
 
Journal of Applied Fluid Mechanics, Vol. 18, No. 10, pp. 2550-2567, 2025.  

Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. 

https://doi.org/10.47176/jafm.18.10.3216 

 

 

Analysis of Flow Resistance in Trifurcation Fluid Networks 

M. Mustafaoglu †, M. Kaan Yesilyurt, İ. Kotcioglu and M. Allahyari 

Atatürk University, Engineering Faculty, 25240, Erzurum, Turkey 

†Corresponding Author Email: mansour@atauni.edu.tr 

 

ABSTRACT 

In branch-like structures, branching parameters such as branching diameter, 

angle, length and number of levels, as well as branching number, have been 

important research topics in the field of fluid transport. In such flow systems, 

the fluid is transported to different branches with the help of the main pipe. The 

present study aims to investigate equi-diameter and unequi-diameter trifurcation 

flow systems designed according to Murray's law on flow resistance and 

pressure loss for a given velocity and pressure. By examining the flow model 

passing through the trifurcation flow system with 3D flow modeling, designs 

have been developed to provide the lowest pressure, least vortex formation and 

most efficient flow. The flow resistance for trifurcation branching for equal-

diameter and unequal-diameter branching networks and terminal branch 

diameters are compared, and the lowest energy loss was found to occur when 

the diameter of two branches is equal at all three branches.  
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 INTRODUCTION 

The study of fluidic networks covers a wide range of 

disciplines, including physics, biology, and materials 

science. The furcation flow systems, which can be 

considered a specific type of behavior occurring within 

fluidic networks, have prominent importance in both 

natural and engineered systems. Furcation flow systems 

are integral to several biological processes such as nutrient 

transport, waste removal, and signal transmission. The 

structural design of fluidic networks can significantly 

influence their performance (Beighley et al., 2012) and the 

branching structure in furcation flow systems minimizes 

energy loss. This biomimetic branching network structure 

has received interest in industrial processes for their 

efficiency. 

Fluidic network designs should accommodate 

varying fluid properties while effectively balancing flow 

rates and pressure drops. Such designs, therefore, need 

optimization of several parameters such as flow 

efficiency, energy loss and geometric configurations. 

Murray defined a theoretical framework (Murray, 1926a, 

b, 1927) to reduce power consumption. It puts that the 

optimal configuration of furcating tubes minimizes energy 

dissipation by balancing the radii of parent and daughter 

tubes (Smink et al., 2023). Murray’s Law has been 

extensively applied to biological and engineering systems 

for optimizing fluid transport (Zimmerman & 

Tartakovsky, 2020; Smink et al., 2023). Maximizing flow 

efficiency is the second critical principle in fluid network 

optimization. This involves ensuring that fluid transport 

occurs with minimal resistance and maximal throughput. 

Geometric configuration is of prominent importance in 

terms of flow efficiency.  

The applicability of furcation flow networks 

engineering systems has been remarkable for researchers. 

The furcation number and furcation angles of the branches 

conform to a certain growth law. Generally, furcation flow 

systems such as bifurcation and trifurcation systems 

consist of a three-dimensional volume on a two-

dimensional surface that carries the fluid inside. These 

geometries are symmetrical and unsymmetrical shapes 

made up of smaller parts that are similar in nature. 

Mathematical definitions suitable for the physics of such 

geometries are being developed. Bifurcation and 

trifurcation networks, such as those involving trees, 

leaves, blood vessels, and nervous and respiratory 

systems, are also common in nature. 

Significant advancements were recorded in the study 

of fluidic networks. But much of the existing literature has 

predominantly focused on bifurcation systems (Bejan, 

1997; Bejan & Errera, 1997; Bejan 2000, Bejan 2001; 

