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ABSTRACT 

The water-entry process of solid and hollow hyperelastic spheres was 

numerically simulated using the arbitrary Lagrange–Euler method, based on the 

finite element analysis software LS-DYNA. The effect of the different initial 

velocities on the cavity evolution and deformation of the sphere in a range of 

low Froude (Fr) numbers was investigated. The evolution of the cavity, 

deformation of the hyperelastic sphere and parameters at the time of cavity 

closure were analysed. In addition, the difference in the water-entry process 

between solid and hollow spheres was given. The numerical results shows that 

the size of the cavity, fluctuation on the cavity profile, closure time and closure 

depth increased with Fr and that the closure time was proportional to Fr1/2 for 

both solid and hollow spheres. However, the relationship between the closure 

depth and Fr of the hollow sphere differed from that of the solid one. Within the 

investigated low Froude numbers, whether for the solid or hollow spheres, the 

deformation amplitude increased with the Froude number. However, the 

deformation period remained nearly the same for different conditions. Under the 

same physical and motion parameters, the hollow sphere exhibited larger 

deformations compared with the solid sphere. The deformation period for the 

hollow sphere was also longer than that for the solid one. 
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1. INTRODUCTION 

The problem of water entry is prevalent in both nature 

and engineering applications, such as hunting behaviours 

of aquatic birds (Ropert-Coudert et al., 2004; Machovsky-

Capuska et al., 2012), water-walking ability of 

amphibious lizards, water entry of a ship’s bows (Xu et 

al., 1999), emergency water landing of aircraft (Kross et 

al., 1983) and water landing of re-entry capsules (Vaughan 

& United States, 1959; Thompson et al., 1965). 

The water-entry process of an object comprises two 

phases: the first phase is the initial impact when an object 

that is initially in the air and moving downwards initiates 

contact with the water surface, and in the second stage, 

cavities (in most cases) form and develop around the 

object during the downwards movement of the object. At 

the initial stage of impact, an extremely large impact load 

is generated when the object bumps with the free surface, 

which may cause damage to biological organisms or 

mechanical components (Chang et al., 2016; Thomas, 

1975). 

The earliest research on the water-entry problem is 

the study by Wood (1909), who observed ‘Worthington jet’ 

using photography technology. May and Woodhull (1948) 

experimentally and theoretically studied the change in the 

drag coefficient when a steel sphere enters the water. They 

observed that the drag coefficient was dependent on the 

Reynolds number (Re) and Froude number (Fr). 

Subsequently, May (1952) provided additional 

explanations and analysed regarding the changes in cavity 

volume, pressure and energy after a sphere enters the 

water. 

On the basis of the previous studies, four cavity 

closure modes during the water entry of objects are 

summarised, namely, surface closure, deep closure, 

shallow closure and quasi-static closure. The cavity 

closure modes are found to be correlated with the Bond 

number and Weber number (Truscott et al., 2014). Later, 

the effects of the surface contact angle (Aristoff  &  Bush, 

2009; Truscott et al., 2012), the initial rotational speed 

(Techet & Truscott, 2011), the geometric shape of the 

objects (Belden et al., 2023) and other parameters (Rabbi 

et al., 2020; Speirs et al., 2021) on the cavitation formation 

and development were investigated. 

As cavity closure significantly affects the dynamics 

of the water entry of objects, the closure time and closure  
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NOMENCLATURE 

D sphere diameter  tp pinch-off time 

d inner diameter of sphere  Hp depth of the cavity closure 

Dd horizontal diameter of deformed sphere  H depth of the sphere’s centre of mass 

λ sphere deformation scale  Dp cavity’s opening diameter at the water surface 

v0 impact velocity  ρs sphere density 

G shear modulus  ρw water density 

zb lowest point displacement  λPN 
maximum deformation coefficient for the Nth 

deformation cycle 

Texp reference deformation period  Deff effective diameter 

Tmodel numerical model deformation period  T deformation period 

b body force acting on the fluid  p pressure 

Σ fluid stress tensor  f porosity 

μ dynamic viscosity coefficient  E internal energy per unit volume 

ν poisson' s ratio  V relative volume 

t time  I identity tensor 

w  grid velocity  u  fluid velocity 

C0 initial pressure  C1 volume viscosity 

C2-C6 constants  W strain energy 

I1-I3 invariants of the deformation tensor  F deformation gradient 

 

depth of the cavities were studied by many researchers. 

Aristoff et al. (2009) performed water-entry experiments 

using different solid spheres with varying densities, 

obtaining data results for cavity closure time, closure 

depth and gas volume inside the cavity at the closure 

moment. It was observed that for the densest rigid sphere 

(ρ = 7.86 g/cm3), both the cavity pinch-off depth and the 

depth of the sphere’s centre of mass at pinch-off exhibited 

a linear growth trend with Fr1/2. With a decrease in sphere 

density, the depth of the sphere’s centre of mass and the 

pinch-off depth no longer increased linearly with Fr1/2. 

Within the range of Re >> 1 and We >> 1, Duclaux et 

al. (2007) conducted experimental studies on the water 

entry of solid spheres and cylinders. They observed that 

for high Weber numbers and Reynolds numbers, the 

closure depth H/R0 of the cavity was correlated with Fr1/2, 

and for cylinders, H/R0 was correlated with Fr1/3. The 

cavity’s opening diameter at the water surface, R/R0, was 

correlated with Fr1/4 for spheres, and for cylinders, R/R0 

was independent of Fr and R was close to R0. 

