Numerical Method 

 The proposed scaling law (pulsatile optimality rules) is 

validated using CFD tools. Flow patterns in artery 

bifurcations constructed according to pulsatile scaling and 

Murray law are numerically simulated and compared. 

Ideal Y-shape bifurcations are generated with smooth 

tubes. The dimensions would be designated by equating a 

constant volume in both geometries according to Murray 

and pulsatile rules. The Navier-Stokes and continuity 

equations are solved through a viscous 3D code employing 

the finite volume method. Spatial coupling of equations is 

maintained, utilizing second-order upwind and second-

order backward Euler schemes for spatial and time 

discretization, respectively. Results are acquired at each 

time step, ensuring all RMS residuals are less than 10-5, 

and computations are extended over three cardiac cycles. 

A structured mesh comprising approximately 500,000 

hexahedral elements is implemented. Mesh dependency 

analysis is conducted to achieve a relative error of less 

than 1% for blood flow rate and time-averaged flow 

resistance. The total number of time steps per cardiac 

cycle remains constant at 500 for all cases, utilizing a 

uniform time step. Blood density and viscosity are set to 

1056 kg/m3 and 3.5 cP, respectively. Blood flow is 

considered Newtonian, which is an acceptable assumption 

for large arteries (Vlachopoulos et al., 2011; Haghighi et 

al., 2016). All tube walls are considered rigid with a no-

slip condition. At the inlet boundary, the velocity is set to 

a Womersley profile as Eq. 2, and on outflow boundaries, 

the average pressure is set to a constant reference value of 

100 mmHg (Alnæs et al., 2007; Harris et al., 2023). 

Initially, a steady-state Poiseuille flow condition with a 

parabolic axial velocity profile is assumed (Haghighi et 

al., 2015). The flow resistance obtained in the last cycle is 

then compared for each geometry. 

3.  RESULTS 

3.1 Analytical Results 

 Derivative of Eq. (8) with respect to the radius gives a 

system of equations for mother and daughter diameters as 

a function of Lagrange multiplier (λ) which is presented in 

the Appendix. Solving the system of equations and 

eliminating λ yields the diameter ratio for a symmetrical 

bifurcation demonstrated by 𝛽 in Eq. (9). This equation 

proposes that in pulsatile flow, 𝛽 as the caliber of a 

symmetrical bifurcation, depends on Wo number of 

mother branch and thus changes based on vessel size from 

the aorta to fine capillaries. This equation can be shown as 

Eq. (10), which is more generalized since is expressed in 

the form of optimal exponent (n). For steady-state 

Poiseuille flow, as reported by Murray n is equal to 3 

(Murray, 1926b). 
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 Following the method suggested by Rosen (Rosen, 

2013) for a pulsatile flow condition, the angle between 

daughters (2𝜃) as another characteristic of the bifurcation 

is computed by Eq. (11). Where R0 is the radius of the 

mother branch (see Appendix). 
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𝛽 and 𝜃 are the main characteristics of a symmetrical 

bifurcation. All the optimal relations proposed  

for bifurcation in pulsatile flow from Eqs. 9 to 11 are   
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Fig. 2 Schematic of an asymmetrical bifurcation 

 

dependent on Wo of the mother branch, which means 

suggested optimum values vary depending on vessel size 

and optimum values for arteries differ from capillaries. 

Besides that, if Wo tends to zero, equivalent to flow 

condition in capillaries, 𝛽 and 𝜃 lead to 0.7937 and 37.5o 

respectively which are similar values reported by Murray 

(Murray, 1926a). 

 For asymmetrical bifurcations, similar to Fig. 2, 

considering only the oscillating part of the flow rate as Eq. 

(3), the flow resistance in pulsatile flow is calculated based 

on Eq. (12). This is the analog of impedance matching at 

the junctions of electrical transmission lines. 𝛽 and 𝛾 are 

the two diameter ratios of daughters to mother branch. 

