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ABSTRACT 

This paper investigates the dynamic internal flow structure, and its outlet jets, of 

the fluidic oscillator. The objective of this numerical study is to provide a better 

understanding of this type of jet for a research domain aimed at improving 

various aspects of fluid flow control. The present work focuses on the two-

output fluidic oscillator, which involves no moving parts in direct contact with 

the flow. An analysis of the internal and external dynamics of the two-output 

fluidic oscillator using numerical simulations for compressible air flow was 

investigated by employing the 𝑘 − 𝜔 SST turbulence model. The study 

highlights the periodic oscillation of the jet inside the fluidic oscillator between 

the two branches driven by the Coanda effect, which characterizes the oscillatory 

behavior of the fluidic oscillator. Furthermore, it reveals the importance of 

controlling the inlet pressure to maintain the oscillatory behavior. The results 

demonstrate that the outlet velocity is influenced by the inlet conditions as well 

as the system's geometry. In conclusion, the article provides essential insights 

into the dynamics of the two-output fluidic oscillator, emphasizing the impact 

of physical and geometrical control parameters on flow behavior. 
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1. INTRODUCTION 

Fluidic oscillators, also known as swept jet fluidic 

oscillators, have become valuable tools for flow control 

and aerodynamics due to their unique ability to induce 

oscillating jet flows and manipulate airflow 

characteristics. These devices are increasingly gaining 

interest in various technical applications, such as 

controlling boundary layer separation or enhancing 

aerodynamic performance. The design and performance of 

fluidic oscillators have been the subject of extensive 

research, aiming to uncover the underlying physical 

principles governing their behavior and the potential for 

improving flow control in various contexts. The earliest 

fluidic oscillators date back to the 1960s. In 1968, Milton 

(1968) proposed a self-sustained fluidic oscillator design 

that generates fluid oscillations. One year later, 

Campagnuolo and Henry (1969) provided a non-

exhaustive list of the different types of fluidic oscillators 

that have been developed and applied to fluidic systems 

for missile detection or control. Two decades later, 

Wesfreid et al. (1994) designed a fluidic oscillator that 

showed high precision in flow regulation applications. 

They used a U-shaped fluidic oscillator with a sharp-edged 

separation plate to induce flow detachment. In recent 

years, several studies have been conducted to understand 

and analyze the physical mechanisms involved in the 

operation of these fluidic oscillators. 

In 2005, Simões et al. (2005) were the first who revisit 

the concept of fluidic oscillators through an experimental 

study of microfluidic oscillators with a different geometry 

from those previously known. Their work consists of a 

feedback loop connecting the inputs to the output of the 

fluidic oscillator. This research significantly contributed 

to our understanding of the complex dynamics and design 

considerations of fluidic oscillators by exploring various 

aspects of fluidic oscillators, ranging from their internal 

and external flow dynamics to the influence of geometric 

parameters on their performance. Woszidlo et al. (2015) 

investigated the effects of two fluidic oscillator designs on 

the flow field and oscillation frequency, one with a 

rounded and the other with a sharp angle. Their results 

revealed intriguing insights into the relationship between 

the oscillator feed rate, the channel angle, and the resulting 

flow characteristics. 

The influence of the outlet nozzle, the tilt angles, the 

velocity ratios, and the frequencies on the external flow 

patterns was investigated by Ostermann et al. (2015). 

Furthermore, Samsam-Khayani et al. (2020) examined the 

http://www.jafmonline.net/
https://doi.org/10.47176/jafm.18.4.3128
mailto:alakehal@usthb.dz


A. Lakehal et al. / JAFM, Vol. 18, No. 4, pp. 880-891, 2025.  

 

881 

impact of confinement on fluidic oscillators, uncovering 

differences in vortex formation and flow characteristics 

between free and confined external domains. Previously, 

numerical simulations were employed to compare internal 

and external flow dynamics, emphasizing the importance 

of accurate modeling in understanding fluidic oscillator 

behavior (Aram et al., 2018). Otto et al. (2019) explored 

the performance of fluidic oscillators compared to stable 

jets, highlighting the advantages of fluidic oscillators in 

terms of flow control and their ability to create a more 

coherent distribution of vortices in the mean direction of 

the flow. These findings indicate the potential of fluidic 

oscillators to enhance flow control in various applications. 

For the experimental study, Park et al. (2020) shown that 

the oscillation frequency depends not only on the inlet 

flow rate but also on geometric dimensions such as the 

feedback length and its diameter as previously observed 

by Wesfreid et al. (1994) and Wang et al. (2016). Park et 

al. (2020) noted the absence of oscillations specifically 

designed for supersonic operation. Interestingly, they also 

found that the internal flow remains subsonic, even with a 

supersonic outlet flow. 

Cerretelli and Gharaibah (2007) delved into the 

influence of return channels on two-outlet fluidic 

oscillators, uncovering the presence of complex vortex 

structures and the need for a deeper understanding of the 

vorticity dynamics to optimize the fluidic oscillator 

performance. A detailed description of the fluidic 

oscillators' internal dynamics and switching mechanisms, 

offering insights into pressure drop, oscillation frequency, 

and jet deflection control, was presented by Gaertlein et 

al. (2014). 

