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ABSTRACT 

To enhance the operational effectiveness of centrifugal fans under specific 

operating conditions, a Backpropagation (BP) neural network, combined with a 

reference point-based Non-dominated Sorting Genetic Algorithm III (NSGA-

III), numerical simulation, and other techniques, was employed to perform 

multi-objective optimization. Three structural parameters of the fan volute, 

volute height (h), the minimum distance between the impeller and the volute 

tongue (β), and the radius of the volute tongue corner (r), were selected as design 

variables. Two performance indicators, outlet flow rate (Q) and total pressure 

efficiency (η), were chosen as optimization objectives. An efficient and accurate 

BP neural network was established as a surrogate model for predicting volute 

performance, and optimal design parameter combinations were obtained using 

the NSGA-III algorithm. The optimization results were subsequently validated 

through both experimental and numerical simulations. The results demonstrated 

strong agreement between simulation and experimental data. The BP neural 

network provided highly accurate fitting and predictions, yielding a reliable 

surrogate model. After optimization, the centrifugal fan’s Q increased by 2.29%, 

and η improved by 2.96%. Furthermore, structural improvements at the fan inlet 

enhanced the overall flow field, leading to a 6.06% increase in Q and a 4.04% 

increase in η compared to the original design. Overall, the dual optimization 

objectives were significantly improved, successfully meeting the specific 

operational requirements. 
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1. INTRODUCTION 

Centrifugal fans are widely used in industrial 

applications, particularly for ventilation, dust removal and 

purification, and gas transport. However, they often 

encounter challenges such as insufficient airflow, low 

efficiency, and high energy consumption. This study 

focuses on optimizing the performance and design 

parameters of a centrifugal fan used by an enterprise in 

semiconductor production equipment for gas transfer. 

While the impeller is a standard, commercially purchased 

component, the volute and inlet/outlet ducts are 

independently designed. As a critical part of the 

production equipment, the fan circulates the cooled 

working medium within the system. The fan's operational 

setup is illustrated in Fig. 1, with a working pressure of 0.8 

MPa, a temperature of 40°C, and nitrogen as the working 

medium. Under current operating conditions, the primary 

performance evaluation indicators are the outlet flow rate 

(Q) and the total pressure efficiency (η), with Q having a 

direct impact on semiconductor processing quality. 

As the core components of a centrifugal fan, the 

volute and impeller significantly influence overall 

performance. Consequently, current optimization efforts 

for centrifugal fans primarily target these two elements. 

The impeller, as the only working component, has been 

extensively studied. Numerous researchers have 

demonstrated that design parameters such as the number 

of blades and mounting angle are strongly correlated with 

the aerodynamic performance of centrifugal fans 

(Shinbara et al., 1996; Wu et al., 2002; Ai & Chen, 2016; 

Tantakitti et al., 2018). Adjusting these parameters can  
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NOMENCLATURE 

Q outlet flow rate  L outlet length 

η total pressure efficiency  H total pressure 

Z number of impeller blades  Hin inlet total pressure 

h volute height  Hout outlet total pressure 

β 
minimum distance between the impeller and 

volute tongue 
 T impeller shaft torque 

r radius of the volute tongue corner  ρ density of the working medium 

θ outlet expansion angle  ω fan rotational speed 

E extension length    

 

Fig. 1 Scenario diagram of fan operation 

 

reduce vortex formation during impeller rotation, lower 

flow losses, and enhance performance. 

During operation, the volute plays a critical role in 

collecting airflow, increasing pressure, and guiding the 

flow direction. Both domestic and international studies on 

volute optimization have mainly focused on how 

geometric parameters, such as the volute tongue’s 

position, angle, and size, affect the outlet flow field (Zhao 

et al., 2012; Zhou et al., 2021). These efforts aim to 

prevent vortex formation at the outlet, which could 

otherwise induce secondary flow recirculation. Various 

methods, including the Levenberg-Marquardt algorithm 

and spiral angle adjustments, have been employed to 

refine volute contour design (Amiet, 1976; Li et al., 2012; 

Huang & Tseng, 2016; Zhou et al., 2018), improving 

outlet velocity uniformity and internal flow field 

smoothness, thereby enhancing fan performance. 

