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ABSTRACT 

In a centrifugal pump, the clearance flow is quite common due to the existence 

of clearance between the casing and impeller. Apart from the clearance, the 

impeller speed and flow rate have a significant impact on fluid frictional torque. 

This study uses experimental and numerical methods to investigate these 

dynamics. The experimental setup includes measurements of fluid frictional 

torque at various levels of axial clearance (0.6 mm, 1.2 mm, and 1.8 mm), flow 

rates (8 L/min, 10 L/min, and 12 L/min), and impeller speeds (800 rpm, 1000 

rpm, and 1200 rpm). A 3-level, 3-factor factorial design (L27) is employed to 

systematically examine the impact of these factors on fluid frictional torque. 

Response Surface Methodology (RSM) and Artificial Neural Networks (ANNs) 

are utilized to capture complex parameter interactions, with optimization 

performed using a Desirability Function (DF). The analysis reveals a significant 

increase in fluid frictional torque with increasing axial clearance, impeller speed, 

and flow rate. The optimal operational parameters for minimizing fluid frictional 

torque in the centrifugal pump are identified as 𝜔 = 888.94𝑟𝑝𝑚 , 𝑄 =
8.026𝐿/𝑚𝑖𝑛 and 𝐶𝑓 = 0.619mm, achieving a minimum fluid frictional torque 

of 0.499 Nm 
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1. INTRODUCTION 

 Centrifugal pumps play a vital role in engineering 

applications, constituting a significant portion of the 

world’s total energy consumptions. Designers 

continuously strive to enhance the efficiency of these 

pumps due to their significant importance across diverse 

industries, including marine propulsion, water diversion, 

and agricultural irrigation (Zhang et al., 2015; Qiu et al., 

2018; Zhao et al., 2020, 2022). The fluid frictional losses 

and disk friction losses, which are major losses in 

centrifugal pumps are closely linked to clearance flows 

between the impeller shrouds and casing covers. This 

relationship is particularly notable in pumps featuring 

open or semi-open impellers. Moreover, clearance flows 

not only affect the primary flows directly but also lead to 

indirect hydraulic losses to some degree by disrupting the 

main flow (Gülich, 2003). Engineering designs often 

overlook the intricate clearance flow to cut expenses. 

Research on flow dynamics in centrifugal pumps has 

predominantly concentrated on impeller and volute flow 

patterns (Kaupert & Staubli, 1999; Pedersen et al., 2003; 

González &  Santolaria, 2006; Liu et al., 2013; Stel et al., 

2013; Gao et al., 2014). Consequently, side chambers are 

frequently disregarded in computational forecasts of flow 

dynamics within centrifugal pumps equipped with 

shrouded impellers. Instead, empirical equations are 

employed to approximate centrifugal pump losses. 

Nonetheless, in numerous shrouded centrifugal pumps, 

clearance flows exert significant influence on pump 

efficiency and flow stability (Pei et al., 2012). Historically, 

engineers heavily relied on their expertise for the design 

optimization of centrifugal pumps, particularly due to 

large number of design parameters (Xie et al., 2018; 

Zhang et al., 2020; Song et al., 2024; Yang et al., 2022a). 

For example, Ma et al. (2018) presents a comprehensive 

investigation into optimizing the shape of a ring cavity to 

enhance the operational stability of a centrifugal 

compressor. Through rigorous analysis and comparison of 

optimization algorithms, particle swarm optimization 

emerges as the most effective approach for achieving 

global optimal solutions. The conventional optimization 

methods typically entail an iterative loop, wherein 

geometry parameters change manually to obtain  

the desired pump performance. This process involves  
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NOMENCLATURE 

𝐶𝑓   axial clearance Cont. % Contribution ratio  

𝑃𝑓 power corresponding to fluid frictional torque  Abbreviation 

𝑃𝑚 power corresponding to mechanical torque  DF  Desirability Function 

𝑅2 determination coefficient  DOF Degree of Freedom 

𝑇𝑓  fluid frictional torque  MS Mean Square 

𝑇𝑚 mechanical torque  ANN   Artificial Neural Network 

𝑇𝑜  total torque  RSM  Response Surface Methodology 

Q  volumetric flow rate SM Sum of Square  

𝜔  impeller speed ANOVA  Analysis of Variance  

 
numerical and experimental tests until the specified 

requirements are met (Zhu et al., 2018). Due to geometry 

complexity and large number of parameters involve in 

centrifugal pump, it is challenging to address them all 

simultaneously (Song et al., 2021; Xiang et al., 2022; 