To examine the internal fluid dynamics of a swept jet 

fluidic oscillator featuring two feedback channels and to 

investigate the characteristic scales linked to the 

oscillation frequency Seo et al. (2018), used numerical 

predictions for different geometric configurations, such as 

adjustments in the length of the feedback channel and the 

mixing chamber. Using the simulation outcomes, the 

researchers introduced a phenomenological model for 

these actuators along with a scale for the oscillation 

frequency. 

Wang et al. (2019) investigated two oscillators 

experimentally, referred to as Osc.1 and Osc.2. The only 

difference between these two oscillators lies in the length 

and diameter of the feedback loops. Both prototypes have 

an identical central part (switching zone) that is precisely 

the same as that used in our numerical work, and in that of 

Wang (2017). However, Osc.1 has a complete "two-

dimensional" design (including feedback loops in the 

same plane) with a uniform depth of 10 mm (i.e., much 

larger than the width of the internal channels of the 

device); thus, the measured frequencies and outlet 

velocities can be compared to the results of the 2D 

simulation. Two measurement techniques were employed 

to obtain the oscillator's frequency and outlet velocity 

profiles: hot-wire anemometry and transient pressure 

measurement using a transducer. However, the hot wire is 

so fragile that it was only used under conditions of low 

inlet pressure, whereas the pressure transducer was used 

over a wide range of inlet pressures. Thus, the velocity in 

the axis of each oscillator outlet was measured by a hot 

wire for an inlet total pressure ranging from 0.12 to 0.26 

MPa. At the same time, frequency responses were 

provided by a pressure sensor for a more comprehensive 

range of inlet pressure, ranging from 0.1 to 0.3 MPa. 

Finally, Wang et al. (2016) investigated numerically 

and experimentally the flow dynamics structure of a 

fluidic oscillator. They started their study by employing 

numerical simulations based on the realizable 𝑘 − 𝜀 

turbulence model to analyze the internal flow of the fluidic 

oscillator based on the Coanda effects. Then, they 

designed and experimentally tested two fluidic oscillator 

prototypes to validate their numerical results. Moreover, 

based on the phenomenon of pressure wave propagation 

in the feedback loops, Wang et al. (2016) deduced that the 

frequency is inversely proportional to the feedback length, 

i.e., 𝑓 ∼ 𝑐𝑠/(4𝐿𝑓), where 𝑐𝑠 is the velocity of the pressure 

waves in the feedback loops. This simplified relationship 

allows for the prediction of the oscillation frequency with 

an error of less than 15%, except in the case of shallow 

inlet pressures. The authors demonstrated through 

additional numerical simulations that the fluid oscillations 

between the two outlets are not controlled solely by the 

pressure difference between them, but by a combination 

of this pressure difference and the one that exists between 

the two feedback loops. 

Moreover, Löffler et al. (2021) studied the parameters 

that influence the frequency of the fluidic oscillator by 

identifying a fundamental mode and higher-order modes. 

Various geometric parameters have an impact on the 

switching frequency, with the throttling ratio and the 

geometry of the mixing chamber being less influential. 

More recently, Song et al. (2024) experimentally 

studied new models of fluidic oscillators using Proper 

Orthogonal Decomposition (POD) analyses and examined 

their internal and external dynamics. The study focused on 

several parameters, including the inlet width, the width of 

the feedback channel inlet, and the size of the mixing 

chamber. The authors concluded that, firstly, the 

oscillation frequency depends linearly on the inlet flow 

rate; and secondly, the recirculation zones in the mixing 

chamber have a direct effect on the return flow, thus 

directly influencing the oscillation frequency. 

For all this background, the main objective of this 

paper is to provide a better understanding of the internal 

and external compressible flow of a two-output fluidic 

oscillator. Different physical phenomena are highlighted 

to explain the mechanism of the fluidic oscillator flow and 

to detect the variation of frequency of the flow 

oscillations. The first-order 𝑘 − 𝜔 SST turbulence model 

is used for turbulence modelling and the finite volume 

method for numerical prediction through Ansys Fluent 

14.1. 

2. METHODOLOGY AND GOVERNING 

EQUATIONS 

The different components comprising the two-output 

fluidic oscillator include an inlet and a mixing chamber. 

The interaction between the inlet jet and the feedback 
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Fig. 1 Geometry and dimensions (in mm) of the 

oscillator.1 (Osc1) and the oscillator.2 (Osc2). Only 

half of each oscillator is shown in this figure 

 

outlet jet forms different pressure zones, which directly 

influence the flow direction between the two branches 

through oscillation. In this study, we investigated two 

output fluidic oscillators named Osc.1 and Osc.2, with the 

same volume but different feedback diameters (𝐷1=1.26 

mm and 𝐷2=3.2 mm, respectively) and different feedback 

lengths (See Fig. 1). Osc.1 has a feedback length of LOsc1 

= 391mm, while Osc.2 has a feedback length of LOsc2 = 

163mm. Note that all the other lengths are common to both 

oscillators. The detailed schematics and the dimensions of 

Osc.1 and Osc.2 are represented on the left and the right 

of Fig. 1, respectively. Only half of each oscillator is 

shown. 