Additionally, parameters such as the vertical distance 

between the volute and impeller, the β, and other mutual 

positional relationships also affect turbulence near the 

volute tongue (Patil et al., 2018; Chen et al., 2019; Zhang 

et al., 2023), which in turn impacts fan performance and 

internal flow dynamics. 

In multi-objective optimization of centrifugal fans, as 

the number of design variables and performance 

objectives increases, intelligent algorithms have gained 

widespread adoption. Techniques such as genetic 

algorithms (Zuo et al., 2016), particle swarm optimization 

(Wang et al., 2019), and artificial immune algorithms 

(Liang et al., 2023) have yielded promising results. To 

better model the nonlinear relationships between design 

parameters and performance indicators, surrogate models 

are frequently employed. Common approaches include 

artificial neural networks, Kriging models, and response 

surface methods (Liang et al., 2023). Among these, 

artificial neural networks have proven to be more suitable 

for complex nonlinear problems due to their superior 

accuracy, predictive efficiency, and stability (Li & Zheng, 

2017). Furthermore, optimization and design methods 

proposed for aero-engine systems (Ma et al., 2024; Tao et 

al., 2024; Zhang et al., 2025) offer valuable reference 

points and inspire improvements in overall system 

performance. 

In this study, the impeller is a standard off-the-shelf 

component, while the volute is independently designed by 

the company. To reduce optimization costs and 

accommodate specific operating conditions, this research 

focuses exclusively on the volute's optimization. Given 

the limited application of intelligent optimization 

algorithms to volute design alone, and considering the 

NSGA-III algorithm’s advantages in maintaining diversity 

and utilizing reference point mechanisms for complex 

multi-objective problems, the volute design parameters 

are optimized using the NSGA-III algorithm. The 

optimization objectives are the fan’s Q and η. The 

Plackett–Burman method is applied for significance 

analysis, identifying three key design variables: volute 

height (h), the minimum distance between the impeller 

and the volute tongue (β), and the radius of the volute 

tongue corner (r). Using the Latin Hypercube Sampling 

method, 50 sets of structural parameters are generated. 

Numerical simulations of a non-simplified model are then 

conducted in FLUENT to obtain target values, forming the 

sample dataset. A high-precision BP neural network is 

trained as a surrogate model using this dataset. Finally, the 

NSGA-III algorithm is used to determine the optimal 

structural parameters corresponding to the desired 

performance objectives. 

2. MODELING AND NUMERICAL SIMULATION 

2.1 Centrifugal Fan Model Establishment and Mesh 

Generation 

The subject of this study is a forward-curved multi-

blade centrifugal fan independently designed by a specific 

company. The fan is directly driven by a motor through a 

coupling. The main design parameters are as follows: fan 

rotational speed (𝜔) of 2850 r/min; number of impeller 

blades (𝑍) is 29; minimum distance between the impeller 

and volute tongue (𝛽) is 5.5 mm; volute height (ℎ) is 120 

mm; radius of the volute tongue corner (𝑟) is 5 mm; outlet 

expansion angle (𝜃) is 0°; and outlet length (𝐿) is 135 mm. 

Figure 2 presents the 3D model of the fan, while Fig. 3 

illustrates its main design parameters. 
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Fig. 2 Centrifugal fan 3D model 

 

 
Fig. 3 Main design parameter diagram of volute 

 

To ensure the accuracy and reliability of the 

numerical simulation, this study adopts a non-simplified 

simulation model. Additionally, to minimize the influence 

of inlet and outlet recirculation on the final results (Chen 

et al., 2007), the fan’s inlet and outlet ducts are extended 

by 200 mm during the model pre-processing stage. The 

fan model is partitioned into distinct flow regions using 

ANSYS SpaceClaim. As shown in Fig. 4, the entire flow 

domain is divided into a rotating domain and a stationary 

domain. The rotating domain encompasses the entire 

impeller, while the remaining regions are treated as 

stationary.  