In subsequent studies on the low-Froude-number 

scope of cylinders, Gekle et al. (2006) found that the 

closure depth did not follow the expected Fr1/3 power law. 

They observed that at low Froude numbers (Fr < 6), the 

closure depth of the cavity was proportional to Fr1/10, and 

for Fr > 20, the closure depth was proportional to Fr1/3. In 

the intermediate range, the closure depth of the cavity 

exhibited discrete points without a clear regular pattern. 

Beyond sealing the cavity, when an object is in 

contact the water surface, the impact load becomes 

notably significant (Zhang et al., 2023), which may cause 

damage to biological organisms or mechanical 

components during this phase. Most studies of water entry 

do not consider the structural response and force-induced 

deformation of objects. 

With the advancement of computational fluid 

dynamics technology, numerical simulation methods have 

been widely applied, driving further research into 

multiphase flow problems (Mohammadpour et al., 2013; 

Chabokpour & Azamathulla, 2022). Wang et al. (2013) 

conducted numerical simulations on the diving process of 

geese at different diving speeds and angles, revealing that 

oblique entries may cause damage to the necks of geese. 

This confirms that in reality, most geese opt for vertical 

entries for foraging. The numerical model also provides 

relevant design experience for biomimetics research. 

Seddon and Moatamedi (2006) extensively discussed 

future research directions of object/water impact analysis. 

In their opinion, few efforts have been performed to devise 

solutions for three-dimensional objects or deformable 

structures. With the advancement of materials science and 

technology, hyperelastic materials have attracted 

significant attention in fields such as aerospace 

engineering because of their lightweight nature, ability to 

recover strain and high decomposition temperatures (Tang 

et al., 2017). 

In recent years, Jandron et al. (2014) conducted 

numerical simulations and experiments on the oblique 

water entry of hyperelastic spheres using the Neo-

Hookean hyperelastic model and a linear viscoelastic 

model with N = 3 Prony series. In the study, the numerical 

results demonstrated a strong agreement with the 

experimental results considering the sphere response and 

the size and shape of the cavity. However, more analysis 

and summary of the sphere’s deformation and cavity 

motion patterns were not provided. Subsequently, Belden 

et al. (2016) conducted extensive experiments on the 

oblique water entry of hyperelastic spheres based on the 

work of Jandron et al. (2014). In the study, the entire 

process and mechanism of sphere deformation and 

jumping were given. In addition, the effects of the shear 

moduli, incident angles and velocities on the maximum 

deformation of the sphere and the impact angle formed 

when the sphere just hit the free surface were studied, and 

they obtained a parameter range in which the sphere 

jumped after hitting the water surface. However, these 

findings are primarily based on oblique water-entry 

processes. 
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In relation to the vertical water entry of hyperelastic 

solid spheres, Hurd et al. (2017) conducted experimental 

research on various shear moduli and diameters using 

high-speed cameras. They found that the sphere’s 

deformation period measured in their experiment was 

slightly longer than that obtained by their developed 

numerical model. They attributed this difference to the 

additional mass during the sphere’s water-entry process. 

Furthermore, within the range of Fr1/2 = 2–10, the 

closure time of the cavity showed a nearly linear 

relationship with Fr1/2 for different shear moduli, but the 

closure time progressively reduced as the shear modulus 

of the sphere increased. In addition, they observed that 

when the shear modulus decreased, the speed fluctuations 

of the sphere became more pronounced. In this research, 

although the deformation of the spheres was observed, the 

stress distribution during the deformation period was not 

analysed. 

To obtain a more detailed insight into the impact of 

various parameters on the deformation process of 

hyperelastic spheres, Yang et al. (2020b) conducted 

experiments and numerical simulations. Between rigid 

and hyperelastic spheres, they analysed the differences in 

structural responses and compared the changes in strain 

and kinetic energies. It was found that the strain energy of 

the hyperelastic sphere exhibited more pronounced 

fluctuations. By comparing the deformation of the sphere 

after water entry under different shear moduli and 

velocities, they observed that when the shear modulus 

increased, the deformation frequency of the sphere also 

increased and the peak of the deformation magnitude 

gradually decreased. As the velocity increased, the peak of 

the deformation magnitude of the sphere gradually 

increased but the sphere’s deformation period did not 

change. 

To understand the stress state and distribution during 

sphere deformation, Yang et al. (2020a) compared the 

stress variations between rigid and hyperelastic spheres. It 

was observed that the stress on the surface of the rigid 

sphere had no significant fluctuations and the ripples of 

the stress propagation on the elastic sphere were clearly 

visible. In their subsequent research (Yang et al., 2021a), 

they observed that with an increase in sphere density, the 

propagation speed of stress waves decreased, which led to 

an elongation of the deformation period. In 2021, Yang et 

al. (2021b) analysed the conditions and mechanisms of the 

nested cavity generated by the cyclical deformation of 

spheres after water entry. 