The fluid considered (air) is an ideal gas, 

compressible, isotherm, and Newtonian characterized by 

constant physical properties. The turbulent flow is 

governed by unsteady Navier-Stokes equations (1) and 

(2): 

Mass equation  

𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢𝑖)

𝜕𝑥𝑖
= 0     (1) 

 Momentum equation  

𝜕(𝜌𝑢𝑖)

𝜕𝑡
+

𝜕(𝜌𝑢𝑖𝑢𝑗)

𝜕𝑥𝑖
= −

𝜕𝑃

𝜕𝑥𝑖
+ 𝜇

𝜕2𝑢𝑖

𝜕𝑥𝑗
2    (2) 

 In terms of the Reynolds averaging, the instantaneous 

velocity 𝑢𝑖 and pressure 𝑃 are decomposed into the mean 

(𝑈𝑖 , 𝑃) and fluctuating (𝑢𝑖
′, 𝑃′) component:  

𝑢𝑖 = 𝑈𝑖 + 𝑢𝑖
′ 

𝑃 = 𝑃 + 𝑃′ 

By substituting the Reynolds decomposition into the 

equations (1) and (2) and taking a time average of these 

equations yields the unsteady averaged Navier-Stokes 

(URANS) equations:  

Averaged mass equation:  

𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑈𝑖)

𝜕𝑥𝑖
= 0      (3) 

 Averaged momentum equation:  

𝜕(𝜌𝑈𝑖)

𝜕𝑡
+

𝜕(𝜌𝑈𝑖𝑈𝑗)

𝜕𝑥𝑖
= −

𝜕𝑃

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑖
(𝜇

𝜕𝑈𝑖

𝜕𝑥𝑗
− 𝜌𝑢𝑖

′𝑢𝑗
′) (4) 

 The additional term in equation (4), 𝜏𝑖𝑗(𝑇𝑢𝑟𝑏) =

−𝜌𝑢𝑖
′𝑢𝑗

′ , is the Reynolds stress tensor, resulting from 

convective transport, is added to the viscous term on the 

right-hand side. In turbulence theory to close the resulted 

equations system, it requires additional equations to be 

modeled. In this work, the Boussinesq approach is used 

for compressible flow to deduce the Reynolds stress tensor 

versus the mean flow velocity gradients (Equation 5):  

𝜌𝑢𝑖
′𝑢𝑗

′ = 𝜇𝑡 (
𝜕𝑈𝑖

𝜕𝑥𝑗
−

𝜕𝑈𝑗

𝜕𝑥𝑖
) −

2

3
𝛿𝑖𝑗𝑘   (5) 

 where 𝜇𝑡 is the eddy viscosity and 𝑘 = 𝑢𝑖
′𝑢𝑖

′̅̅ ̅̅ ̅̅ /2 is the 

turbulent kinetic energy. 

The turbulent kinetic energy 𝑘 and the specific 

dissipation rate 𝜔 for the 𝑘 − 𝜔 SST model are obtained 

from the following transport equations (Menter, 1994):  

𝜕(𝜌𝑘)

𝜕𝑡
+

𝜕(𝜌𝑘𝑢𝑖)

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑗
(Γ𝑘

𝜕𝑘

𝜕𝑥𝑗
) + 𝐺𝑘̃ − 𝑌𝑘 + 𝑆𝑘 (6) 

 
𝜕(𝜌𝜔)

𝜕𝑡
+

𝜕(𝜌𝜔𝑢𝑖)

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑗
(Γ𝜔

𝜕𝜔

𝜕𝑥𝑗
) + 𝐺𝜔̃ − 𝑌𝜔 + 𝑆𝜔 + 𝐷𝜔 (7) 

 where  

Γ𝑘 = 𝜇 +
𝜇𝑡

𝜎𝑘

 

and  

Γ𝜔 = 𝜇 +
𝜇𝑡

𝜎𝜔

 

 In the previous equations (Eqs. (6) and (7)), 𝐺𝑘̃ 

represents the production of the turbulent kinetic energy 

resulting from mean velocity gradients, which is 

calculated as follows:  

𝐺𝑘̃ = −𝜌𝑢𝑖
′𝑢𝑗

′
𝜕𝑢𝑗

𝜕𝑥𝑖

, 

and 𝐺𝜔̃ represents the generation of 𝜔, calculated as  

𝐺𝜔̃ = 𝛼
𝜔

𝑘
𝐺𝑘̃. 

 In the high-Reynolds-number form of the 𝑘 − 𝜔 

model, the coefficient 𝛼 is equal to one (𝛼 = 𝛼∞ = 1). In 

equation (6), 𝑌𝑘 represents the dissipation of 𝑘 due to 

turbulence, and is given by  

𝑌𝑘 = 𝜌𝛽∗𝑓𝛽∗𝑘 (8) 

where 𝑓𝛽∗ = 1, and  

𝛽∗ = 𝛽∞
∗ (

4

15
+(

𝑅𝑒𝑡
𝑟𝛽

)

4

1+(
𝑅𝑒𝑡
𝑟𝛽

)

) [1 + 𝜍∗𝐹(𝑀𝑡)]  (9) 

 In the high-Reynolds-number flows  

𝛽∗ = 𝛽∞
∗ [1 + 𝜍∗𝐹(𝑀𝑡)]                             (10) 

 Where 𝛽∞
∗ , 𝜍∗, and 𝑀𝑡 are given in table 1.  