Mesh generation for this study was carried out using 

Fluent Meshing. Due to the complex geometry of the fan’s 

flow domain, and to reduce the number of elements and 

conserve computational resources, an unstructured 

 

 
Fig. 4 Fluid domain division 

 

Fig. 5 Mesh generation 

 

meshing approach was adopted. A polyhedral mesh was 

used, offering good numerical stability and accuracy when 

handling complex, unstructured geometries (Martins et al., 

2018). For polyhedral meshes, skewness was maintained 

below 0.8 to ensure mesh quality. Additionally, in all 

numerical simulation models, Y⁺ values were controlled 

between 1 and 40: smaller Y⁺ values were applied to the 

impeller blades and the volute tongue, while larger values 

were assigned to planar surfaces or surfaces with small 

curvature. This strategy was implemented to improve 

simulation convergence. Figure 5 illustrates the mesh 

generation. 

2.2 Numerical Simulation Methods 

Numerical simulations in this study were conducted 

using Fluent 2021R1. The widely used Realizable k–ε 

turbulence model with swirl correction (Liu, 2015) was 

adopted, based on a steady-state solution. The rotating 

domain of the impeller was defined using the Multiple 

Reference Frame (MRF) approach. Boundary conditions 

were specified as follows: the inlet was defined as a 

pressure inlet and the outlet as a pressure outlet, with the 

initial gauge pressure set to 0 Pa. The impeller blades and 

shaft hole wall were defined as rotating walls (Tong et al., 

2020), with a rotational speed of 2850 r/min (the fan's 

rated speed), while all other surfaces were set as stationary 

walls. 

The velocity–pressure coupling was solved using the 

SIMPLE algorithm, and all spatial discretization schemes 

employed the Second Order Upwind method to enhance 

accuracy and convergence. The simulation was set to run 

for 2000 iterations, with a residual convergence criterion 

of 1×10-3. As shown in the residual plot in Fig. 6, 

convergence was achieved around the 1450th iteration, at 

which point the calculation was terminated. 

To evaluate performance, the fan's Q was measured, 

along with the at the inlet total pressure (Hᵢₙ) and outlet 

total pressure (Hₒᵤₜ), from which the fan’s total pressure 

rise (H) was calculated. The impeller shaft torque (T) was 

also measured to calculate the η. It is important to note 

that, due to the extended inlet and outlet ducts (used to 

mitigate recirculation effects during domain setup), 

validation showed pressure discrepancies across different 

cross-sections of the ducts. Therefore, to ensure accuracy, 

total pressure measurements at the inlet and outlet were 

taken from newly established cross-sections 

corresponding to the actual inlet and outlet locations. 
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Table 1 Mesh independence analysis table 

Groups Number of mesh elements Outlet flow rate Q/(m3·h-1) Total pressure efficiency η/% 

1 1895066 74.65 20.52 

2 2190153 77.59 21.57 

3 2678329 76.81 21.60 

4 3022569 77.08 21.33 

5 3443417 76.94 21.40 

6 4230239 76.91 21.39 

7 5157238 76.78 21.33 

 

 

Fig. 6 Calculated residual diagram 

 

 

Fig. 7 Mesh independence analysis diagram 

 

2.3 Mesh Independence Validation 

To enhance computational accuracy while optimizing 

resource usage, a mesh independence analysis was 

conducted to determine the appropriate mesh size and 

element count. During mesh generation, parameters such 

as maximum mesh size, minimum mesh size, and growth 

rate were adjusted to control the total number of mesh 

elements. Seven mesh configurations were created, with 

element counts ranging from 1.89 million to 5.15 million, 

as listed in Table 1. 

Numerical simulations were performed for each mesh 

group. As shown in Fig. 7, both the Q and η stabilized 

when the mesh element count exceeded 3 million.  

 

1. Centrifugal fan; 2. Drive motor; 3. Anemometer, 

pressure, and flow meter; 4. Speed regulator; 5. Motor 

driver; 6. DC power; 7. Frame; 8. L-shaped Pitot tube 

Fig. 8 Experimental test platform 

 

Considering the trade-off between computational 

accuracy and time, Scheme 5 was selected for subsequent 

simulations. This scheme uses a maximum mesh size of 

10 mm, a maximum mesh quality of 0.79, and a total mesh 

count between 3 and 4 million. 

Under this mesh configuration, each numerical 

simulation requires approximately 4 hours to complete on 

a server equipped with dual 40-core CPUs (80 threads), 96 

GB DDR4 memory, a GTX 1080 graphics card with 8 GB 

of memory, and a 960 GB SSD. 