This equation might be simplified as Eq. (13), where n as 

the exponent, changes based on Wo and is obtained from 

Eq. (12). 
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 Considering Womersley velocity inlet as Eq. (2), Eq. 

(10) and Eq. (13), the optimal exponent of diameter ratio 

(n) for symmetrical and asymmetrical bifurcations is 

illustrated in Fig. 3. This figure shows that (n) ranges 

based on Wo from 3 in small arterioles and capillaries 

(where Wo tends to 0) to about 2 in larger vessels such as 

aortoilliac bifurcation. The trend is the same for both 

symmetrical and asymmetrical bifurcations and comprises 

three distinct zones. In the first zone, which includes 

capillaries, arterioles, and small arteries, Wo is less than 2 

and the exponent is equal in both types of bifurcations. 

Also, in the fully pulsatile zone (Wo>7), symmetrical and 

asymmetrical bifurcations report close values for optimal 

exponent with less than 1% difference. The main 

distinction between symmetrical and asymmetrical 

bifurcations is observed for middle-sized vessels such as 

cerebral arteries and coronary arteries with Wo between 2 

to 5. This zone is called the transitional zone from quasi-

steady to fully pulsatile flow. The maximum difference in 

this zone is also small and is below 6%. Therefore, for the 

artery flows with a forward pumping pressure gradient  

 

Fig. 3 Optimal diameter ratio for bifurcations as a 

function of Wo 

 

 

Fig. 4 Exponent of optimal diameter ratio equation as 

a function of Wo for different Fourier modes in a 

symmetrical bifurcation 

 

(FPPG), the equivalent exponent predicted by Eq. (9) 

might be implemented in Eq. (13) to find the optimum 

relationship between branches' diameter ratios in 

asymmetrical bifurcations. 

 Equation. (9) and Eq. (11) express that optimum 

calibers depend on Wo and the number of Fourier modes. 

Fig. 4 illustrates the trend of the exponent of optimal 

diameter ratio (n) for different Fourier modes. It is evident 

that the presence of FPPG does not affect the overall 

tendency of the optimal diameter ratio, and the line of 

harmonic oscillatory flow with a positive pumping 

pressure gradient (N=1) mimics the zero FPPG flow, Eq. 

(3). Increasing the number of harmonic modes reduces the 

value of the optimal exponent, indicating that transient 

inertial forces dominate and quasi-steady flow zone 

shrinks. 
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Fig. 5 The maximum difference of exponent values 

according to changes in the order of the Fourier series 

 

 The values obtained by the line of eight Fourier modes 

(N=8) might be considered target values since most of the 

blood flow rate profiles can be approximated using the 

Fourier series with eight modes. Moreover, as shown in 

Fig. 5, the maximum difference between the reported n 

values by N=6 and N=8 lines is less the 1%. 

 Figure. 6 shows the angle of symmetrical bifurcation 

for zero FPPG inflow and positive FPPG inflow with eight 

Fourier modes. This figure indicates that larger vessels 

with larger Wo bifurcates at smaller angles. By increasing 

the branching generation, the vessel diameter and as a 

consequence, Wo decreases. Thus, the angle of 

bifurcations increases and in arterioles and capillaries 

reaches the reported value by Murray as 75o. This concept 

is supported by reported clinical studies. Those three 

distinct zones are also noticeable for optimal angle 

distribution over the vessel size range. It is interpreted that 

FPPG would cause a dump in the influence of viscous 

forces and shift the values to the fully pulsatile zone. 