Yang et al., 2022b). As a result, optimizing pumps with 

their complex design constraints solely through trial-and-

error methods has become a challenging task. Orthogonal 

testing involves identifying critical factors to minimize 

trial iterations, but the computational costs increase during 

the optimization process (Kergourlay et al., 2007; Yuan et 

al., 2017; Ekradi & Madadi, 2020). As computational 

technology evolves, optimization problems benefit from 

numerous numerical techniques. One notable method is 

the machine learning algorithms which is based on a cycle 

of data collection, preprocessing, model training, 

evaluation, deployment, and iteration, enabling computers 

to learn from data and make intelligent decisions or 

predictions in various domains Alzubi et al. (2018). In 

response to contemporary challenges, ANNs models have 

arisen as replacements for CFD analysis (Wang & Shan 

2006; Derakhshan et al., 2008; Zhao et al., 2015; Ghadimi 

et al., 2019; Pei et al., 2019; Han et al., 2020; Massoudi et 

al., 2022; Gan et al., 2023). In their study, Wang et al. 

(2019) utilized an ANNs model to optimize a centrifugal 

pump combine with Design of Experiments (DoE), this 

network facilitated a computationally accessible solution. 

However, their optimization endeavours underscored the 

need for an accurately predictive ANNs model, which 

could result in an excess of points in less promising 

regions. To advance ANNs-optimization, sophisticated 

algorithms are required that can approach the global 

optimum point and converge more rapidly. As an example, 

Owoyele et al., (2021a) introduce an active learning-based 

optimization method efficiently explores complex design 

spaces, employing both exploration and exploitation 

strategies to reduce function evaluations compared to 

traditional methods. Applied to multi-modal surface and 

internal combustion engine design, it showcased 

significant promise, lowering the number of evaluations 

needed by up to 80%. These results highlight its potential 

for enhancing engineering optimization processes, with 

further refinement promising even greater efficacy in 

practical scenarios. This is achieved by removing the 

dependency on Design of Experiments (DoE) for training 

the ANNs models and implemented ActivO as a promising 

tool for engineers and researchers seeking to optimize 

designs in diverse fields, offering a pathway towards more 

efficient, sustainable, and innovative solutions. This 

approach has demonstrated exceptional effectiveness in 

pinpointing the global optimum Owoyele et al., (2021b).  

In this research, we present a novel and comprehensive 

approach to the design of efficient centrifugal pumps, 

focusing on the crucial factor of fluid frictional torque in 

turbulent flow within pumps equipped with vaned 

diffusers. While the literature provides abundant 

information about the effect of clearance on calculating 

pump characteristics, there is a noticeable gap in research 

considering flow rate and impeller speed. To address this, 

we conducted both factorial and unifactorial designs to see 

the effect of axial clearance along with impeller speed and 

flow rate. To further enhance the depth of analysis, 

response surface methodology (RSM) and artificial neural 

networks (ANNs) employed. Subsequently, utilized 

optimization approach, by employing the desirability 

function (DF). This methodology allowed us to determine 

the minimum fluid frictional torque at optimal parameters 

such as speed (𝜔), axial clearance (𝐶𝑓), and flow rate (𝑄). 

The innovative use of RSM, ANN and the optimization 

approach using the DF provide a nuanced and practical 

perspective for designing pumps. 

2. EXPERIMENTAL PROCEDURE 

2.1 Experimental Setup  

 The single-stage, low specific speed ( N𝑠  = 37) 

centrifugal pump with diffuser vane was tested at the fluid 

mechanics laboratory at NSUT, New Delhi, India. The 

geometrical details of the centrifugal pump are shown in 

Table 1, while the experimental procedure is outlined in 

the flow diagram in Fig. 1. 

 In this study the axial clearance can change by 

installing three sleeves with thickness of 0.6mm each, 

denoted as 𝐶𝑓.The impeller could move axially within the 

pump casing. In addition to the Pump Casing and its 

electrical motor the setup was equipped with a pressure 

transducer, a tank for water supply and storage, a flow 

meter, an energy meter for measuring voltage, current, 

energy consumption and power factor, a gated valve for 

controlling the flow of delivery side, a variant transformer 

to control the speed of electrical motor, a laser-based 

tachometer for measuring speed of impeller. The D52-

2066 multi-function meter facilitates the simultaneous 

measurement of six parameters with a precision of 1%. 