2.4 Verification of the Correctness of the Numerical 

Simulation 

To validate the accuracy of the numerical simulation, 

a comparison and analysis were conducted between the 

simulation results and experimental data (Shen et al., 

2023). The numerical simulation directly provides key 

performance parameters, including the Q, Hᵢₙ, and Hₒᵤₜ. 

Based on these, the H and T can be calculated, which are 

then used to determine the fan’s η. The calculation formula 

is as follows (Arun Kumar et al., 2016): 

out inH H H= −                                                              (1) 

g Q H

T






  
=


                                                             (2) 

where 𝜌 represents the density of the working medium, 

kg/m3 while 𝜔 denotes the fan rotational speed, r/min 

The experimental setup is illustrated in Fig. 8. As the 

T cannot be directly measured in the experiment, the η of  
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Table 2 P-B experiment analysis table 

Variables Sum of squares F-value P-value 

Minimum distance between the impeller and volute tongue β 327.40 2.48 0.1664 

Volute height h 234.08 1.77 0.2314 

Radius of the volute tongue corner r 152.94 1.16 0.3232 

Outlet expansion angle 𝜃 125.32 0.95 0.3676 

Outlet length L 129.76 0.98 0.3599 

 

 

Fig. 9 Total pressure H and Total pressure efficiency 

η trend correlation 

 

the experimental data could not be calculated. Therefore, 

an indirect validation was performed by analyzing the 

correlation between H and η across multiple samples. The 

results showed consistent trends between the two metrics, 

as presented in Fig. 9. Consequently, in subsequent 

experiments, performance analysis was conducted by 

measuring and comparing the Q and H. 

These two parameters were measured using a wind 

speed and pressure measuring instrument at rotational 

speeds of 1425, 2280, 2850, and 3420 r/min. To ensure 

data accuracy, the L-shaped Pitot tube of the measuring 

instrument was positioned at seven evenly distributed 

points across the outlet section, and the average value was 

recorded. The comparison between the experimental and 

simulated results for the Q and H is shown in Fig. 10. The 

simulation results exhibit a consistent trend with the 

experimental data, and the deviation remains within an 

acceptable range, showing a maximum error of 2.3% for 

Q and 4.72% for H. These findings confirm the validity of 

the numerical simulation model and parameter settings, 

indicating that the model is suitable for further calculation 

and analysis. 

3. OPTIMIZED DESIGN 

3.1 Selection of Parameter Variables and 

Determination of Optimization Objectives 

The design of a centrifugal fan volute involves 

multiple parameters, each exerting a different level of 

influence on the two target performance indicators: Q and 

η. Therefore, it is necessary to conduct a significance 

analysis of these parameters to identify the three most 

influential variables for use in genetic algorithm optimization. 

 

(a) Outlet flow rate Q 

 

(b) Total pressure H 

Fig. 10 Comparison of experimental and simulated 

data traffic 

 

This analysis was performed on the five primary design 

parameters shown in Fig. 3: β, h, r, θ, and outlet length (L). 

Design Expert software was employed to design and 

analyze a Plackett-Burman (P-B) experiment. A total of 

12 experimental groups were generated based on the five 

selected parameters, and numerical simulations were 

conducted for each group to evaluate the significance of 

their impact. The results, shown in Table 2, indicate that 

smaller p-values correspond to greater significance in 

influencing the target outputs, Q and η. Based on these 

results, the three most significant parameters were 

selected as optimization variables: β; h; and r. The value 

ranges for these parameters are defined as follows: β 

(mm): [4, 12]; h (mm): [115, 135]; and r (mm): [2.5, 12.5]. 
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Fig. 11 Spatial distribution of variable samples 

 

3.2 Establishment of the Sample Database 

To develop an accurate and reliable neural network 

surrogate model, it is essential to construct a well-

structured sample database for model training and 

prediction. By analyzing the convergence of the sample 

size and considering both computational cost and the 

accuracy requirements of the BP neural network model, a 

sample size of 50 was determined to be appropriate. Fifty 

variable combinations were randomly selected within the 

defined parameter ranges using the Latin Hypercube 

Sampling (LHS) method, and the parameter space 

distribution is illustrated in Fig. 11. 