The above studies focused on solid spheres, and no 

research work regarding hollow spheres has recently been 

reported. Compared with solid spheres, hollow spheres 

may undergo greater deformation in the water-entry 

process and it is necessary to study the deformation and 

stress change of hollow spheres during the water-entry 

process. This research on hollow structures can explore 

the deformation mechanisms after their immersion in 

water, and it is beneficial for solving many problems in 

aerospace and ocean engineering, such as transmedium 

aircraft and spacecraft (McGehee et al., 1959), water entry 

of ship’s bows, emergency water landing of aircraft and 

water landing of re-entry capsules. In addition, the 

research of hollow spherical structures is also beneficial 

for the underwater robots, especially the head-like robots 

(Renda et al., 2015; Wehner et al., 2016; Tang et al., 

2016). 

In this paper, the water-entry process of solid and 

hollow hyperelastic spheres is numerically simulated for 

different initial velocities within low Froude numbers. The 

evolution of the cavity and deformation of the hyperelastic 

spheres are analysed under different conditions. In 

particular, the parameters at the time of cavity pinch-off 

are analysed. The difference in deformation and stress 

distribution between the solid and hollow spheres are 

compared. 

2. THEORETICAL MODEL AND NUMERICAL 

METHODS 

2.1 Governing Equation 

In this paper, the arbitrary Lagrange–Euler (ALE) 

method (Candy et al., 2000) was used to handle the 

coupling between fluids and solid structure. The fluid is 

assumed to be incompressible. Therefore, the mass and 

momentum equations in the ALE form are represented as 

follows (Aquelet & Souli, 2004): 

0u =                                                                           (1) 

( )
u

u w u b
t

 


+ −  = +


                                         (2) 

where u  represents fluid velocity, w  is grid velocity, t is 

time, b  is the body force acting on the fluid and Ʃ is the 

fluid stress tensor: 

T[ ( ) ]p u u= − +  +  I                                                 (3) 

where p represents pressure, I denotes identity tensor and 

μ stands for the dynamic viscosity coefficient of the fluid. 

2.2 Material Model and State Equation 

In this paper, the Blatz–Ko model (Blatz & ko, 1962; 

Abeyaratne & Horgan, 1985) was selected as the material 

model of the hyperelastic sphere based on the research 

work by Lane et al. (2018), which can more exactly predict 

the stress of the material. The generalized Blatz-Ko strain 

energy function W is:  

2
13 3

3

(1 ) 1 1
( ) ( )

2 2

G f I Gf
W I I I

I

  
 

−−
= + − + + −          (4) 

where I1, I2 and I3 represent the invariants of the 

deformation tensor; G denotes the shear modulus; f 

indicates the volume fraction of voids of the material; α = 

ν/(1−2ν), γ = 1+1/ν, and ν is the Poisson's ratio of the 

material. And in this paper, the volume fraction of voids f 

was assumed to be 1.0. The Poisson’s ratio ν of the 

material was 0.463. The stress of the solid material is 

calculated by: 

3[ ]
G

I
J

−−B I =                                                             (5) 

where, B = FFT, F represents the deformation gradient; J 

= det(F). 
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Water and air were modelled using the Null material 

model and the pressure was calculated using the linear-

polynomial state equation expressed in Eq. (6). 

2 3 2
0 1 2 3 4 5 6( )p C C V C V C V C C V C V E= + + + + + +      (6) 

where E represents the internal energy per unit volume, V 

denotes specific volume, C0 is used to define the initial 

pressure, C1 represents volume viscosity and C2–C6 are 

constants. The selection of the parameters of water and air 

was based on previous studies (Varas & López-Puente, 

2009; Souli et al., 2014). 

2.3 Numerical Method 

We discretised the spatial domain using the finite 

element method based on Eulerian and Lagrangian 

descriptions for the fluid and solid phases, respectively. 

To couple the displacement at the interface between the 

fluid and solid phases, we used a penalty coupling 

algorithm with a coupling factor set to 0.1. In addition, we 

implemented the ALE advection method with second-

order accuracy, specifically the Van Leer MUSCL 

scheme, to handle adaptive grid movement and compute 

the transport of variables at element centres. Finally, time 

discretization used second-order accuracy central 

differencing to approximate the time derivative terms in 

the partial differential equations. 

2.4 Computational Domain and Parameters Setup 

The fluid domain for the numerical simulation is 

depicted in Fig. 1(a). The meshes for the solid and hollow 

hemispheres are, respectively, shown in Fig. 1(b) and 1(c). 

In this study, the three-dimensional axisymmetric model 

of the sphere (xoz is the plane of symmetry, shown in Fig. 

1(a)) was used. The size of the computational domain was 

16D × 8D × 32D. As for the selection of the computational 

domain, the size of the experimental water tank in the 

literature (Hurd et al., 2017) was referenced. Additionally, 

the selected size of the computational domain exceeds 10 

times the sphere’s diameter in all three directions, 

considering the three-dimensional axisymmetric model of 

the sphere. It is generally thought that the wall effects can 

be ignored when the computational domain is more than 

10 times the characteristic size of the object being studied. 

 

 

(a)                                       (b)                     (c) 

Fig. 1 Computational domain and meshes. (a) Fluid 

domain, (b) mesh on the solid hemisphere and (c) 

mesh on a hollow hemisphere 

In the fluid domain, the upper part was the air and the 

lower part was the water. The heights of the air and water 

regions were 12D and 20D, respectively. Except the 

symmetry boundary condition, the other boundary 

conditions were set as wall. The diameter of the sphere 

was D = 51 mm. The density of the sphere ρs was set to 

1.07 g/cm3, and the density of water ρw was 1.0 g/cm3. At 

the initial time, the sphere was positioned above the water 

surface and then moved downwards in a certain velocity 

along the negative z-axis direction. 