 𝐹(𝑀𝑡) in equations (9) and (10) is the compressibility 

correction function. This is an important member because 
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flows at 𝑀𝑎 > 0.3 become compressible and must include 

compressibility effects. 𝐹(𝑀𝑡) is defined as  

𝐹(𝑀𝑡) = {
0    𝑀𝑡 ⩽ 𝑀𝑡0

𝑀𝑡
2 − 𝑀𝑡0

2 𝑀𝑡 > 𝑀𝑡0
               (11) 

 where  

𝑀𝑡
2 =

2𝑘

𝜅𝑅𝑇
                 (12) 

 This implies that the compressibility correction is not 

applied in regions with low turbulent kinetic energy. In 

supersonic flows, we anticipate 𝑀𝑡 ⩽ 𝑀𝑡0. The 𝑌𝜔 term 

for 𝜔-dissipation in equation (7) is defined as follows:  

𝑌𝜔 = 𝜌𝛽𝑓𝛽𝜔2                 (13) 

 where 𝑓𝛽 = 1. Thus,  

𝑌𝜔 = 𝜌𝛽𝜔2                 (14) 

 where  

𝛽𝑖 = 𝐹1𝛽𝑖,1 + (1 − 𝐹1)𝛽𝑖,2                (15) 

 in which 

𝐹1 = tanhΦ1
4                 (16) 

 where  

Φ1 = min [max (
√𝑘

0.09𝜔𝑦′
,

500𝜇

𝜌𝑦2𝜔
) ,

4𝜌𝑘

𝜎𝜔,2𝐷𝜔
+𝑦2]              (17) 

 where  

𝐷𝜔
+ = max [2𝜌

1

𝜎𝜔,2

1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
, 10−10]              (18) 

 The SST 𝑘 − 𝜔 model is a synthesis of the standard 

𝑘 − 𝜔 and the standard 𝑘 − 𝜀 models. To merge these 

models, the equations of the standard 𝑘 − 𝜀 model have 

been reformulated in terms of 𝑘 and 𝜔. This introduces the 

concept of a cross-diffusion term, which is defined as 

follows:  

𝐷𝜔 = 2(1 − 𝐹1)𝜌
1

𝜔𝜎𝜔,2

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
               (19) 

 From the above analysis of the k-ω SST model, we can 

find model constants and their likely values in supersonic 

flows empirically established in the past. These constants 

are summarized in Table 1 (Ansys, 2014). In this work, 

the primary advantage of the k-ω SST model is its 

combination of both the k-ε and k-ω models, effectively 

capturing turbulent effects in various regions of subsonic 

compressible flow. This flow is characterized by 

significant variations in local Reynolds numbers, ranging 

from high Reynolds numbers in the (free-stream regions) 

to very low Reynolds numbers (near the walls).  

 Additionally, the k-ω SST model is recognized for its 

ability to accurately predict flows with strong pressure 

gradients (Menter, 1994), which is crucial in compressible 

flows where pressure changes can significantly influence 

turbulence behavior. 

 The turbulent flow equations are discretized through 

the finite volume method via Fluent Ansys 14.1. Our 

methodology involved discretizing the convective terms 

in all equations using a second-order upwind scheme  

and computing inviscid fluxes using a second-order flux  

Table 1 k-ω SST Model Constants (Ansys, 2014) 

Symbols Values Symbols Values 

𝜎𝑘,1 1.176 𝛼∞ 1 

𝜎𝜔,1 2.0 𝛼0 1/9 

𝜎𝑘,2 1.0 𝛽∞ 0.09 

𝜎𝜔,2 1.168 𝑅𝛽 8 

𝛼1 0.31 𝑅𝑘 6 

𝛽𝑖,1 0.075 𝑅𝜔 2.95 

𝛽𝑖,2 0.0828 𝜍∗ 1.5 

𝛼∞
∗  1 𝑀𝑡0 0.25 

 

Table 2 Different generated meshes 

 Number of nodes 𝑌+ 

Mesh 1 33476 0.043 

Mesh 2 71522 0.034 

Mesh 3 100756 0.028 

 

splitting method to ensure effective upwind and 

dissipation near shock regions. For compressible fluid, the 

density-based solver was selected with an implicit 

formulation. It is important to note that gravitational 

effects are negligible in our case. The solver employed is 

based on the pressure-based method (pressure-based 

solver), and the pressure-velocity coupling is ensured by 

the SIMPLE algorithm. 

 The specified criteria were set with the Courant-

Friedrichs-Lewy (CFL) number set to 1 (Menter, 1994). 