These parameters comprise current (ranging from 0 to 

100A), voltage (from 40 to 300V), power (0 to 30,000W), 

frequency (45 to 65Hz), energy consumption (0 to 99,999 

kWh), and power factor (ranging between 0 and 1). A 

laser-based non-contact tachometer is utilized to gauge the 
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Fig. 1 Flow diagram of the experimental procedure 

 

Table 1 Geometrical details of the centrifugal pump 

Impeller inlet diameter, 𝐷1 47mm 

Impeller outlet diameter, 𝐷2 127mm 

Number of blades on impeller, 𝑍1 5 

Impeller outer angle, 𝛽1 300 

Inner diameter of diffuser,𝐷3 130mm 

Outer diameter of diffuser, 𝐷4 180mm 

Inlet angle of diffuser, 𝛽2 160 

Number of blades on diffuser, 𝑍2 5 

 

Measure of  𝝎 

 By  

Tachometer 

Speed Control  

By  

Auto-

Transformer  

Energy Meter 

Measured of 𝑸 

         By  

  Flow Meter  
            Flow Control  

                    By 

             Gate Valve  

Experimental 

Data 

ANOVA Modeling  Optimization  
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speed of impeller, offering a range of 2.5 to 99,999 rpm 

with an accuracy of ±0.05%. Additionally, a digital flow 

meter is employed for measuring flow rates within the 

range of 5 to 120 L/min, boasting an accuracy of ±1%. To 

regulate the speed of the electrical motor driving the 

centrifugal pump, a variable transformer can adjust the 

voltage within the range of 0 to 270V. The estimated 

measuring uncertainties for fluid frictional torque is 

1.41%. The objective of the experiment is to know the 

effect of axial clearance, flow rate and speed of impeller 

on fluid frictional torque. In the investigation of fluid 

frictional torque within centrifugal pumps, the total 

torque 𝑇𝑜, can be delineated into two constituent parts, as 

expressed by Eq. (3a). 

𝑇𝑜  = 𝑇𝑚 + 𝑇𝑓                                                       (3a) 

 This equation highlights that the total torque 𝑇𝑜, is the 

summation of the mechanical torque (𝑇𝑚) and the fluid 

frictional torque (𝑇𝑓). To elucidate the calculation of the 

fluid frictional torque ( 𝑇𝑓) , a generalized formulation, 

denoted by Eq. (3b), is employed: 

𝑃𝑚 + 𝑃𝑓  =  (𝑇𝑚 + 𝑇𝑓)𝜔                                (3b) 

 Here, 𝑃𝑚 represents the power input corresponding to 

the mechanical torque (𝑇𝑚), while 𝑃𝑓  denotes the power 

input attributable to fluid frictional torque ( 𝑇𝑓  ). 

Furthermore, ω stands for the angular speed of the 

impeller. By rearranging terms, the expression for the fluid 

frictional torque (𝑇𝑓) is deduced, as per Eq. (3c): 

𝑇𝑓 =  
(𝑃𝑚+𝑃𝑓)− (𝑇𝑚𝜔)

𝜔
                                            (3c) 

 This equation facilitates the computation of  𝑇𝑓 by 

subtracting the product of 𝑇𝑚 and ω from the sum of 𝑃𝑚  

and 𝑃𝑓, subsequently dividing by ω. 

The first step to measure the fluid frictional torque by 

operating the pump without water at different speed and 

modify the results by subtracting the above value obtained 

at the first step. 

2.2 Planning of Experiment  

 A factorial design with three factors was employed to 

investigate the impact of axial clearance, flow rate, and 

impeller speed on fluid frictional torque. Each factor was 

examined at three different levels. The values chosen are 

follows: axial clearance (0.6,1.2,1.8 mm), flow rate 

(8,10,12 L/min) and speed of impeller (800,1000,1200 

rpm). 