In Fig. 1(b) and 1(c), the meshes on solid and hollow 

hemispheres are given, respectively. In the simulation, the 

structured grids were adopted for the fluid domain and 

solid sphere. For the fluid domain, grid refinement was 

conducted near the free surface and in the region where 

the sphere passed through. 

3.  VALIDATION OF MESH INDEPENDENCE AND 

NUMERICAL METHODS 

In this paper, grid independence verification was first 

conducted. The fluid domain and the meshes on a 

semisphere are shown in Fig. 1. In this part, four different 

grid numbers, namely, 1.2 million, 2.2 million, 3 million 

and 4 million, were chosen for the verification. These four 

grid numbers corresponded to mesh sizes in the refined 

region of 4.3, 2.9, 2.1 and 1.6 mm, respectively. 

Figure 2 illustrates the variation of the sphere’s 

deformation parameter λ with time for different grid 

numbers. The ordinate, λ, in Fig. 3 is defined as Dd/D, 

where D is the diameter of the sphere before deformation 

and Dd is the transverse dimension of the deformed sphere. 

The schematic of the sphere’s deformation during the 

water-entry process is depicted in Fig. 3. When λ > 1, the 

sphere experienced transverse compression in the xoz 

plane; when λ < 1, the sphere underwent longitudinal 

stretching; and if λ = 1, the sphere returned to its original 

shape. In addition, two vertical lines were added in Fig. 2. 

The interval between these two vertical lines represented 

one deformation period T, during which the sphere 

underwent transverse compression and longitudinal 

stretching. 

 

 

Fig. 2 Comparison of λ variations with time between 

the simulation results and experimental data for 

different mesh numbers 
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Fig. 3 Schematic of the parameters of the sphere 

deformation in the motion process 

 

As shown in Fig. 2, the results obtained with the 

coarse grid showed obvious differences near t = 50 ms 

compared with the other three cases. The result with the 

medium grid showed slight variations compared with that 

with the fine mesh, whereas the result difference between 

the fine mesh and finer mesh was negligible. Therefore, 

considering both computational cost and numerical 

accuracy, the following simulations were conducted using 

the fine grid, i.e. with 3 million grid elements. For the 

hollow sphere investigated later, the same element size as 

the solid sphere, i.e. 2 mm, was chosen. 

To validate the physical models and numerical 

methods, Fig. 4 provides the comparison of the evolution 

of the cavity profile between the numerical results and 

experimental data (Hurd et al., 2017). Time was non-

dimensionalised by the deformation period T of the 

sphere. In Hurd’s experiment, the diameter of the solid 

sphere was 51 mm, with a shear modulus of 6.7 kPa, a 

density of 1.07 g/cm³ and an initial water-entry velocity of  

 

 

(a) 

 

(b) 

Fig. 4 Comparison of the cavity contour at different 

times. (a) Experimental data (Hurd et al., 2017). (b) 

Numerical results 

 

(a) 

 

(b) 

Fig. 5 Changes in the lateral deformation parameter λ 

and submersion depth zb of the sphere with time 

 

5.3 m/s. As shown in Fig. 4, the height of the water crown 

splashed by the entering sphere in the experiment was 

slightly higher than that in the numerical simulation but 

the difference in the diameters of the water crown between 

the experiment and simulation was not obvious. In 

addition, the cavity contour, cavity size and deformation 

of the sphere obtained from the simulation all 

approximately matched those in the experiment. At t/T = 

0.29, the sphere just entered the water and was in the phase 

of compression deformation. Subsequently, the sphere 

gradually returned to its original size. Following that, the 

vertical dimension of the sphere increased, indicating the 

stretching phase in the vertical direction. At t/T = 1.04, the 

cavity exhibited a phenomenon known as nested cavities 

(Yang et al., 2021b). At t/T = 1.54, the sphere was slightly 

stretched in the perpendicular direction and the surface 

curvature of the sphere at the lower part was smaller than 

that at the upper one. At this time, the cavity profile was 

presented in a three-segment distribution. Finally, at t/T = 

2.34, the cavity was pinched off. 

Figures 5(a) and 5(b) depict the variations of the 

lateral deformation parameter λ and the submersion depth 

zb of the sphere with time, respectively. Here, zb represents 

the position coordinate of the sphere’s bottom. The 
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position of the water surface is defined as z = 0, and the z-

axis is negative downwards. The schematic of λ and zb is 

already shown in Fig. 3. 

As shown in Fig. 5(a), the lateral dimension of the 

sphere increased, i.e. λ > 1, as the sphere just entered the 

water. When λ increased to approximately 1.27, the 

deformation ceased and the sphere began to recover its 

original shape. After λ decreased to 1.0, the lateral 

dimension of the sphere continued to decrease, indicating 

the elongation in the vertical direction. Notably, the 

percentage of the vertical elongation was smaller than that 

of the lateral compression. Subsequently, the sphere 

underwent another cycle, i.e. first compression and then 

stretching. The fluctuation magnitude of λ in the second 

deformation cycle was significantly smaller than that in 

the previous cycle. Overall, the numerical results closely 

matched the experimental data, as shown in the figure. 