Chen & Cheng, 2002; Calamas & Baker, 2013; Luo et al., 

2018; Xu & Yu, 2006; Yu et al., 2012) due to their 

prevalence in both natural and engineered systems. For 

instance, the dynamics of red blood cell (RBC) 

partitioning at bifurcations were extensively studied 

(Balogh & Bagchi, 2018; Ye & Li-na, 2019; Ostalowski 

& Tan, 2022). Other studies focused on the investigation  
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NOMENCLATURE 

ln-1 length of (n - 1)th fork  Rn-t,total total flow resistance from Nth to (N - t) th 

ln length of nth fork  R0 flow resistance of first fork 

l'n length of n'th fork  r radii of first fork in ED network 

l''n length of n''th fork  r0 radii of first fork in UD network 

Rn-1 flow resistances of (n- 1)th fork  rn-1 radius of (n - 1) th fork 

Rn flow resistances of nth fork  rn radius of nth fork 

R'n flow resistances of n'th fork  r'n radius of n''th fork 

R''n flow resistances of n''th fork  r''n radius of n''th fork 

Rtotal total flow resistances in network    

 

of path selection of spheres and the Zweifach–Fung effect, 

which describes the preferential flow of particles in 

bifurcating channels (Doyeux et al., 2011; Wang et al., 

2018).  

On the other hand, few research has focused on 

trifurcation networks while they have good potential 

applications in various fields such as biomedical 

engineering, microfluidics, and energy systems. This 

limited interest could be attributed to the increased 

complexity associated with three-way branching as their 

analysis is much more complicated due to additional 

variables and interactions. Guha and Pradhan (2017) 

studied secondary flows in three-dimensional branching 

networks and reported that mass distribution became more 

complex in trifurcation setups (Guha & Pradhan, 2017; 

Pradhan & Guha, 2019). But research in this field is 

limited. A brief of research on trifurcation networks is 

presented in Table 1. 

The flow behavior in trifurcation systems is an 

important aspect to study in order to improve the 

efficiency of fluidic devices. Additionally, research on 

trifurcation systems can help us understand complex 

biological systems, such as the human circulatory system 

(Menon, 2024; Ostalowski & Tan, 2022). Trifurcations 

also provide greater flexibility in design of multi-branch 

fluid distribution systems. Trifurcation flow systems also 

have applications across various engineering domains, 

being particularly effective in complex or energy-efficient 

cooling systems with varying geometries and pressures. 

 In biomedical engineering, trifurcation networks play 

a crucial role in blood circulation, particularly in arterial 

and venous branching where efficient fluid transport is 

vital for physiological function (Menon, 2024). 

Understanding flow resistance and pressure distribution in 

these networks can help better understand cardiovascular 

diseases, where alterations in vessel furcation geometry 

contribute to abnormal hemodynamics (Ostalowski & 

Tan, 2022). 

Furthermore, trifurcation networks are extensively 

utilized in microfluidics and lab-on-a-chip technologies, 

where efficient splitting and transport of fluids are 

essential for chemical and biological assays (Kim & 

Peskin, 2008). In industrial applications, trifurcation-

based cooling networks are employed in thermal 

management of electronics and heat exchanger designs, 

where optimal branching structures minimize energy 

dissipation and enhance heat transfer efficiency (Smink et 

al., 2023). 

Studies on trifurcation networks, summarized in 

Table 1, primarily focus on different aspects of flow 

behavior, energy dissipation, and structural optimization. 

Experimental studies, such as that of Kawano and 

Fuchiwaki (2022), have investigated pressure drops in 

trifurcated cooling systems, emphasizing turbulent kinetic 

energy losses due to flow separation. Theoretical and 

numerical analyses, including Smink et al. (2023), have 

examined optimal branching angles to minimize energy 

dissipation in fluidic networks. Other studies, such as 

those by Kim and Peskin (2008), have explored density 

variation effects on pressure drop in incompressible fluid 

networks, while Guha and Sengupta (2016) analyzed 

convection effects in branching structures. While the 

studies cited duly highlight the complexity of trifurcation 

networks, they do not comprehensively address the 

relationship between branching angles, diameter 

variations, and flow resistance in a unified framework. 

In this regard, we present in this study an analytical 

and numerical analysis of trifurcation networks by 

extending well-established application of Murray’s law in 

bifurcation networks (Zimmerman & Tartakovsky, 2020; 

Smink et al., 2023) into trifurcation systems where its 

direct applicability remains understudied.  

In fact, when directly applied to trifurcation networks, 

several limitations arise regarding the implementation of 

Murray’s Law. First, Murray’s Law assumes Newtonian 

fluid behavior, whereas many biological and industrial 

fluids exhibit non-Newtonian properties (e.g., blood, 

polymer solutions) that introduce additional shear stress 

variations that are not captured by classical Murray’s Law 

formulations (Guha & Pradhan, 2017). 