Boundary conditions were set as pressure inlet/outlet with 

non-reflecting boundary conditions (where outlet pressure 

tends to infinity). The turbulent intensity was set at 5% at 

the nozzle. Both the gauge total pressure at the inlet (Pinlet) 

and the outlet gauge pressure (Poutlet) varied across 

different operational regimes.   

 The mesh test was conducted using three different 

meshes (see Table 2). The numerical prediction results for 

the three generated meshes were compared to select the 

most optimal mesh in terms of node count (Fig. 2). 

Figure 2a shows the variation of the velocity 

magnitude at the right outlet of oscillator 1 (Osc1) for 

three different meshes. 

After a detailed analysis of the three meshes, it is 

observed that the first two meshes are similar, except for 

mesh 1, which exhibits a higher peak compared to the 

other two, as well as a visibly shorter period. Since mesh 

1 is also the coarsest, it is excluded from our selection. 

Comparing meshes 2 and 3, it is found that these two are 

almost identical, and they are also closest to the 

experimental (Wang et al., 2019). Therefore, mesh 2 is 

chosen as the most suitable mesh for our study, with a 

period of T=4.9 ms, providing an optimal mesh. Despite 

having a slightly longer oscillation period compared to the 

experimentally obtained one mesh 2 is chosen as the most 

appropriate mesh for our study. Our numerical predictions 

provide a better estimation of the velocity than those of 

Wang (2017) for the oscillator 1. We also note that, 

although our results overestimate the maximum velocity 

by about 30% compared to the experimental results of  
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(a) (b) 

Fig. 2 Velocity variation at (a) right outlet for oscillator 1, and (b) left outlet for oscillator 2 on the three 

meshes, experimental (Wang, 2017), simulation (Wang et al., 2019) and present work 

 

(Wang et al., 2019)., they are still better than those 

obtained numerically by the same author, which are 

around 50%. 

Figure 2b illustrates the variations of the velocity 

magnitude at the outlet of oscillator 2 (Osc2) with an inlet 

pressure Pi = 0.2 MPa. Firstly, we observe that the 

experimentally obtained velocity reaches a value of 120 

m/s, whereas our numerical results are around 92 m/s. Our 

results underestimate the velocity by approximately 23%, 

while the numerical results of Wang (2017) and Wang et 

al. (2019) overestimate it by just over 30%. Nevertheless, 

for oscillator 2, our numerical predictions are closer to the 

experimental measurements than those presented by 

Wang et al. (2019). This confirms that despite the 

significant difference in the maximum velocity between 

our calculations and the experimental results, our 

numerical calculations provide a good prediction of the 

flow in this geometry. 

3. RESULTS AND DISCUSSIONS 

Before proceeding with the presentation of the results, 

it may be useful to provide the Reynolds number 

corresponding to each imposed inlet pressure, based on the 

average velocity and the inlet diameter. The numerical 

values are reported in Table 3. 

3.1 Mean Flow Structure of Oscillator 1 

Figure 3 represents the iso-contours of the velocity 

magnitude (left) and the static pressure (right) contours, 

 

Table 3 Pressure versus Reynolds number 

Pi (MPa) Re 

1.2 3412 

1.5 5292 

1.8 5754 

2 6034 

2.3 6569 

2.6 6874 

respectively, inside the fluidic oscillator over half an 

oscillation period. The figure highlights the process of jet 

switching from one position to another. It illustrates how 

the jet detaches, bends, and then adheres to the opposite 

wall inside the fluidic oscillator prototype, inducing an 

apparent flapping flow with predominant frequencies. 

When the inlet flow encounters the bifurcation of the fluid 

oscillator, the deviation of the surface influences the flow 

direction. The change in direction due to the surface's 

curvature, combined with fluid viscosity and pressure 

differentials, thus demonstrates the Coanda effect and the 

oscillatory behavior characteristic of the fluidic oscillator. 

These flow characteristics were observed in the 

experimental work of Wang et al. (2016), where they 

showed that the switching of the inlet flow between the 

two branches occurs if the dimensionless pressure 

difference between the two branches is higher than 

Δ𝑃/𝑃𝑖 = 0.08  and 0.1 . This applies regardless of the 

pressure difference between the two feedback outlets. In 

our case, this condition is always met, and we will provide 

more details on this flow in the next section. 

At 𝑡 = 0, the jet adheres to the right wall due to the 

Coanda effect, initiating the switching process where the 

velocity reaches a significant level in the right feedback 

(Fig. 3a). According to Bernoulli's principle, an increase 

in the velocity of a fluid occurs simultaneously with a 

decrease in pressure. In Fig. 3b, the pressure contours 

indicate a strong differential pressure between the two 

branches, as well as between the outputs of the two 

feedback loops, denoting the beginning of the oscillation 

cycle at 𝑡 = 0, as shown in Wang et al. (2016) work. The 

pressure is higher in the left branch than in the right 

branch, where the jet is on the right side (Fig. 3b) and the 

flow starts to move to the left due to the pressure 

difference between the two feedback outputs. The flow at 

the feedback output with the higher pressure pushes the 

incoming flow from the fluidic oscillator towards the 

branch on the feedback side where the output pressure is 

lower. 