 

 

Fig. 6 Optimal bifurcation angle as a function of Wo 

(considering the number of Fourier modes effect) 

 

Fig. 7 Flow resistance difference between pulsatile 

optimality and Murray's law for Womersley numbers 

(Wo) of 2, 4, 8, and 14 

 
3.2 Numerical Validation 

 The reported values of optimal calibers obtained from 

the above equations are validated through numerical 

simulation. Fig. 7 shows the difference in flow resistance 

determined by numerical simulation of the bifurcations 

constructed based on the proposed scaling law and Murray 

law for four distinct inflow Wo. Positive values indicate 

higher resistance in Murray law-based geometries and 

consequently higher energy and cost demand. Due to the 

almost completely positive yielded resistance difference 

for all inflow Wo’s, it is obvious that the energy losses are 

higher in Murray law-based configurations. In quasi-

steady flow with Wo=2, since the calibers of pulsatile 

optimality and Murray law are almost the same, flow 

resistance in Murray’s is only about 2% higher. However, 

even this slight difference makes the pulsatile optimality 

rules more efficient. As Wo increases, transient inertial 

forces become more dominant, and deviation from 

Murray’s law is more significant. The time-averaged flow 

resistance difference between the proposed scaling law 

and Murray law increases as Wo increases from 4 to 14. 

For Wo=14, the equivalent exponent (n) is 2.09 which is 

noticeably different from Murray's reported value of n =3 

which causes a 12% increase in flow resistance for 

Murray's rule-based bifurcations. 

4. DISCUSSION 

 In the cardiovascular system, the pulsation frequency 

and blood properties are assumed constant, so the 

Womersley number is dependent on vessel size. As a 

consequence, according to the presented scaling law, 

bifurcation calibers would change based on the variations 

in vessel size across the vascular system. This is one of the 

remarkable outcomes of the described pulsatile flow 

optimality relationships. For large vessels with Wo>5, the 

pulsatile nature of flow predisposes the bifurcation to 

almost follow an area-preserving law (n=2)  

for minimizing energy loss. This behavior is attributed to  
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Fig. 8 Scaled velocity profile according to different 

Womersley numbers (San & Staples, 2012) 

 

changes in the velocity profile, illustrated in Fig. 8, where 

higher Womersley numbers lead to a plug profile. A plug 

velocity profile, or constant inflow and outflow velocity at 

the bifurcation, corresponds to the conservation of the area 

at the mother and daughter vessels, indicating n=2. Thus, 

the bifurcation angle and diameter ratio are smaller for 

large vessels. 

 As the branching generation grows, the vessel size 

decreases and viscosity forces gradually become more 

effective. Ultimately, for Wo<2, the viscosity becomes 

dominant, causing quasi-steady flow with Poiseuille 

resistance law of n=3 as the governing optimal 

relationship. In these circumstances, the calibers of 

bifurcation are the same as the values reported by Murray. 

The uniformity of wall shear stress, independent of vessel 

diameter, is a direct outcome of Murray's law (Golozar et 

al., 2017). Figure 9 demonstrates the ratio of time-

averaged wall shear stress in mother and daughter vessels 

for a symmetrical bifurcation in various Womersley 

numbers. It illustrates the non-linear relationship of wall 

shear stress to vessel diameter in pulsatile flow. Notably, 

the ratio approaches unity for Wo<2, affirming the 

acceptability of the uniform wall shear stress hypothesis in 

the quasi-steady zone (Painter et al., 2006). At higher 

Womersley numbers, β decreases, leading to a noteworthy 

40% increase in wall shear stress on the daughter vessel. 

It is important to highlight that the oscillatory components 

of wall shear stress remain consistent between mother and 

daughter vessels across different Womersley numbers. In 

the transitional zone from steady-state to purely 

oscillatory flow (2<Wo<5), the transient inertial forces 

and steady-state Poiseuille resistance are comparable and 

because of that, a step-like profile is proposed for calibers. 

Thus, the blood vascular system is constructed in a way 

that vessels bifurcate according to these relationships. 

Therefore, while it converts purely oscillatory flow in the 

aorta to steady-state flow in capillaries, it provides the 

minimum flow resistance. Considering the human Aorta 

size, Wo is typically about 14~15. Based on Eq. (9),  

 

Fig. 9 The ratio of WSS in mother and daughter 

vessels in symmetrical bifurcation according to 

different Womersley numbers 

 

steady-state Poiseuille flow initiates just after three 

branching generations and results in a reduction in Wo to 

below 5. It would completely dominate the flow after six 

generations, when Wo decreases to less than 2, exactly as 

reported by West (West et al., 1997). 