Second, the law assumes steady, laminar flow 

conditions, but in real-world systems, flow instabilities, 

turbulence, and secondary vortices may arise at 

trifurcation junctions, especially at higher Reynolds 

numbers (Zhao et al., 2020). Experimental studies on 

branching networks have reported localized turbulence 

effects that contribute to increased pressure losses, 

deviating from the predictions of Murray’s Law (Wang et 

al., 2018). Finally, the geometric idealizations in Murray’s 

Law (e.g., uniform furcation angles, symmetrical 

branching) may not hold in natural or engineered 

trifurcation systems, where asymmetry and variability 

significantly impact flow characteristics. 

To address these limitations and allow for a more 

realistic evaluation of flow resistance, velocity 

distributions, and energy dissipation under diverse 

conditions, this study was configured to integrate analytical 
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Table 1 Details of studies on trifurcation flow networks over the last decade 

Ref 
Type of 

Study 

Properties of 

Trifurcation 

Network Studied 

Important Parameters Remarks 

Kawano and 

Fuchiwaki 

(2022) 

Experimental 
Pressure drop in 

cooling systems 
Turbulent kinetic energy 

Identified pressure drops due to 

turbulent kinetic energy in 

trifurcation setups, emphasizing 

the role of flow separation. 

Smink et al. 

(2023) 

Theoretical 

Numerical 

Branched fluidic 

network 
Furcation angle 

Investigated optimal angles for 

trifurcations to minimize energy 

dissipation. They established a 

relationship between geometry 

and flow efficiency. 

Kim and Peskin 

(2008) 

Numerical 

Fluid network for 

Incompressible 

fluid with non-

uniform density 

Density variation, 

branch diameters 

Effect of varying branch 

diameters on flow patterns in 

incompressible fluid dynamics 

were analyzed; Non-uniform 

density was reported to induce 

variations in pressure drop. 

Guha and 

Sengupta 

(2016) 

Numerical 

Natural 

convection above 

horizontal plates 

Aspect ratio, flow 

conditions 

Geometric features were 

assessed. Aspect ratio was found 

to be influential on pressure drop 

and flow uniformity across 

branches. 

Yu et al. (2012) 
Experimental 

& Numerical 

Microchannel heat 

and fluid transfer 

Branch length, fractal 

scaling, channel size 

Pressure drop increased in larger 

scale networks but minimized at 

micro-scales. 

Calamas and 

Baker (2013) 

Numerical 

(CFD) 

Thermal systems 

for natural 

convection 

Heat transfer 

coefficient, thermal 

conductivity 

Increased complexity increased 

pressure drop but improved heat 

dissipation. 

 

and numerical approaches to bridge the gap between 

theoretical predictions and practical applications. 

As a result, we aimed to compensate the analytical 

simplicity and limitations of Murray’s Law with 

Computational Fluid Dynamics (CFD) methods that offer 

a modern and versatile tool for analyzing fluid flow in 

complex geometries like trifurcations. CFD also enables 

detailed simulation of fluid behavior under diverse 

conditions by solving the Navier-Stokes equations to 

account for factors like turbulence, non-Newtonian fluids, 

and complex geometries (Jia, 2020; Chen, 2024).  

Using CFD is particularly valuable in trifurcation 

networks because the fluid dynamics are considerably 

more complex than in bifurcations. This complexity is due 

to the additional branching pathways and the resulting 

variations in flow resistance, shear stress, and velocity 

distributions.  

The combination of Murray’s Law with CFD analysis 

is powerful in exploring deviations from the idealized 

conditions. This combination allows modeling of the 

effects of different branch configurations. Flow 

complexities induced by angle variations, diameter 

changes, which cannot be captured by Murray’s Law 

alone (Smink et al., 2023; Chen, 2024) can be observed 

with CFD analysis. In engineered fluid transport systems, 

integrating Murray’s Law with CFD can lead to the design 

of optimal geometries that balance energy efficiency and 

flow distribution. 

In this regard, the present study is intentionally 

confined to Newtonian fluid assumptions in order to 

maintain consistency with Murray’s Law and to enable a 

sound comparison between analytical and numerical 

results. This choice further allows the study to isolate the 

influence of geometrical features and branching structure 

without the added rheological complexities such as shear-

thinning behavior and viscoelasticity. 