2.3 Response Surface Methodology 

 Response Surface Methodology (RSM) is a set of 

statistical and mathematical modeling techniques used to 

investigate the relationships between independent process 

parameters and their corresponding responses. The goal is 

to determined how these parameters affect the responses 

and then optimize them accordingly. Within the present 

investigation, the relationship linking fluid frictional 

torque with axial clearance, flow rate, and impeller speed 

is established as follows 

𝑇𝑓 = 𝜑1(𝜔, 𝐶𝑓 , 𝑄)                                                      (1) 

 𝑌 =  𝛼0 + ∑ 𝛽𝑖𝑋𝑖
𝑛
𝑖=1  ∑ 𝛽𝑖𝑋𝑖𝑋𝑗

𝑛
𝑖,𝑗 + ∑ 𝛽𝑖𝑖𝑋𝑖

2𝑛
𝑖=1    (2) 

 Here, the term 𝛼0  represents the constant term in the 

regression equation the coefficient 𝛽1, 𝛽2 … . . 𝛽𝑛 along   

with  𝛽11, 𝛽22 … . . 𝛽𝑛𝑛  signify the linear and quadratic 

terms respectively, additionally  𝛽12, 𝛽13 … . . 𝛽𝑛−1 denote 

the interacting terms within the model. 

3. RESULTS AND DISCUSSIONS 

3.1 Unifactorial Tests 

 Figure 2, 3 and 4 shows the outcomes of independent 

parameters on fluid frictional torque as functions of axial 

clearance (Cf), impeller speed (𝜔),and flow rate (Q). The 

results of fluid frictional torque denoted as 𝑇𝑓 . 

3.1.1 Effect of Impeller Speed on Fluid Frictional 

Torque 

 Figure 2 depict the relationship between impeller 

speed and frictional torque, while maintaining a constant 

axial clearance of 0.6 mm. The findings indicate that with 

an increase in impeller speed within the range of 800 to 

1200 rpm, the fluid frictional torque demonstrate a 

corresponding rise of  

 
Fig. 2 Effect of 𝝎 and 𝑸 on fluid frictional torque( 𝑻𝒇) 

at constant axial clearance (𝑪𝒇) of 0.6mm 

 

 
Fig. 3 Effect of 𝑸 and 𝑪𝒇 on fluid frictional torque 

(𝑻𝒇) at constant impeller speed (𝝎) of 800rpm 
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Fig. 4 Effect of  𝑪𝒇  and 𝝎 on fluid frictional torque 

(𝑻𝒇) at constant flow rate (𝑸) of 8L/min 

 

64.79%, under a constant flow rate 8L/min condition. 

Additionally, the fluid frictional torque gradually increase 

as the flow rate escalates from 8 L/min to 12 L/min. 

3.1.2 Effect of Flow Rate on Fluid Frictional 

Torque   

Figure 3 illustrate the impact of flow rate on fluid 

frictional torque, maintaining a constant impeller speed of 

800rpm. it's evident that an increase in flow rate 

corresponds to an increase in torque. The percentage 

change in fluid frictional torque with an axial clearance of 

0.6mm, as the flow rate escalates from 8L/min to 12L/min 

is 21.53%. The plotted data demonstrates a gradual rise in 

fluid frictional torque from 0.6mm to 1.2mm axial 

clearance, with a notable spike in values observed when 

the axial clearance shifts from 1.2mm to 1.8mm. 

3.1.3 Effect of Axial Clearance on Fluid Friction 

Torque. 

 The fluid frictional torque increase as we increase axial 

clearance. The fluid frictional torque increase by 19.04 %, 

at a constant speed of 800rpm. while changing the axial 

clearance from 0.6mm to 1.8mm. Hence, the unifactorial 

test suggest a strong correlation among the parameters, 

providing insights into the dynamics of fluid frictional 

torque. 

3.2 Statistical Analysis 

 Table 2 presents the response values for the factors: 

axial clearance 𝐶𝑓 , impeller speed 𝜔, and volumetric flow 

rate 𝑄. The goal is to assess how different combinations of 

these mixing parameters (𝐶𝑓 , 𝜔, 𝑄) impact the overall 

variance of the results obtained using a full factorial 

design. The values of fluid frictional torque were 

computed according to Eq. (3c). The fluid frictional torque 

was measured within the ranges of 0.512Nm to 1.158Nm. 

Analysis of Variance (ANOVA) is a common statistical 

method used extensively to assess the significance of 

independent variables on dependent variables. ANOVA 

does not directly analyse the data, but instead, it quantifies 

the percentage of contribution that each factor makes in 

explaining the variability (variance) observed in the data. 

Table 3 Shows the ANOVA results for fluid frictional 

torque. We can see that speed of impeller 𝜔 is the most 

influential factor. Its contribution is 68.21%. The next 

largest factor affecting frictional torque is volumetric flow 

rate 𝑄 followed by axial clearance. Their contributions are 

16.13% and 3.01%. The interaction between three factors 

have contribution less than 1.5%. Hence, no significant 

contributions in calculating fluid frictional torque.  