 Regarding Eq. (9), it needs 34 generations to reach 

from the Aorta to capillary sizes, which is supported by 

literature (LaBarbera, 1990). The optimality relationships 

of pulsatile flow are validated by comparing analytical 

results with available clinical morphometric data as 

expressed in Table 1. The Wo was computed based on the 

reported mother vessel size for each reference, assuming a 

normal heart beating rate of 70 bpm. With N=8 and the 

computed Wo, analytical values can be proposed using Eq. 

9. Table 1 demonstrates that the scaling law has an 

acceptable agreement with clinical data across each of the 

three prescribed flow zones. Furthermore, the proposed 

relationship can explain the significant deviation from 

Murray law in large arteries, such as the aortoiliac, which 

is located in the fully pulsatile flow zone. Additionally, for 

a middle-sized artery such as MCA, which yields optimal 

values close to Murray law, the exact optimal value is 

predicted by the proposed scaling law, while others only 

consider Murray law to be somewhat accepted. 

5. CRITIQUE OF MODEL 

 The compliance of vessels, determined by their elastic 

properties, plays a crucial role, particularly in large 

arteries (Quarteroni & Formaggia, 2004). While the 

assumption of a rigid wall in high Womersley number 

scenarios may be questioned, studies indicate that the 

incompressible-fluid, thin-wall approximation for an 

oscillatory pressure wave applied on an elastic vessel 

yields consistent results. This approximation, 

demonstrated in large arteries, shows a step-like behavior 

with an optimal exponent typically around 2 (West et al., 

1997). In small vessels, blood exhibits shear-thinning 

behavior, necessitating consideration as a non-Newtonian  

uu
avg

r
R

0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

Parabolic

Wo=2

Wo=5

Wo=7

Wo=10

Wo=18

Wo

W
S

S
1
W

S
S

0

0 2 4 6 8 10 12 14 16 18
0.9

1

1.1

1.2

1.3

1.4

1.5



M. Shumal et al. / JAFM, Vol. 17, No. 10, pp. 2203-2214, 2024.  

 

2209 

Table 1 Comparison of the diameter ratio between the proposed analytical equations and experimental studies in 

coronary arteries, left anterior descending artery (LAD), middle cerebral artery (MCA), and Aortoiliac 

bifurcations in normal and healthy blood flow conditions 

Vessel Wo 

Biological exponent of diameter ratio 

(Clinical n) 
Obtained results for exponent of diameter ratio 

(Analytical n) 
Data Ref. 

Coronary 

Arteries 

3.1 2.26 

(Finet et al., 2008) 

2.22 

2.44 2.35 2.34 

1.63 2.65 2.64 

2 2.66 2.5 

LAD 2.66 2.26 (Huo et al., 2012) 2.29 

MCA 1.6 2.69 (Baharoglu et al., 2014) 2.69 

Aortoiliac 

13.9 2.04 
(Joh et al., 2013) 

2.04 

13.1 1.6 2.04 

12 1.8 
(Hu et al., 2022) 

2.05 

10.5 1.9 2.06 

 

fluid. However, in large arteries, where deviations from 

Murray’s law have been documented, blood tends to 

exhibit Newtonian fluid characteristics (Vlachopoulos et 

al., 2011; Haghighi et al., 2016). The validity of our 

proposed results is supported by studies in small arteries 

(Horsfield & Cumming, 1967; Zamir et al., 1983; Kassab 

& Fung, 1995; Kaimovitz et al., 2008) and aligns with 

available morphometric clinical data in large arteries 

(Finet et al., 2008; Huo et al., 2012; Joh et al., 2013; 

Baharoglu et al., 2014; Hu et al., 2022). Furthermore, 

according to (Huo et al., 2012) the wave reflection due to 

vessel branching (Vosse & Stergiopulos, 2011) requires a 

fluid-structure interaction computational model. 

However, in some cases such as the aorta-carotid 

interface, a low bifurcation reflection coefficient has been 

reported (Haidar et al., 2021). 