At 𝑡 = 𝑇/6, Figure 3c shows that the inlet flow starts 

to shift from the right branch to the left branch, resulting 

in a decrease in velocity in the right feedback loop. Its  
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Fig. 3 Contours of the velocity magnitude (left) and the static pressure (right) inside fluidic oscillator 1 at 

different times 

 

detachment occurs at the inlet nozzle, and although 

initially directed towards the right branch, it gradually 

curves towards the left wall. Additionally, the inlet flow 

moves towards the left branch, increasing the pressure in 

this region and at the feedback outlet (Fig. 3d). 

Simultaneously, a low-pressure zone begins to form in the 

left branch, with a fairly rapid increase in pressure at the 

feedback outlet on the same side. At the same time, the 

pressure starts to rise in the right branch and at the 

feedback inlet on the same side, the pressure at the 

corresponding feedback outlet experiences a significant 

increase, while a drop occurs on the other side. These 

variations ensure a pressure difference between the two 

feedback outlets, which is necessary for the continuity of 

the oscillation mechanism. 

In Fig. 3e, at 𝑡 = 𝑇/3, the continued gradual 

switching of the jet between branches is observed. The jet 

is present in both branches at this stage, and the switching 

process persists. Figure 3f represents a later moment when 

the jet begins to move towards the right outlet. The 

pressure in the left feedback loop is at its maximum, 

resulting from the jet switching. 

Finally, at 𝑡 = 𝑇/2, as shown in Fig. 3g, the jet 

completes its transition and adheres to the left wall. 

Similarly, the jet switches from the left to the right 

position, following a regular oscillatory pattern. 

Additionally, in Fig. 3h at 𝑇/2, we observe the moment 

when the maximum pressure in the left feedback is 

released from the left feedback loop into the mixing 

chamber, inducing the complete switching of the jet to the 

right branch. 

The successive figures at different instants, highlight 

the dynamic process of switching pressure from one 

feedback loop to the other, thereby demonstrating the 

importance of pressure control in maintaining oscillatory 

behavior in the fluidic oscillator. The jet switching is 

caused by the pressure difference between the two 

feedback outlets, coupled with the capacitive effect 

associated with the increase in pressure within the 

feedback loop. 

 Two representative sections in the inlet and outlet 

feedback, denoted C and E, were carefully chosen to 

investigate the propagation of pressure (see Fig. 1). These 

sections correspond to specific locations along the 

oscillator's structure, namely the input and output points  

(a) 

(c) 

(e) 

(g) 

(b) 

(d) 

(f) 

(h) 
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Fig. 4 Effect of the variation in inlet pressure 

 

of the feedback mechanism. The left side is designated as 

'1'. Figure 4 illustrates the temporal evolution of static 

pressure for sections C and E. Initially, our numerical 

findings align closely with the experimental results 

reported in Wang et al. (2016, 2019). 

 Regarding section E, it is observed that the time 

required for the entire flow passing through the left 

feedback loop to exit is 𝑡 = 2 ms, representing half of an 

oscillation period of the jet. At this juncture, the pressure 

attains its peak in section C. Furthermore, it was noted that 

during this interval, a pressure decreases of 19 kPa is 

documented between the input and output of the feedback. 

This prompts an inquiry into whether reducing this 

feedback distance while maintaining the same volume 

could enhance the oscillation frequency of the jet. In the 

literature, there are practically no studies concerning the 

external flow of the fluidic oscillator, which has motivated 

us to explore this aspect of the problem in the following 

section. 

To further analyze the behavior and impact of the 

fluidic oscillator on its external environment, streamlines 

of the outlet jet flow are depicted in Figure 5 superimposed 

on contours of velocity magnitude for 𝑃𝑖 = 0.2 MPa. 

At 𝑡 = 0, it is evident that the jet at the left exit 

exhibits a high velocity. Additionally, two recirculation 

zones form around it: one on the right side of the jet, which 

tends to move to the right due to the low pressure caused 

by the partial cessation of the right jet and the high 

pressure generated by the left jet. A second recirculation 

zone appears on the left side of the jet at the same time, 

caused by the low pressure relative to the atmospheric 

pressure at the exit. 

At 𝑡 = 𝑇/6, the left jet begins its transition to the right 

exit, where its velocity starts to decrease while the right 

jet's velocity increases, resulting in a rise in pressure 

around the jet. This increase in pressure causes the two 

recirculation zones to shift toward the upper exit of the 

oscillator, where the pressure becomes increasingly 

significant with the partial extinction of the jet. The same 

flow structure appears around the right jet as observed at 

𝑡 = 0.  Subsequently, at 𝑡 = 𝑇/3, the recirculation zone 

on the left of the right jet increases in volume as the left 

jet's velocity decreases until it is situated between the two 

exits of the fluidic oscillator at 𝑡 = 𝑇/2. At the same time, 

the two recirculation zones at the ends of the two exits 

extend to occupy the entire length of the fluidic oscillator's 

exit space. 