Subsequently, 50 fan models were created in 

SolidWorks 2018, and mesh generation and numerical 

simulations were performed in Fluent 2021R1, following 

the same procedures described earlier. The simulation 

results for each model, including the Q and η, were 

compiled to establish the sample database used for training 

the surrogate model. 

3.3 Neural Network Surrogate Model 

To construct a reliable surrogate model for 

algorithmic optimization, it is essential to accurately 

establish the relationship between the three design 

parameters (β, h, r) and the two optimization objectives 

(Q, η). The quality of this surrogate model directly 

influences the reliability of the optimization results. Given 

its strong nonlinear modeling capability, broad 

applicability, and robust learning ability (Zhang et al., 

2022), the BP neural network is employed in this study to 

model the nonlinear relationships between the input 

parameters and the optimization objectives. 

The BP neural network in this study is configured as 

follows: (1) 3 nodes in the input layer, 2 nodes in the 

output layer, and 10 nodes in the hidden layer, with the 

Tanh function as the activation function; (2) a learning rate 

of 0.01, a training epoch of 4000 iterations, and 10-fold 

cross-validation applied to the 50-sample dataset. 

 

 

Fig. 12 BP neural network flow chart 

 

Figure 12 illustrates the process of building the BP 

neural network surrogate model. The sample database, 

constructed as described in the previous section, is 

randomly divided into 35 training samples and 15 testing 

samples in a 7:3 ratio. The training set is used to train the 

neural network, while the test set is used to validate its 

performance. The model is considered accurate when the 

root mean square errors (RMSE) of both the fitting and 

prediction results is less than 0.5 (Tong et al., 2020). To 

minimize the risk of overfitting and ensure robust 

generalization, the cross-validation method is employed. 

This approach maximizes data utilization and mitigates 

inaccuracies caused by a limited sample size. 

Figures 13 and 14 present the fitting results for the 

training set and the prediction results for the testing set of 

the BP neural network, respectively. The RMSE for the 

fitting and prediction of both Q and η are listed in Table 3, 

all of which are below 0.5. These results indicate that the 

BP neural network surrogate model has high accuracy and 

is suitable for use in the subsequent optimization process 

using the NSGA-III algorithm. 

 

Table 3 Root mean square error (RMSE) 

Optimization objectives RMSE 

Training 

sets 

Outlet flow rate Q 0.23420 

Total pressure efficiency 

η 
0.31974 

Testing sets 
Outlet flow rate Q 0.26573 

Total pressure efficiency 

η 
0.35726 
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(a)                                                                                        (b) 

Fig. 13 Training set fitting effect diagram 

 

   
(a)                                                                                        (b) 

Fig. 14 Test set predictive effect diagram 

 

3.4 Genetic Algorithm Optimization 

Intelligent optimization algorithms are widely applied 

in multi-objective design optimization. Among them, the 

Ant Colony Optimization (ACO), Particle Swarm 

Optimization (PSO), and Genetic Algorithm (GA) are the 

most commonly used. In this study, the Non-dominated 

Sorting Genetic Algorithm III (NSGA-III) is employed to 

perform the optimization task (Bi & Wang, 2019). This 

algorithm simulates the biological evolution process 

through mechanisms such as natural selection, 

inheritance, and mutation to explore optimal or near-

optimal solutions within the solution space. As an 

enhanced version of NSGA-II, NSGA-III retains its core 

principles while incorporating additional features that 

make it more effective for high-dimensional and complex 

multi-objective problems. It utilizes a hierarchical 

decomposition approach and introduces a reference point 

mechanism, which improves Pareto front coverage, 

uniformity, and convergence (Bao et al., 2020). Compared 

with NSGA-II and MOEA/D algorithms, NSGA-III 

achieves a more uniform distribution of the solution set 

across the objective space, accelerates convergence, and 

maintains better diversity by avoiding solution clustering 

(Deb & Jain, 2014). 