Here, it should be noted that the time scale in Fig. 5(a) 

for numerical simulation has been adjusted. In the 

numerical simulation, the sphere’s deformation period 

was slightly shorter than that of the experimental results 

reported by Hurd et al. (2017). A similar observation was 

made in the numerical simulation by Hurd et al. (2017), 

who attributed it to the additional mass of the sphere, 

leading to a scaling of the numerical results. In this study, 

we used a scaling factor of Texp/Tmodel = 1.15. 

Figure 5(b) shows the variation of the submersion 

depth zb of the sphere with time. The horizontal axis is 

non-dimensionalised by the pinch-off time tp of the cavity. 

It can be observed the numerical results closely matched 

the experimental data. 

Based on the above validation of grid independence 

and numerical methods, the water-entry process for the 

solid and hollow spheres was investigated by considering 

the interaction between the fluid and sphere. 

4.  NUMERICAL RESULTS AND DISCUSSIONS 

In this paper, the water-entry process for solid and 

hollow spheres was studied. In addition, the effect of the 

sphere velocity on the water-entry process and the 

deformation of the sphere was investigated. 

4.1 Water entry of the Solid Sphere with Different 

Speeds 

The water-entry process of a solid sphere with five 

different velocities (v0 = 1.3, 2.3, 3.3, 4.3 and 5.3 m/s; Fr 

= 3.4–56.2) was simulated. The sphere diameter D was 51 

mm, and the density and shear modulus were 1.07 g/cm3 

and G = 6.7 kPa, respectively. Correspondingly, the 

Froude numbers (Fr) expressed by Eq. (7) for the five 

conditions were 3.4, 10.6, 21.8, 37.0 and 56.2, 

respectively. 

2
0 / ( )Fr v gL=                                                              (7) 

where g represents the acceleration due to gravity and L 

represents the characteristic length of the object. In this 

paper, the characteristic length L of the solid sphere is the 

diameter D of the sphere. 

 

Fig. 6 Evolution process of the cavity of the solid 

sphere while entering the water with different Froude 

numbers. (a) Fr = 3.4, (b) Fr = 21.8 and (c) Fr = 56.2 

 

In Fig. 6, the evolution process of the cavity of the 

solid sphere during the water-entry process with different 

Froude numbers (Fr = 3.4, 21.8, 56.2) is presented. The 

time for the first five images among Fig. 6(a), 6(b) and 

6(c) is the same with each other, which is varied from t = 

12 to 69 ms in Fig. 6(a), 6(b) or 6(c). However, the time 

for the last image was different, representing the closure 

time of the cavity for the corresponding condition. The 

closure times for the condition of Fr = 3.4, 21.8 and 56.2 

were 93, 100 and 103 ms, respectively. 

As shown in Fig. 6(a), when Fr = 3.4 (v0 = 1.3 m/s), 

no cavity was visible around the sphere at t = 12 or 27 ms 

for the condition of Fr = 3.4. The cavity appeared at t = 41 

ms, but the contact line between the sphere and cavity was 

located behind the hemispherical part of the sphere. 

Subsequently, with the passage of time, the contact line 

continued to move backward (observable at t = 53 and 59 

ms). Later, when the sphere descended to a certain depth, 

the cavity rapidly contracted because of the water pressure 

and the Venturi effect, resulting in the pinch-off of the 

cavity. Sphere deformation was relatively not obvious. 

As the Froude number increased, the size of the cavity 

increased and the deformation of the sphere was more 

pronounced, which will be discussed further later. 

In addition, at t = 41 ms for the condition of Fr = 21.8, 

the cavity profile was not smooth but exhibited 

fluctuations. As time progresses, the fluctuations 

propagated along the cavity wall, becoming less 

pronounced. 

For the condition of Fr = 56.2 (Fig. 6(c)), the 

fluctuation on the cavity wall was more pronounced than 

that for the other conditions. This is attributed to the fact 

that the sphere with a higher speed had greater kinetic 

energy, resulting in greater impact loading acting on the 

sphere (Zhang et al., 2023). For the condition of a bigger 

Froude number, because of the bigger impact loading on 

the sphere with the same shear modulus, the 

corresponding deformation increased. 

When the sphere began to enter the water, the sphere 

was first compressed. The extent of the compression for 

Fr = 56.2 was greater than that for Fr = 21.8. Thus, the 

diameter of the cavity for Fr = 56.2 was bigger. After 

reaching the maximum lateral compression, the sphere  
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Fig. 7 Variation of the lateral deformation parameter 

λ of the solid sphere with time for different cases 

 

underwent a transition to longitudinal stretching, 

transforming from a laterally flattened sphere to a 

longitudinally elongated one. In this process, the sphere 

opened a smaller cavity downwards because of 

longitudinal stretching, possibly contributing to the 

subsequent formation of nested cavities. Yang et al. 

(2021b) explained that the formation conditions of the 

nested cavities involved a specific impact velocity and a 

certain amount of deformation. 

To quantitatively compare the deformation of the 

sphere, Fig. 7 illustrates the variation of the lateral 

deformation parameter λ over time for different Froude 

numbers. When λ > 1, the sphere underwent a lateral 

compression. Conversely, the sphere experienced 

longitudinal stretching when λ < 1. It is evident from Fig. 