6. CONCLUSION 

 Murray’s law as the optimum relationship between the 

characteristics of bifurcations is developed based on the 

steady-state Poiseuille blood flow assumption and mostly 

applies to capillaries. Considering the pulsatile flow 

condition in middle and large sized arteries, we derived 

and validated a general scaling law, as an extension of 

Murray’s law to pulsatile flow, which applies to the full 

range of the vascular tree. It mimics Murray’s law in small 

vessels, where Womersley number tends to zero. As vessel 

size increases, the pulsatile nature of the flow becomes 

dominant, and the bifurcation angle and diameter ratio 

decrease in a step-like profile. 

The proposed scaling law addresses reported deviations 

from Murray’s law in arteries and is in acceptable 

agreement with available morphometric vascular data 

such as those reported for coronary arteries. Numerical 

simulation of pulsatile flow for several Womersley 

numbers, suggests that the proposed scaling law provides 

less flow resistance than Murray law in pulsatile flow. 
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drops in the mother and daughter branches. Since the 

daughter branches are identical, the pressure drops in the 

mother and daughter branches are the same. 

Consequently, the total pressure drop (∆𝑝𝑇) is written as: 
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(A.2) 

 Using Eqs. (A.1), (A.2), and considering Womersley 

flow conditions, the global flow resistance of a tree 

structure is obtained as: 

         (A.3) 

 For minimizing Res, an aggregate function of 𝜑 is 

obtained by subjecting Res to constant volume constraint 

as: 

 (A.4) 

 By the use of the method of Lagrange multipliers, and 

deriving 𝜑 with respect to R0 and R1 the Lagrange 

multiplier (λ) is computed as follows: 

 

(A.5) 

 Considering that the required derivative is computed 

as the following, λ would be obtained. 

      (A.6) 

 Substituting (A.6) in (A.5), λ can be eliminated from 

(A.5) by equating those two relations in (A.5). Hence, the 

diameter ratio is obtained as: 

                              (A.7) 

b. Derivation of Optimal Symmetrical Bifurcation 

Angle 

 For a single unbranched vessel of length l, the cost 

function is yielded as: 

 
(B.1) 

 This is differentiated with respect to radius (r) and the 

result is equated to zero. it is then found that the cost 

function attains its minimal value when: 

 

(B.2) 

 Substituting (B.2) in (B.1), the power dissipation per 

unit length is related to the radius of the vessel by: 

    (B.3) 

 Where, Γ is a constant and, ψ is a function of radius 

(for constant flow and fluid properties, 𝛼 is dependent on 

radius). If the bifurcation point is displaced by a small 

displacement 𝛿, the bifurcation angle changes concerning 

the bifurcation position. Consequently, there are small 

changes in the lengths and overall cost. For an arbitrarily 

small displacement (δ), there is an optimum bifurcation 

position where the variation of overall cost due to small 

displacement is equal to zero (δWopt= 0), and for a 

symmetrical bifurcation results in: 

 
(B.4) 

 The optimum bifurcation angle also can be found by 

taking into account the effect of small displacement 𝛿 of 

the bifurcation point along the mother branch (B.5). 

 
(B.5) 

Substituting the (B.5) in (B.4), the optimum bifurcation 

angle (2𝜃) is obtained as: 

                         (B.6) 

 Where β is the optimum diameter ratio and the (C) 

function is obtained from the (B.7) equation. 