In this study, the NSGA-III algorithm is applied using 

the previously constructed BP neural network as the 

surrogate model. The optimization objectives are to 

maximize both the Q and η. The mathematical formulation 

of this multi-objective optimization problem is shown 

below (Tong et al., 2020): 

1 max

2 max

( )

( )

{ }; [4mm,12mm]

[115mm,135mm] [2.5mm,12.5mm]

f Q x

f x

x h r

h r



 

=


=

= 

 

, ,

;

                  (3) 

 
Fig. 15 Pareto optimal solution set 

 

The specific parameter settings for the NSGA-III 

algorithm are as follows: the number of reference points is 

set to 200 to adequately cover the entire Pareto front; the 

population size is set to 100, which helps maintain 

diversity and ensures a broader exploration of the solution 

space, thereby reducing the risk of converging to local 

optima (Deb et al., 2022); and the maximum number of 

iterations is limited to 200 to balance computational cost 

with optimization performance. 

Through the optimization process, the Pareto optimal 

solution set for the two objectives, Q and η, as well as the 

corresponding optimal combinations of the three design 

parameters were obtained, as shown in Figs. 15 and 16. 

These figures also illustrate the convergence trends of the 

objective functions and parameter variables, confirming 

good convergence behavior. Among the 100 non-

dominated optimal solutions, the best results for Q and η 

are 78.44 m³/h and 21.05%, respectively. The 

corresponding optimal design parameters are: β = 4.57 

mm, h = 116.56 mm, and r = 11.55 mm. 
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Table 4 Comparison of optimization results 

Structures 

The distance 

between the 

volute tongue 

and the 

impeller 

β/mm 

Volute 

height 

h/mm 

The radius 

of the volute 

tongue 

corner r/mm 

Outlet flow 

rate 

(Optimization) 

Q/(m3·h-1) 

Total pressure 

efficiency 

(Optimization) 

η/% 

Outlet flow 

rate 

(Simulation) 

Q/(m3·h-1) 

Total 

pressure 

efficiency 

(Simulation) 

η/% 

Original 

structure 
5.50 120.00 5.00   77.08  21.77 

Optimized 

structure 
4.57 116.56 11.55 78.44 21.05 78.84 24.73 

 

Table 5 Comparison of results under different rotational speeds 

Objectives Structures 
Rotational speed 𝜔/(r/min) 

1425 2280 2850 3420 

Outlet flow rate 

Q/(m3·h-1) 

Original structure 35.97 60.72 77.08 106.50 

Optimized structure 37.41 61.99 78.84 109.28 

Incremental 4.01% 2.09% 2.29% 2.61% 

Total pressure 

efficiency η/% 

Original structure 22.15 20.70 21.77 25.08 

Optimized structure 22.35 24.13 24.73 28.23 

Incremental 0.21% 3.43% 2.96 3.15% 

 

 

Fig. 16 Optimal combination spatial distribution of 

variables 

 

4. OPTIMIZATION RESULTS ANALYSIS 

4.1 Verification of Optimization Results 

To verify the accuracy of the optimization results, a 

3D model was created based on the optimal combination 

of design variables, and numerical simulations were 

conducted. Table 4 presents a comparison between the 

predicted algorithmic results and the simulation results for 

Q and η. The errors between the numerical simulation and 

the optimized predictions are 0.51% for Q and 3.68% for 

η, indicating that the optimization results are reliable. 

Moreover, when comparing the optimized structure to the 

original design, the Q increased by 2.29%, and the η 

improved by 2.96%, demonstrating significant 

improvements in both optimization objectives. 

 

(a) Original structure         (b) Optimized structure 

Fig. 17 Radial center plane streamline distribution 

 

The results discussed above were obtained at the rated 

speed (ω) of 2850 r/min. To assess the performance of the 

optimized design under varying operating conditions, 

numerical simulations were conducted at three additional 

common speeds. The comparison of Q and η at these 

speeds with the original structure is shown in Table 5. As 

seen in the table, at speeds ω₁: 1425 r/min, ω₂: 2280 r/min, 

ω₃: 2850 r/min, and ω₄: 3420 r/min, the optimized 

structure shows increases in Q of 4.01%, 2.09%, 2.29%, 

and 2.61%, respectively, and increases in η of 0.21%, 

3.43%, 2.96%, and 3.15%, respectively, compared to the 

original structure. Both Q and η exhibit significant 

improvements. Additionally, it is observed that both outlet 

flow rate and total pressure efficiency increase gradually 

as the rotational speed rises. The fluctuations in 

performance improvements with rotational speed can be 

attributed to the influence of the Reynolds number effect 

and boundary layer behavior. 