7 that the sphere underwent periodic cycles of 

compression and stretching. Both the magnitude of the 

maximal compression and stretching appeared at the first 

period, and subsequently, the magnitude of the maximum 

deformation gradually decreased. Eventually, the 

magnitude of the deformation tended to be 1. This is 

attributed to gradual dissipation of the energy of the sphere 

during the downwards movement. 

In addition, as observed in Fig. 7, the peak value of 

the deformation coefficient of the sphere increased with 

Fr. Furthermore, the deformation period of the sphere did 

not change for five different conditions. That is, the 

velocity variation within this range did not alter the 

sphere’s deformation period. This finding is in agreement 

with the conclusion obtained by Yang et al. (2020b). 

Figure 8 illustrates the relationship between the 

deformation coefficient λPN and the dimensionless 

parameter G/ρwv0
2. Here, λPN represents the maximum 

lateral deformation during the Nth deformation period. 

Because of the gradual reduction of the sphere 

deformation, only the variation of λPN for the first three 

deformation cycles was presented in the figure, along with 

a comparison with the experimental results of Hurd et al. 

(2017). 

As shown in Fig. 8, the overall trends of the three 

datasets were generally consistent and the maximum 

deformation was eventually approaching 1. During the  

 

Fig. 8 Relationship between the deformation 

parameter λPN and the dimensionless parameter 

G/ρwv0
2 

 

first deformation cycle, the deformation coefficient from 

the numerical simulations closely matched the 

experimental data. In the second and third deformation 

cycles, λPN obtained from the numerical calculations was 

slightly larger than that in the experiment. 

With the downwards movement of the sphere, the 

pinch-off of the cavity or cavity closure will occur. The 

cavity closure will influence the dynamic characteristics 

of the sphere. Figure 9 illustrates the relationship between 

the pinch-off time tp of the cavity and Fr. The ordinate was 

dimensionless using D/v0. Both axes were presented in 

logarithmic scales to provide a more direct understanding 

of the relationship between the ordinate and Fr. 

Consequently, each set of the data in the figure was fitted 

to obtain the slope. Meanwhile, the outcomes were 

compared with the experimental data in the studies by 

Hurd et al. (2017) and Duclaux et al. (2007). It should be 

noted that the physical parameters of the sphere in this 

paper were the same with those in Hurd et al. (2017) but 

were not different from those in Duclaux et al. (2007). In 

the investigation of Duclaux et al. (2007), the density was 

2.487 g/cm3. 

 

 

Fig. 9 Relationship between the cavity closure time tp 

and Fr 
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Fig. 10 Schematic of Hp, H and Dp at the time of cavity 

closure 

 

 

Fig. 11 Relationship between Hp and Fr at t = tp 

 

As shown in Fig. 9, the slopes of the three datasets 

were quite close and the closure time of the cavity was 

linearly related to approximately Fr1/2. Furthermore, the 

simulated results aligned well with the experimental 

measurement from the study by Duclaux et al. (2007). The 

difference between the simulation results in this paper and 

that by Duclaux et al. (2007) may be due to the difference 

in density. 

To further investigate cavity closure, the depth of the 

cavity closure (Hp), the depth of the sphere’s centre of 

mass (H) and the cavity’s opening diameter at the water 

surface (Dp) at the moment of cavity closure will be 

analysed. Figure 10 presents the schematic of these three 

parameters. In Figs. 11, 12 and 13, the variations in Hp, H 

and Dp with the Froude number are given, respectively. 

Figure 11 depicts the relationship between the depth 

of the cavity closure and Fr, with comparisons to the 

experimental data from Aristoff et al. (2009) (ρ = 1.14 

g/cm³) and Duclaux et al. (2007) (ρ = 2.487 g/cm³). We 

can see that the simulation results were closer to the 

experimental data of Aristoff than that to those of the study 

by Duclaux et al. (2007). The fitting slope of the 

simulation results was the same with that in the study  

by Aristoff et al. (2009). In Fig. 12, the change in H in the  

 

Fig. 12 Relationship between H and Fr at t = tp 

 

 

Fig. 13 Relationship between Dp and Fr at t = tp 

 

simulations was still closer to the data in Aristoff et al. 

(2009) than that in Duclaux et al. (2007). However, in Fig. 

13, as for the opening diameter of the cavity in the free 

surface at the moment of cavity closure, the simulation 

results aligned well with those in the study by Duclaux et 

al. (2007), considering whether it is slope or specific 

value. 

Figure 14 illustrates the variation in the depth of the 

sphere with time. The horizontal axis is dimensionless 

using D/v0, and the vertical axis, zb, is dimensionless using 

the sphere diameter. The definition of zb can be referenced 

in Fig. 3. It can be observed that when Fr = 3.4 and 10.6, 

the curve of zb was relatively smooth, exhibiting a mostly 

linear trend. When Fr = 37.0, a slight fluctuation appeared 

in the vicinity of 3 (tv0/D). As Fr increased to 56.2, the 

fluctuation became more pronounced. The reason of the 

fluctuation can be explained as follows. 

To explain the reason of the curve fluctuation in Fig. 

14, the stress distributions on the sphere at different times 

were observed. In Fig. 14, under the condition of Fr = 

56.2, the stress distributions for three typical positions 

were given, which were marked with a red triangle, circle 

and square. 