 
Fig. 5 Contours of average velocities (m/s) and streamlines for the external part of the fluidic oscillator 1 
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Fig. 6 Contours of the turbulent kinetic energy inside fluidic oscillator 1 at different times 

 

3.2 Turbulent Flow of Oscillator 1 

 The contours of the turbulent kinetic energy 𝒌, 

predicted by the 𝒌 − 𝝎 SST model, are illustrated in Fig. 

6 for 𝑷𝒊 = 𝟎. 𝟐 MPa. These contours reveal that the peak 

of the turbulent kinetic energy is located in the most 

turbulent areas, often near the walls where the shear rate 

is high. This can be observed at the inlet at t=T/6, in the 

area between the convergent and the interaction point of 

the incoming flow with the outgoing feedback flow, where 

the shear is significant. It then extends into the branches 

of the oscillator, near the walls of the two branches at t=0, 

T/3 and T/2, where the flow tends to adhere to the walls 

due to the Coanda effect right after the switching between 

the two branches of the oscillator. This region of high 

turbulent kinetic energy is particularly pronounced at the 

entrance of these branches, where the shear rate is higher. 

Then, it gradually decreases as one moves along the 

branch, where the flow tends to stabilize before the exit. It 

then increases again in the outlet branch and at the 

feedback entrance due to the flow interaction with the 

walls. 

3.3 Time Evolution of Fluidic Oscillator 1 

We analyzed the results obtained through numerical 

simulation of a two-dimensional turbulent compressible 

airflow in a two-output fluidic oscillator. The objective is 

to determine the fields of average velocity and static 

pressure to study the internal dynamics of the fluidic 

oscillator. Furthermore, the influence of the inlet 

conditions and geometry was investigated by varying the 

inlet pressure and geometric dimensions, respectively. 

The ANSYS/Fluent computational code was utilized for 

the two-dimensional and unsteady flow analysis with a 

second-order 𝑘 − 𝜔 SST turbulence model. 

For an inlet pressure of 0.2 MPa, the temporal 

evolution of the velocity magnitudes at the two left  

and right outlets for Osc.1 is obtained from numerical  

 

Fig. 7 Temporal evolution of the velocity 

magnitudes at the left and right outlets for Osc.1 

 

simulations and is presented in Fig. 7. It is observed that 

the maximum velocity is approximately 100 m/s. 

Furthermore, it is worth mentioning that the jet completely 

switches from the right outlet to the left outlet alternately, 

demonstrating a periodic oscillation of the jet. This 

oscillation clearly indicates that when the outlet velocity 

is maximum on the right side, it is minimum on the left 

side, and vice versa. 

In this section, the time evolution of the velocity’s 

magnitude at the right outlet of oscillator 1 is analyzed for 

different inlet pressures, comparing these pressures to a 

reference pressure of 0.2 MPa. The results are illustrated 

in Fig. 8 for pressures less than or equal to 0.2 MPa (Fig. 

8a) and for pressures greater than or equal to 0.2 MPa (Fig. 

8b). 

(a) (b) 

(c) (d) 
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Fig. 8 Temporal Variation of the Velocity magnitude 

at the Right Outlet Osci.1. (a) Pressures inlet less than 

or equal to 0.2 MPa and (b) Pressures inlet greater 

than or equal to 0.2 MPa. 

 

Firstly, for an inlet pressure of 0.26 MPa, the outlet 

velocity reaches a peak of approximately 125 m/s, 

indicating favorable conditions that maximize the outlet 

velocity. For an inlet pressure of 0.23 MPa, the maximum 

outlet velocity decreases to reach a value of 115 m/s. 

Continuing with an inlet pressure of 0.2 MPa results in a 

decrease in outlet velocity to approximately 100 m/s. 

Similarly, an inlet pressure of 0.18 MPa leads to a further 

decrease in outlet velocity, reaching nearly 92 m/s. 

Inlet pressures of 0.12 MPa and 0.15 MPa generate 

almost identical outlet velocities, around 108 m/s, 

suggesting similar conditions at the oscillator outlet. 

These observations reveal an outlet velocity variation 

of approximately 25%. It is interesting to note at this stage 

that this variation in velocity amplitude does not follow a 

monotonic evolution with respect to the imposed inlet 

pressure variation. Therefore, the average outlet velocity 

does not depend solely on the inlet conditions. 

3.4 Effect of Type of Fluidic Oscillator 

We have examined Oscillator 2, which distinguishes 

itself from Oscillator 1 by having shorter feedbacks 

lengths. With a length of LOsc2 = 163 mm and a diameter  

 

Fig. 9 Temporal variation of the average velocity at 

the right and left outlets for Osc.2 at 0.2 MPa 

 

of 3.2 mm, it maintains the same volume. This approach 

allows us to establish a comparison between the two 

oscillators and analyze the impact of geometric parameters 

on their performance. 

At the same inlet pressure (0.2 MPa) as that of 

Oscillator 1, the temporal variations of the velocity 

magnitudes at the left and right outlets of Oscillator 2 were 

obtained from numerical simulations, as illustrated 

respectively in Fig. 9. 