 The regression models serve as valuable tools for 

forecasting the response parameters concerning the input 

control parameters. Figure 5 illustrate the difference 

between predicted and actual value of fluid frictional 

toque. The graph illustrates that the quadratic model 

effectively represents the system within the specified 

experimental domain. The comparative analysis confirms 

that the predicted values of the output parameter closely 

align with the experimentally recorded readings. To gain 

deeper insights into the interaction effects of variables on 

the response factor, Three-dimensional plots for measured 

responses and contour graphs were generated based on the 

model equations provided in Eq. (4). As this model 

incorporates three variables, one variable was maintained 

at the center level in each plot. Thus, a total of three 

response surface plots were generated to illustrate the 

response. Figure 6a-c shows the effect of impeller speed 

𝜔 has more significance effect on fluid frictional torque as 

compared to the effect of axial clearance 𝐶𝑓 and flow rate 

𝑄. Figure 6b illustrates that an increases in both 𝐶𝑓,  𝑄 

Lead to increase fluid frictional torque.  Although the 

impeller speed 𝜔 has highest contribution as shown in 

Table 3, the effect of both axial clearance 𝐶𝑓 and flow rate  

𝑄  also important factor for determine fluid frictional 

torque in centrifugal pump. To verify the validation, 

confirmation test was carried out for predicted and 

experimental values shown in Table 4. The calculated 

error, with the disparity between experimental and 

predicted values for 𝑇𝑓 being less than 5%, underscores the 

high precision and reliability of the model's predictions. 

𝑇𝑓 = 1.961 − 0.004 ∗ 𝜔 + 0.066 ∗ 𝑄 − 0.030 ∗ 𝐶𝑓 −

0.000047 ∗ 𝜔 ∗ 𝑄 − 0.000099 ∗ 𝜔 ∗ 𝐶𝑓 − 0.0053 ∗ 𝐶𝑓 ∗

𝑄 + 3.194 ∗ 10−6 ∗ 𝜔2 + 0.001825 ∗ 𝑄2 + 0.1063 ∗

𝐶𝑓
2                                                                                  (4)  

 

 
Fig. 5 Measured and predicted value of 𝑻𝒇 
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Table 3 ANOVA results for fluid frictional torque 

Sources SM DOF MS F-valve P-valve Cont. % Remarks 

Model 1.090 9 0.1207 74.69 < 0.0001  Significant 

A-A 0.758 1 0.7585 469.35 < 0.0001 68.21 Significant 

B-B 0.180 1 0.1805 111.7 < 0.0001 16.13 Significant 

C-C 0.034 1 0.034 21.01 < 0.0001 3.01 Significant 

AB 0.004 1 0.0042 2.58 0.3011 0.003  

AC 0.001 1 0.0017 1.05 0.0511 0.0015  

BC 0.000 1 0.0005 0.3026 0.9764 0.0004  

A² 0.097 1 0.0979 60.61 < 0.0001 0.0881  

B² 0.000 1 0.0003 0.1979 0.9139 0.0002  

C² 0.008 1 0.0088 5.45 0.0803 0.0079  

Residual 0.027 17 0.0016     

Total 1.11 26      

 

Table 2 Experimental results for fluid frictional torque 

Std. order Run order 𝝎 (rpm) 𝑸 (L/min) 𝑪𝒇 (mm) 𝑻𝒇 (Nm) 

21 1 1200 8 1.8 1.0100 

12 2 800 12 0.6 0.7572 

9 3 800 8 0.6 0.5120 

11 4 1000 8 1.8 0.6629 

15 5 800 12 1.2 0.7021 

22 6 1000 10 1.2 0.6934 

25 7 1200 10 1.8 1.0730 

5 8 1200 10 0.6 1.0390 

23 9 1000 10 0.6 0.6679 

27 10 1200 12 1.8 1.1580 

6 11 1000 10 1.8 0.8498 

17 12 800 10 1.8 0.6854 

20 13 1200 12 0.6 1.0980 

3 14 1000 12 1.2 0.8412 

19 15 1000 8 1.2 0.5488 

24 16 1200 12 1.2 1.1132 

14 17 800 10 0.6 0.6027 

13 18 1000 12 1.8 0.9057 

26 19 800 12 1.8 0.8155 

2 20 800 10 1.2 0.5874 

1 21 1200 8 1.2 0.9985 

18 22 1000 12 0.6 0.8207 

16 23 800 8 1.8 0.6339 

10 24 800 8 1.2 0.5280 

8 25 1200 10 1.2 1.0460 

7 26 1200 8 0.6 0.9835 

4 27 1000 8 0.6 0.5314 
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Fig. 6 Contours graphs for fluid frictional torque (𝑻𝒇) depending on, 𝝎, 𝑪𝒇 ,and   𝑸 