At the time marked by the red circle, the maximal 

stress appeared at the top of the sphere. At this moment,  
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Fig. 14 Variation of the sphere depth zb with time 

 

 

Fig. 15 Stress distribution in the xoz cross-section 

for solid spheres under different conditions, (a) 

maxial lateral compression, (b) maximal longitudinal 

stretch 

 

the sphere just finished the stretching process and just 

began the process of lateral compression. At the red circle, 

the sphere reached its maximal lateral compression and 

the stress at the sphere bottom was bigger. This indicates 

that during this period the internal stress in the sphere 

shifted from top to bottom, suggesting that the bottom of 

the sphere was compressed more significantly compared 

with the top. During this compression process, the 

resistance coefficient gradually increased, accompanied 

with the growth of the sectional area of the sphere. Thus, 

under the combined effects of the increased drag and 

sphere lateral compression, the change in zb became slow 

and at the red circle, the change in zb was the smallest. 

After this, the sphere began to return to its original shape. 

At the time of the red square, the stress at the bottom of 

the sphere was released and the maximal stress appeared 

in the middle of the sphere. During the process from the 

red circle to the red square, the sectional area decreased 

and thus the drag correspondingly decreased. 

Accompanied with the recovery of the sphere shape, the 

change in zb increased. Therefore, it may be concluded that 

the deformation of the sphere caused the curve fluctuation 

of zb. With the increase in Fr, the deformation of the 

sphere increased and the curve fluctuation of zb increased. 

Figure 15 shows the stress distribution in the xoz 

cross-section for solid spheres under different conditions. 

In Fig. 15(a), the sphere is in a state of maximal lateral   

 

Fig. 16 Evolution process of the cavity of the hollow 

sphere while entering the water with different Froude 

numbers. (a) Fr = 23.6, (b) Fr = 40.1 and (c) Fr = 61 

 

compression for every condition, while Fig. 15(b) 

corresponds to the state of maximal longitudinal stretch. 

The unit of the stress was Pa. It can be observed that the 

maximal stress appears in the middle of the sphere in Fig. 

15(a). However, in Fig. 15(b), the maximal stress occurs 

in the top region of the sphere. 

4.2 Water entry of the Hollow Sphere with Different 

Speeds 

In this study, the water-entry process of a hollow 

sphere was also investigated. In the numerical simulations, 

the inner diameter (d) of the sphere was 31 mm and the 

outer diameter (D) was 51 mm. The shear modulus (G) 

was 24 kPa. The velocity range for the hollow sphere was 

the same as that for the solid one, i.e. ranging from 1.3 to 

5.3 m/s. The corresponding Froude number was in the 

range of 3.7–61. It should be noted that the effective 

diameter of the sphere (Deff = (D3-d3)1/3) in the calculation 

of Fr was used. 

Figure 16 illustrates the evolution process of the 

cavity of the hollow ball while entering the water with 

different Froude numbers. 

The closure times (tp) for Fr = 23.6, 40.1 and 61 were 

89, 92 and 92 ms, respectively. It can be observed from 

the figure that a slight lateral elongation of the sphere was 

noticeable at t = 13 ms under the condition of Fr = 23.6, 

but the deformation was smaller compared with the other 

two conditions. For the case of Fr = 40.1, both the top and 

bottom parts of the sphere appeared flattened at t = 13 ms, 

which was different from the deformation pattern 

observed in the solid sphere. When Fr was increased to 

61, the lateral elongation of the sphere was the biggest at t 

= 13 ms. In addition, the cavity size increased with the 

Froude number, which was similar to that for the solid 

sphere. 

Similarly, Fig. 17 depicts the variation of the 

deformation coefficient (λ) with time for hollow spheres 

under various Froude numbers. It can be seen that the 

amplitude of the deformation coefficient was minimal at 

Fr = 3.7. As the initial speed of the sphere increases, the 

deformation became more obvious. However, because of 

the energy loss, the deformation gradually diminished, 

resulting in the convergence of the deformation levels 

among different conditions. 
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Fig. 17 Variation of the lateral deformation 

parameter λ of the hollow sphere with time for 

different cases 

 

 

Fig. 18 Relationship between tp and Fr 

 

 

Fig. 19 Relationship between Dp and Fr at t = tp 

 

Figures 18–21 present the changes in tp, Dp, Hp and H 

with the Froude number for the hollow sphere when the 

cavity was pinched off. By comparing Figs. 18–21, we can 

observe that the dimensionless pinch-off time, water 

surface opening diameter, pinch-off depth of the cavity,  

 

Fig. 20 Relationship between Hp and Fr at t = tp 

 

 

Fig. 21 Relationship between H and Fr at t = tp 

 

 

Fig. 22 Stress distribution in the xoz cross-section for 

hollow spheres under different conditions, (a) maxial 

lateral compression, (b) maximal longitudinal stretch 

 

and sphere centroid depth were all positively correlated 

with Fr in certain power functions. This trend is consistent 

with the variation trend of cavity pinch-off parameters for 

different velocity solid spheres. However, the parameter 

most affected by Fr in the cavity fracture parameters was 

the dimensionless pinch-off depth, followed by the 

dimensionless pinch-off time, sphere centroid depth and 

water surface opening diameter. 