We observe that the maximum velocity reaches 

approximately 94 m/s, but the minimum velocity does not 

tend to zero and remains around 20 m/s. Nevertheless, the 

fluidic oscillator retains its oscillatory nature. 

Additionally, we can see that the jet reaches two maximum 

or two minimum values in the same branch successively. 

This phenomenon can be attributed to the rapid switching 

of the jet, occurring in approximately 1 millisecond. This 

rapid switching does not allow the flow contained in the 

branch to evacuate completely, as the jet returns a second 

time to the same branch, pushing it and reaching the first 

maximum. The physical phenomenon has already been 

observed by Wang (2017) and Wang et al. (2019) for 

higher inlet pressures. Then, a slight drop in velocity is 

recorded, which is due to the narrowing of the flow 

passage at the entrance of the outlet branch. Finally, the 

total switching of the jet into the branch occurs, causing 

the velocity to increase towards its second peak. 

The velocity contours in Fig. 10 provide additional 

information about the temporal velocity variation curves, 

where it is clearly seen that there is no complete extinction 

of the jets. Additionally, we observe that towards the total 

switching of the jet, whether towards the left or right 

branch, at 𝑡 = 0  and 𝑡 = 𝑇/2 , the velocities remain 

equally high at the inlet of both feedbacks. This effectively 

contributes to making the oscillation faster. At both outlets 

of the oscillator, we notice the formation of a recirculation 

zone in a similar manner as in the oscillator. However, this 

zone remains between the two outlets even as it changes 

rotation with the switching of the jet. 

 

(a) 

(b) 
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Fig. 10 Contours of the average velocity inside fluidic oscillator 2 at different times 

 

 

Fig. 11 Temporal variation of the velocity at the right 

outlet of Osc.1 and Osc.2 at 0.2 MPa 

 

 Figure 11 presents the temporal evolution curves of the 

velocity magnitudes at the right outlet of oscillators 1 and 

2 for an inlet pressure of 0.2 MPa. By comparing these 

curves, for which the oscillators have the same feedback 

volume but different lengths (LOsc1 = 391 mm, LOsc2 = 

163 mm) and diameters (D1=1.26 mm and D2=3.2 mm 

respectively), we find that oscillator 1 reaches an output 

velocity of 100 m/s, while oscillator 2 reaches a lower 

velocity of 92 m/s, even though the input pressure is the 

same.  

 Although the velocity difference is not significant, we 

can nevertheless observe a substantial reduction in the 

oscillation period for oscillator 2. Indeed, the oscillation 

period of oscillator 2 is 2.1 ms, compared to 4.9 ms for 

oscillator 1, with a ratio of 𝑇1/𝑇2 ≈  2.33. This is related 

to the ratio of the feedback lengths 𝐿𝑂𝑠𝑐1/𝐿𝑂𝑠𝑐2 ≈
 2.39, which confirms the relationship between the period 

and the feedback length given by Wang et al. (2019), 

namely, 𝑇 ≈  4𝐿𝑂𝑠𝑐/𝐶0, where 𝐶0is the sound velocity. 

Moreover, a simple calculation using this relationship 

leads to typical values for the propagation velocity in real 

gases of around 320 m/s (Osc1) and 311 m/s (Osc2). 

4. CONCLUSION 

Several significant conclusions can be drawn from the 

comprehensive analysis of numerical simulations 

investigating a two-dimensional turbulent compressible 

airflow within two different fluidic oscillators. 

Firstly, the study provides a detailed understanding of 

the internal dynamics of the fluidic oscillator, particularly 

focusing on the fields of average velocity and static 

pressure. Through meticulous examination of the 

structures of the velocity magnitudes and the static 

pressure, the oscillatory behavior of the fluidic oscillator 

is elucidated. Notably, the periodic oscillation of the jet 

between outlets underscores the crucial role of pressure 

differentials in driving the jet-switching process, 

demonstrating the significance of pressure control 

mechanisms in maintaining oscillatory behavior. 

Furthermore, the investigation into the influence of 

inlet conditions and geometric parameters unveils 

valuable insights. Varying inlet pressures and geometric 

dimensions showcase their respective impacts on outlet 

velocity and overall oscillator behavior. The analysis 

highlights the non-linear relationship between inlet 

pressure and outlet velocity, suggesting that the inlet 

conditions do not solely determine the average outlet 

velocity. Additionally, comparing two distinct oscillators 

allows for a comprehensive examination of the impact of 

(a) (b) 

(c) (d) 
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geometric parameters on oscillator performance, revealing 

differences in jet-switching dynamics and recirculation 

zone formation. 

Moreover, the examination of the dynamic structure 

provides further elucidation of temporal velocity 

variations, emphasizing the rapid switching of the jet 

between outlets and the persistence of recirculation zones 

between outlets. 

In conclusion, the findings presented in this study 

contribute significantly to the understanding of fluidic 

oscillator behavior, shedding light on the intricate 

interplay between inlet conditions, geometric parameters, 

and internal dynamics. These insights not only enhance 

our fundamental understanding of fluidic oscillators but 

also offer valuable guidance for optimizing their 

performance in various applications, ranging from fluid 

control systems to aerodynamics. 
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