 

Table 4 Confirmation test on experimental and predictive result 

Test 𝝎 (rpm) 𝑪𝒇 (mm) 𝑸 (L/min) Exp. value Pre. value Error 

𝑇𝑓  (Nm) 850 0.6 8.5 0.525 0.5091 3.02% 

 

3.4 Modeling by Artificial Neural Network (ANN) 

Recent studies have focused on Artificial neural networks 

(ANNs) based model due to their ability to model highly 

non leaner processes. These models use computational 

techniques that mimic the human brain to perform a 

variety of tasks, such as logical reasoning, thinking, and 

studying. This has to be done by interconnecting neurons 

through massive parallel computing of data and 

information. Figure 7 shows the architecture of ANN 

model, having three layers, an input layer, one hidden 

layer and an output layer.  

The symbol of circles representing the neurons and the 

lines shows the flow of information to the neurons. The 

learning method of ANN is back propagation algorithm. 

The neurons in one layer connected to other neurons in  

 

 

Fig.7 Architecture of ANN model 

 

a 

b 

c 
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another layer with weighted connection. The signals are 

transferred from one neuron to other neurons via an 

activation function. The ANN model is called trained 

when weights and biases are stable Acherjee et al. (2011). 

The flow diagram of ANN phases is depicted in Fig. 8, 

including the steps of initializing and obtaining the 

suitable architecture for investigation. The artificial neural 

network widely used as a deep learning tool for its ability 

to handle non linearity, generalization, adaptability and 

large datasets. 

3.5 Modeling of Fluid Frictional Torque Using ANN 

 The fluid frictional torque is modelled using single 

layer feed forward with the help of back propagation 

algorithm. In this research, an input layer with three 

neurons, one hidden layer with three neurons and an 

output layer with one neuron employed. The effectiveness 

of the ANN model depends on number of neurons present 

in hidden layer. As a result, variation of neurons in hidden 

layer tested to get an effective architecture as shown in 

Table 5. The performance metrics of optimum ANN 

architecture, suggested by majority researcher is RMSE 

(root mean square error) defined as follow: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑌𝑜𝑖 − 𝑌𝑝𝑖)2𝑁

𝑖=1                                     (5) 

 Where, 𝑌𝑜𝑖  and 𝑌𝑝𝑖  are observed and predicted values, 

respectively, and  𝑁 is number of experiments. 
 

Table 5 Comparing RMSE for different 

architectures for fluid friction torque 

S.I No Architectures RMSE 

1 3-2-1 0.0737 

2 3-3-1 0.0341 

3 3-4-1 0.0428 

 
Fig. 8 Flow diagram of ANN model 

 

 
3.5.1 Definition of Input and Output Layers 

 The nodes and the input parameters are equal in 

number in input layer. The experimental data of fluid 

frictional torque is transmitted through the input layer to 

hidden layer with the help of activation function and 

weighted connections. Eventually, the information from 

the hidden layer send to output layer. Where, the error 

between expected and desired output (targets) assesses. 

The output layer has same number of nodes corresponding 

to output parameters. Three parameters (Axial clearance, 

impeller speed and flow rate) considered in input, where 

fluid frictional torque considered output in a single layer 

artificial neural networks to create the model. 

3.5.2 Definition of Hidden Layer 

 As the input and output layer has same number of 

neurons corresponding to their process parameters, the 

number of neurons in hidden layer changed to obtain best 

ANN architecture. Excess of neurons in hidden layer 

cause over fitting problems, where a smaller number of 

neurons in hidden layer led to under fitting problems. So, 

a rigors investigation should give to determined number of 

neurons in hidden layer as it impact on overall 

performance of ANN architecture. The heuristic method is 

used to determine the minimum and maximum numbers of 

neurons within a range in hidden layer. The Majesty’s 

department of trade and industry (MTI) defined the lower 

limit of neurons in hidden layer (Garcia-Romeu et al., 

2010). 