Figure 22 shows the stress distribution in the xoz 

cross-section for hollow spheres under different 

conditions. In Fig. 22(a), the sphere is in a state  

of maximal lateral compression for every condition, while  
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Fig. 23 Comparison of λ between the solid and hollow 

spheres 

 

Figure 22(b) corresponds to the state of maximal 

longitudinal stretch. The unit of the stress was Pa. It can 

be observed that the maximal stress appears at the two 

ends of the inner edge of the sphere in Fig. 22(a). 

However, the maximal stress appears at the lower end of 

the inner edge of the sphere. 

4.3 Comparison of Water-Entry Processes Between 

Solid and Hollow Spheres 

To clearly and quantitatively compare the differences 

between the solid and hollow spheres, Fig. 23 provides a 

comparison of the deformation coefficients during the 

water-entry processes of a hollow sphere (inner diameter 

d = 31 mm; outer diameter D = 51 mm) and a solid sphere 

(outer diameter D = 51 mm). Both spheres had an initial 

velocity of 5.3 m/s and a shear modulus of 24 kPa. 

In Fig. 23, several solid and dashed lines were added 

to identify the deformation periods of the solid and hollow 

spheres. We can see in Fig. 23 that the amplitude of the 

deformation coefficient of the hollow sphere was 

significantly larger and the deformation period of the 

hollow sphere was longer than that of the solid one. Here, 

the first deformation period of the hollow sphere is about 

1.5 times that of solid sphere. 

To explore the difference of the phenomena and data 

between the hollow and solid spheres during the water-

entry process, the stress distributions of the xoz cross-

sections of both the hollow and solid spheres at different 

times were compared. Figure 24 presents the xoz cross-

sections of the solid and hollow spheres. The unit of the 

stress was Pa. 

As shown in Fig. 24(a), the stress in the middle was 

higher than that in the other part at t = 5 ms. At this time, 

the sphere was just in the state of maximal lateral 

compression. Then, with time, the sphere underwent 

stretching in the perpendicular direction and the high 

stress zone shifted upwards. When the sphere reached its 

maximal longitudinal stretching (t = 12 ms), the high 

stress zone appeared at the upper part of the sphere. Later, 

the sphere experienced another deformation cycle and the 

stress underwent a corresponding shifting cycle. 

 

Fig. 24 Stress comparison of solid and hollow spheres 

at different times after entering the water 

 

In Fig. 24(b), at t = 5 ms, the hollow sphere was 

compressed. We can see that the lower part was more 

severely compressed than the upper part. Then, the hollow 

sphere was continuously compressed. At t = 9 ms, the 

upper and lower parts of the sphere were flat. At this time, 

the maximal stress was higher than that at t = 5 ms. At t = 

20 ms, the sphere began to stretch along the vertical 

direction. It should be noted that stretching started from 

the upper half of the hollow sphere. The hollow sphere had 

an approximately triangular shape. At t = 27 ms, the lower 

part of the sphere also underwent stretching. 

Subsequently, the hollow sphere was compressed again. 

5. CONCLUSIONS 

In this paper, the water-entry process of solid and 

hollow hyperelastic spheres was numerically simulated 

for different initial velocities within low Froude numbers. 

The coupling of the sphere and fluid was handled using 

the ALE method. The evolution of the cavity and 

deformation of the hyperelastic spheres were analysed 

under different conditions. In particular, the parameters at 

the moment of cavity pinch-off were analysed and 

compared with several published data. Meanwhile, the 

differences in the deformation and stress distribution 

between solid and hollow spheres were also compared. 

The following conclusions can be drawn: 

(1) The size of the cavity and fluctuation on the cavity 

profile increased with Fr for the solid sphere. The closure 

time and closure depth of the cavity also increased with 

Fr. For the solid sphere, the closure time was proportional 

to Fr1/2 and the closure depth was proportional to Fr2/5 

under the investigated cases in this paper. 

(2) For the hollow sphere, the change trends of the 

size of the cavity and fluctuation on the cavity profile were 

the same with those for the solid sphere. The closure time 

and closure depth of the cavity for the hollow sphere also 

increased with Fr. The closure time for the hollow sphere 

was proportional to Fr1/2, which was the same as that for 

the solid sphere. The closure depth for the hollow sphere 

was proportional to Fr3/5, which was different from that 

for the solid one. 

(3) While entering the water, both the solid and 

hollow spheres experienced the periodic deformation 

process of first lateral compression and then longitudinal 

stretching. The deformation amplitude gradually 

decreased with time for every condition. However, the 
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difference lies in the fact that during the initial stretching 

process, the top and bottom of the hollow sphere were 

stretched successively, and in the case of the solid sphere, 

only the top underwent stretching. 

(4) Within the investigated low Froude numbers, 

whether for the solid or hollow spheres, the deformation 

amplitude increased with the Froude number. However, 

the deformation period remained nearly the same for 

different conditions. 

(5) For the solid sphere, the high stress zone was 

located in the middle when it reached its maximal lateral 

compression. The high stress zone was in the upper part of 

the sphere when the sphere was in its maximal 

longitudinal stretching. The change in the stress 

distribution for the hollow sphere was more complex than 

that for the solid one.  

In the future, the experiments of deformable hollow 

spheres entering water will be conducted in order to 

further investigate and understand the cavity evolution, 

the sphere deformation and the coupling effects between 

the fluid and solid structure. The experimental cases for 

hollow spheres will provide valuable data for the above 

and future numerical simulations. 
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