                           (B.7) 

c. Derivation of Optimal Length Ratio in 

Symmetrical Bifurcation 

 Considering (V) is constant, the global resistance is 

dependent on (l0) and (l1), but the two vessel lengths 
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cannot be varied independently because of the area 

constraint: 

 
(C.1) 

 For obtaining the length ratio, an aggregate function of 

(ψ) is developed by subjecting (V.Res) to area constraint 

as: 

 
(C.2) 

 By the use of the method of Lagrange multipliers, 

deriving (ψ) with respect to (l0) and (l1) and eliminating 

the (λ), length ratio (𝐿 =
𝑙1
𝑙0
⁄ ) is obtained as: 

                      (C.3) 

d. Derivation of Optimal Diameter Ratio in 

Asymmetrical Bifurcation 

 Analogous to impedance matching at the junctions of 

electrical transmission lines, global resistance is obtained 

as: 

 

(D.1) 

 Where subscript 0 denotes the mother and 1 and 2 

denote the daughter branches. The aggregate function is 

obtained by subjecting Res to constant volume constraint 

as: 

    (D.2) 

 By the use of the method of Lagrange multipliers, and 

deriving (𝜑) with respect to (R0), (R1), and (R2), three 

distinct equations would be achieved as (D.3) to (D.5), 

which should be solved. 

                          (D.3) 

                    (D.4) 

                    (D.5) 

 Considering (R) as branches diameter ratio (𝑅 =
𝑅2

𝑅1
⁄ ), L as branches length ratio (𝐿 =

𝑙2
𝑙1
⁄ ), and the 

defined equation for resistance to pulsatile flow in a tube, 

the ratio of resistance in daughters is simplified as follows: 

 

(D.6) 

which can be shown in the form of (D.7) 

 

(D.7) 

 Combining (D.4), (D.5) and (D.7), yields the relation 

between (L) and (R) as the following: 

 

(D.8) 

 The combination of (D.3), (D.4), (D.6), and (D.8), 

results in the relation between bifurcation branches radius 

as: 

(D.9) 

 If the diameter ratio of the first and second daughter to 

the mother is defined as (𝛽 =
𝐷1

𝐷0
⁄ ) and (𝛾 =

𝐷2
𝐷0
⁄ ), 

respectively, the (D.9) equation can be expressed as 

follows: 

 (D.10) 

e. Derivation of Optimal Asymmetrical Bifurcation 

Angles: 

 The overall procedure of obtaining optimal angles for 

asymmetrical bifurcations is the same as symmetric ones. 

The main difference is that (B.4) as the controlling 

equation would be substituted with the following: 

     (E.1) 

where the small displacement δ of the bifurcation point 

along the mother branch (E.2) and the first daughter 

branch (E.3) and the second daughter branch (E.4) should 

be substituted in (E.1). 
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(E.2) 

 

(E.3) 

 

(E.4) 

 Solving these equations simultaneously yields the 

following as the relation between bifurcation angles and 

branch radius: 

 

(E.5) 

where the coefficients in (E.5) are defined as the following 

relations: 

 

(E.6) 

f. Derivation of Optimal Diameter Ratio in 

Symmetrical Bifurcation (Fourier Series 

Approximation) 

 For a periodic blood flow rate approximated by N 

complex Fourier modes as the following: 

 

(F.1) 

with forward pumping pressure gradient, and oscillating 

pressure gradients, resistance can be defined as: 

 

       (F.2) 

 Substituting (F.2) in (A.4), and by the use of the 

method of Lagrange multipliers, and deriving (𝜑) with 

respect to (R0) and (R1), the diameter ratio is obtained as: 

        (F.3) 

g. Derivation of Optimal Symmetrical Bifurcation 

Angle (Fourier Series Approximation) 

 For a single unbranched vessel of length (l) with a 

periodic blood flow rate approximated by (N) complex 

Fourier modes, the (Res) might be defined as: 

 

(G.1) 

 Substituting (G.1) in (B.1) and differentiating with 

respect to radius (r), the cost function minimizes when: 

             (G.2) 

 Substituting (G.2) in (B.1), the power dissipation per 

unit length is related to the radius of the vessel by: 

 

(G.3) 

 Since there is an optimum bifurcation position where 

variation of overall cost due to small displacement is equal 

to zero, for a symmetrical bifurcation can conclude that: 

            (G.4) 

Where h(r,x) is defined as: 

                      (G.5) 

 Considering (B.5), (G.4) and (G.5), the optimum 

bifurcation angle (2𝜃) is obtained as: 

 

(G.6) 
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