4.2 Internal Flow Field Analysis 

Figure 17 presents a comparison of the radial central 

plane flow fields for the fans of the original and optimized  
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Table 6 Comparison of improved structure results 

Structures Outlet flow rate Q/(m3·h-1) Incremental Total pressure efficiency η/% Incremental 

Original structure 77.08  21.77  

Optimized 78.84 2.29% 24.73 2.96% 

Improved structure 81.75 6.06% 26.17 4.40% 

 

 
(a) Optimized structure 

 
(b) Improved structure 

Fig. 18 Axial center plane streamline distribution 

 

structures. In the original design, the gas predominantly 

flows along the inner side of the outlet pipe, with a 

significant portion of the gas recirculating at the volute 

tongue, forming a vortex region. In contrast, the optimized 

structure exhibits gas flowing primarily along the outer 

side of the outlet pipe, eliminating the vortex phenomenon 

at the volute tongue. This suggests that the flow field 

within the optimized fan is improved, leading to an 

increase in the Q, which subsequently enhances the fan’s 

η. 

Further analysis of the axial center plane flow field 

distribution for the optimized structure, shown in Fig. 18a, 

reveals that in the gas inlet diffusion area, the pipeline 

extends above the volute bottom surface by an extension 

length (E), as shown in Fig. 19a. This extension causes 

vortex regions to form around the inlet, resulting in 

turbulent gas flow in nearby areas and impacting the 

overall internal flow field. To address this, an attempt was 

made to shorten the E of the pipeline at the inlet, aligning 

it flush with the volute bottom surface, as illustrated in Fig. 

19b. Following numerical simulations, Fig. 18b illustrates 

the internal flow field of the improved structure, where the 

vortex phenomenon around the inlet is reduced, resulting 

in a smoother overall flow field compared to the previous 

 
(a) Optimized structure      (b) Improved structure 

Fig. 19 Inlet structures improvement diagram 

 

design. Table 6 provides a comparison of the Q and η for 

the improved structure, original structure, and optimized 

structure at the ω of 2850 r/min. 

At the ω of 2850 r/min, shortening the E to align with 

the volute bottom surface in the improved structure 

resulted in a 6.06% increase in Q and a 4.40% increase in 

η compared to the original structure. In comparison to the 

optimized structure, Q increased by 3.77% and η by 

1.44%. These results demonstrate the effectiveness of the 

structural improvements in this area. 

4.3 Experimental Verification 

To verify the correctness and effectiveness of the 

improvements, experimental tests were conducted on both 

the optimized and improved structures, followed by a 

comparative analysis. The experimental platform used 

was the same as described in Section 2.4. Due to  

experimental constraints, the T could not be directly 

measured, and therefore, the η could not be calculated. 

Instead, an SG-312 type anemometer (Fig. 20a) was used 

to measure the Q and H of the fan. To ensure accurate 

measurements, the fan outlet was extended by 50mm, and 

the L-shaped Pitot tube was inserted at the outlet to 

measure the section at the same height as the numerical 

simulation monitoring position. Figure 20b shows the 

seven measurement points arranged uniformly on the 

outlet cross-section, with the average of the data taken for 

analysis. 

The experimental measurement data for the Q and H 

of the optimized and improved structures at various speeds 

are shown in Table 7. A comparison between the 

optimized structure (obtained through parameter 

optimization using the NSGA-III algorithm) and the 

original structure at the rated speed of 2850 r/min reveals 

an outlet flow rate of 76.81 m³/h (a 3.13% increase) and a 

total pressure of 161.14 Pa (a 6.02% increase). 