Nmin =
NI+NO

2
                                                        (6) 



K. Singh et al. / JAFM, Vol. 18, No. 3, pp. 728-741, 2025.  

 

 

736 

 After obtaining minimum number of neurons for 

hidden layer, continuously adding one more neuron in 

hidden layer to check the efficacy of the ANN 

architecture. In hidden layer, the maximum number of 

neurons is defined by Lippmann (1988). 

Nmax  = NO ∗ (NI + 1)                                         (7) 

Where, Nmin  and Nmax  represents the minimum and 

maximum neurons in hidden layer and NI, NO denote 

number of neurons in input and output layer.  

3.6 Training of The ANN Model 

 The artificial neural network model is train using 

experimental data, employing feed forward and back 

propagation algorithm. The artificial neural network 

architecture of fluid frictional torque is shown in Fig. 9. 

the training phases of ANN model such as training, 

validation and testing is done using MATLAB 2022 

platform. 

 

 

Fig. 9 ANN architecture for fluid frictional torque 

 

 The experimental data segregated into three sets for 

training, validation and testing. The percentage 

contributions of experimental sets are shown in Table 6. 

 

Table 6 Training Phases of Experimental Sets 

Training 

phases 

Per. cont. 

(%) 

Experimental 

sets 

Training 75 19 

Validation 15 4 

Testing 15 4 

 

 This segregated data enables the network to learn, 

while using separate validation and testing sets to evaluate 

its performance and assess its generalization capabilities. 

The ANN model has different layers in its architecture 

including input, output and hidden layer. Input layer does 

not have any transfer function whereas output and hidden 

layer have a tansignoid transfer function. These transfer 

function allow to produce output, which is necessary for 

performance prediction of ANN model. Figure 10 

displays the convergence of the artificial neural network 

(ANN) architecture post-training. It presents the evolution 

of the ANN model across training epochs. The highest 

validation performance of 3-3-1 ANN architecture at 

epoch 9 is 0.0020481, suggesting that the model 

performance is optimal based on validation set evaluation 

at this training phase. By employing the Levenberg-

Marquardt Learning Algorithm in conjunction with a 

precise ANN architecture and training approach, accurate 

forecasting of fluid frictional torque is achievable. The 

regression plots depicted in Fig. 11 are utilized for 

assessing the adequacy of the ANN model's predictions. 

In Fig. 11a, there is a comparison between the forecasted 

and observed data for the training patterns. From this 

figure, it's clear that the forecasted values exhibit minimal 

error, showcasing a noteworthy degree of accuracy within 

the training dataset. In Fig. 11b, the observed and 

forecasted data for the validation patterns are compared, 

while in Fig. 11c, the comparison is made for the testing 

patterns. These plots exhibit a near match between the 

forecasted and observed response values. The close 

alignment of data points in both the validation and testing 

plots underscores the model's exceptional capacity to 

generalize and produce accurate predictions. The 

effectiveness of the developed ANN model is further 

evaluated by R2 value of 0.99, depicted in Fig. 11d. These   

observations confirm the efficacy of the artificial neural 

network (ANN) model, reinforcing confidence in its 

capacity to provide accurate fluid frictional torque 

prediction. 

 

 
Fig. 10 Conversion diagram of 3-3-1 ANN 

architecture 

 

3.5 Comparison Between RSM and ANN Models  

 The coefficient of determination (𝑅2), measures the 

proportion of the variance in the dependent variable that is 

predictable from the independent variables. These values 

indicate the goodness of fit of the models. A higher (𝑅2), 

value suggests that a larger proportion of the variance in 

the dependent variable is explained by the independent 

variables, indicating a better fit of the model to the data. 

The ANN model has a slightly higher (𝑅2), value 

(99.19%) compared to the RSM model (97.96%). This 

suggests that the ANN model explains a slightly larger 

proportion of the variance in the fluid frictional  

torque compared to the RSM model However, both models 
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Fig. 11 Regression plots comparing the actual and predicted data for fluid frictional torque 

Table 7 Goal and ranges for optimization of fluid frictional torque 

Name Goal Lower limit Upper limit 
Lower 

weight 

Upper 

weight 
Importance 

𝜔 (rpm) In range 800 1200 1 1 3 

𝐶𝑓 (mm) In range 0.6 1.8 1 1 3 

𝑄 (L/min) In range 8 12 1 1 3 

𝑇𝑓 (Nm) Minimize 0.512 1.158 1 1 3 

 

 

Fig. 12 Comparison between experimental value of 

torque and the predicted values by RSM and ANN 

have high (𝑅2), values, indicating that they both provide 

good fits to the data and can effectively predict the fluid 

frictional torque based on the input variables. To illustrate 

the comparison between RSM and ANN models, Fig.12 

depict the observed and forecasted values of fluid 

frictional torque. 

4. OPTIMIZATION OF RESPONSE USING 

DESIRABILITY FUNCTIONS 

 The desirability function is a tool used in multi-

response optimization to quantify how desirable or 

favorable certain values of response variables are within a 

given range. It assigns a numerical score, typically ranging 

from 0 to 1, to each response variable value based on its 

desirability. Within these defined ranges, assign 

desirability scores to each value. A score of 1 indicates that 

a 

d c 

b 
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the value is perfectly desirable, while a score of 0 indicates 

that it is entirely undesirable. This can be done using 

various aggregation methods, such as the geometric mean 

or weighted sum (Chabbi et al.2017). 

𝐷 = (𝑑1 ∗ 𝑑2 ∗ … … ∗  𝑑𝑛)
1

𝑛⁄  =  (∏ 𝑑𝑖
𝑛
𝑖=1 )

1
𝑛⁄     (8)  

𝐹(𝑥) = −𝐷                                                               (9)  

 In the context of simultaneous optimization, we assign 

a desirability di to each ith targeted output, along with a 

corresponding weighting wi and the total number of 

responses n. Each response is then associated with both a 

low and high value for every goal. When the objective is 

to minimize, the desirability takes the following form: 

{

𝑑𝑖 = 1  response < low value
0 ≤ 𝑑𝑖 ≪ 1  low to high

𝑑𝑖 = 1 response > high value
                        (10)  

For optimizing responses using the desirability function, 

Design of Expert software is utilized. The factor ranges for 

combined optimization are detailed in Table 7. In the case 

of optimization, a notable advantage is the achievement of 

minimum fluid frictional torque, aligning with industry 

objectives. Fig.13 presents the contour graph illustrating 

the optimal value of the rotational speed of impeller 𝜔, 

flow rate 𝑄 and axial clearance 𝐶𝑓 with desirability of 1. 

The optimal values are as follows: 𝜔 = 888.94 , 𝑄 =
8.026 and 𝐶𝑓 = 0.619 .The optimum fluid frictional 

torque is 0.499Nm 

5. CONCLUSIONS 

 This study examines the impact of axial clearance, 

flow rate, and impeller speed on fluid frictional torque. 

Furthermore, it seeks to optimize fluid frictional torque to 

identify the optimal parameters for a centrifugal pump, 

aiming to minimize fluid frictional torque. Based on the  

 

Fig. 13 Contour graph for desirability: (a) 𝝎 = 888.94, (b) 𝑸  =8.026 and(c)  𝑪𝒇  =0.619 

 

a 

b 

c 
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previously discussed results, the following conclusions 

have been drawn. 

1. In unifactorial test, the fluid frictional torque 

increasing as we increase the impeller speed, axial 

clearance and flow rate. For calculating fluid 

frictional torque all parameters are significant. 

However, 𝜔 is the most significant parameter in 

calculating fluid frictional torque followed by 𝑄 and 

𝐶𝑓 . The percentage change in fluid frictional torque, 

while changing the parameters( 𝜔, 𝑄, 𝐶𝑓 ) is 46.86%. 

31.11%,19.04 % respectively. 

2. The results of ANOVA analysis for fluid frictional 

torque proved that the speed of impeller is the most 

important affecting parameter followed by volumetric 

rate and axial clearance. The contribution of   𝜔, 𝑄, 𝐶𝑓  

on   𝑇𝑓  are 68.21%,16.13%,3.01% respectively. 

3. The correlation coefficients of the predictive models 

by RSM and ANN for fluid frictional torque found to 

be 97.96%,99.19% respectively. Hence, the 

developed models are deemed reliable and hold 

significant industrial relevance, as they enable 

accurate predictions within the range of actual 

experimental data. 

4. The confirmation test results indicate that the 

developed models are effective in predicting the 

responses. The error in measuring for fluid frictional 

torque is less than 5%. 

5. The ANN model demonstrates greater robustness and 

reliability compared to the RSM model, as evidenced 

by its higher values of correlation coefficients (𝑅2). 

6. The optimal parameters for minimum fluid frictional 

torque are following Q = 8.026 L/min, 𝐶𝑓 =

0.619𝑚𝑚 and 𝜔 = 888.90 𝑟𝑝𝑚. 
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