Additionally, at other speeds, both Q and H showed 

improvements. For the improved structure, which included 
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Table 7 Optimize and improve the structural experimental data 

Rotational 

speed 

𝜔/(r/min) 

Original structure Optimized structure Improved structure 

Outlet flow 

rate 

Q/(m3·h-1) 

Total 

pressure 

H/(Pa) 

Outlet flow 

rate 

Q/(m3·h-1) 

Incremental 

Total 

pressure 

H/(Pa) 

Incremental 

Outlet 

flow rate 

Q/(m3·h-

1) 

Incremental 

Total 

pressure 

H/(Pa) 

Incremental 

1425 36.41 35.29 37.08 1.83% 36.57 3.64% 37.62 3.30% 38.00 7.69% 

2280 59.37 93.71 60.80 2.41% 98.43 5.03% 62.66 5.54% 104.43 11.43% 

2850 75.65 152.00 76.81 3.13% 161.14 6.02% 79.93 5.65% 167.86 10.43% 

3420 105.37 223.29 107.04 2.93% 242.86 8.77% 112.21 6.49% 252.00 12.86% 

 

 
(a) SG-312 flow rate and pressure measuring instrument  

(b) Schematic layout of measurement points on the cross-

section 

Fig. 20 Experimental measurement instruments and 

layout diagram 

 

modifications to the inlet diffuser pipe after analyzing the 

internal flow field, the performance at the rated speed was 

enhanced, with an outlet flow rate of 79.93 m³/h (a 5.56% 

increase) and a total pressure of 167.86 Pa (a 10.43% 

increase). At multiple speeds, improvements over both the 

original and optimized structures were significant. At a 

speed of 3420 r/min, the outlet flow rate reached 112.21 

m³/h, and the total pressure was 252 Pa, marking the 

largest increases of 6.49% and 12.86%, respectively. Data 

analysis reveals that both the optimized and improved 

structures show a consistent trend of increasing Q and H, 

as the speed increases, compared to the original structure. 

The experimental measurement data and numerical 

simulation results are in good agreement, both in 

magnitude and trend, with the maximum error being 3%. 

This further confirms the accuracy of the numerical 

simulation model. Moreover, the increases in Q and H are 

consistent with the optimization and simulation results, 

verifying the effectiveness of the optimization and 

improvements. 

5. CONCLUSION 

This study focuses on optimizing the centrifugal fan 

design by using the Q and η as objectives, with β, h, and r 

as the optimization variables. The multi-objective 

optimization is performed using the NSGA-III algorithm 

based on a BP neural network surrogate model. The main 

conclusions are as follows: First, a mesh independence 

analysis identified that the mesh size should be between 3 

million and 4 million cells. The simulation accuracy was 

verified through experiments, confirming high accuracy 

and correct simulation settings, including the turbulence 

model and pressure-velocity coupling method. Second, a 

Plackett-Burman experiment was used to analyze the 

impact of five key volute design parameters on Q and η. 

The parameters were ranked in the following order of 

influence: β, h, r, θ, and L. The first three parameters were 

selected for optimization. Third, the BP neural network 

surrogate model, trained with fifty samples generated by 

Latin Hypercube Sampling, achieved RMSE of 0.26573 

for Q and 0.35726 for η. This demonstrates the model's 

strong predictive accuracy for centrifugal fan 

performance. Fourth, the NSGA-III algorithm optimized 

the design, producing a Pareto optimal solution set with 

good convergence. The optimal solutions for Q and η were 

78.44 m³/h and 21.05%, respectively, with the 

corresponding optimal parameters: r = 4.57 mm, β = 4.57 

mm, and h = 116.56 mm. Numerical simulations showed 

improvements in both Q and η for the optimized structure, 

with the disappearance of vortices at the volute tongue and 

a reduction in inlet vortex phenomena through structural 

modification. Sixth, experimental tests on the optimized 

and improved structures confirmed the simulation results. 

The optimized structure achieved a 3.13% increase in Q 

and a 6.02% increase in H. After improving the inlet 

structure, the outlet flow rate increased by 5.56%, and total 

pressure by 10.43%. At a speed of 3420 r/min, the 

increases reached 6.49% and 12.86%, respectively. Both 

the optimized and improved structures showed enhanced 

performance compared to the original structure as speed 

increased. Finally, this study proposes a comprehensive 

method for optimizing centrifugal fan volute parameters 

using a BP neural network surrogate model and the 

NSGA-III algorithm, achieving a 6.06% increase in Q and 

a 4.04% improvement in η. The integration of numerical 

simulation, experimental validation, and structural 

improvement represents a robust methodology, with the 

structural modification of the inlet duct to minimize 

vortices offering valuable practical insights. This work 

fills a gap in the literature and advances both research and 

engineering applications in centrifugal fan design. 
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