 MATERIALS AND METHODS 

The study of furcation fluidic networks employs both 

analytical and numerical methods, which utilize various 

mathematical and computational tools. CFD, one of the 

most commonly used techniques, play a crucial role in the 

analysis of furcation fluidic networks. It provides a 

numerical approach to solving the governing equations of 

fluid motion and allows for the simulation of complex 

flow patterns in various geometries. 

The present study involves analytical and numerical 

analyses of two two-level trifurcation systems: an equi-

diameter (ED) network and an unequi-diameter (UD) 

network, presented in detail in Fig. 1. 

2.1. Analytical Method  

To establish a theoretical foundation for analyzing 

trifurcation flow networks, we apply Murray’s Law, 

which minimizes energy expenditure by balancing the 

radii of branching tubes (Murray, 1926a, b). 
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Fig. 1 Schematic diagram of the two-level ED (upper) 

and UD (lower) trifurcation flow system 

 

2.1.1. Murray’s Law 

The modern approach to the physical furcation 

modeling is rooted from the exploration that transport 

systems in plants and animals tend to furcate after a certain 

straight into branches to minimize energy expenditures 

and to facilitate transport. The growth is justified by the 

compensatory benefits of the resulting structure.  

One of the important relationships in the branching 

network of fluid circulations used is Murray’s law 

(Murray, 1926a, b, 1927). The law was originally 

formulated in 1926 by Cecil D. Murray to explain the 

optimal design of a circulatory system and it provides a 

theoretical framework for furcation fluid networks. The 

law posits that for a network of tubes (or vessels) that 

furcate, the radii of the parent vessel and its daughter 

vessels are related in a specific way that minimizes the 

energy required for the transport of fluid within.  

The derivation begins with the Hagen-Poiseuille 

equation, which describes the volumetric flow rate (Q) 

through a cylindrical vessel as: 

𝑄 =
𝜋𝑟4∆𝑃

8𝜇𝑙 
 ( 1 ) 

The relationship that leads to Murray’s law is 

obtained by applying the law of conservation of mass at 

the bifurcation point and assuming steady, incompressible 

flow conditions. The optimal configuration for furcation 

systems occurs when the sum of the cubes of the forks’ 

radii equals the cube of the parent tube radius, is expressed 

mathematically as follows: 

𝑟0
3 = 𝑟1

3 + 𝑟2
3 + ⋯ + 𝑟𝑛

3 ( 2 ) 

where 𝑟0 and 𝑟𝑛 are the radii of parent and the n branches 

furcating from the parent, respectively. 

Murray’s law is instrumental in understanding 

optimization of fluid flow in furcating networks and has 

been extended and adapted for use in engineered systems, 

such as microfluidic devices. Smink et al. (2023) 

emphasize the importance of applying Murray’s theory to 

design branched fluidic networks that minimize energy 

dissipation. Adhering to the principles of Murray’s law, 

effective transport of fluids with reduced energy costs can 

be achieved. A large number of studies have addressed this 

topic, mainly from a biomedical science perspective, but 

since they all show poor agreement with experimental 

data, it is useful to examine this issue in more detail. It is 

then argued that in real branching networks, the true 

optimality criteria (i.e., in the evolutionary sense of the 

“driving force”) may be quite different from the 

assumptions made in the H-M law literature, which 

explains the poor predictive value of the law. Some model 

settings that include resource-based cost/benefit of 

bifurcation are presented and discussed. 

Smink et al. (2023) extended Murray’s theory to 

include various fluid rheologies, such as non-Newtonian 

and yield-stress fluids and introduced a straightforward 

graphical method to determine optimal radii in furcation 

networks. They reported that the wall shear stress was 

uniform over the whole network and that the velocity 

profile was comparable. They also examined the impact of 

the non-optimal channel radius on the energy consumption 

of the network and demonstrated that their method was 

applicable across a variety of systems. 

Murray predicts the diameters or forks in fluid 

networks such that cost and maintenance is minimized. 

Such flow systems have a similar sequential structure and 

they have minimum flow resistances while delivering the 

flow to the extreme points. 

2.1.2. Flow Resistance in Trifurcation Network 

In this study, the network structure of equi- and 

unequi-diameter branches is shown in Fig. 1. This figure 

shows a single inlet, two-level, three-branch, nine-output 

flow system. To simplify the relation for the calculation 

equation, we use λ, β, α, γ, δ1, and δ2 in the forms below:  

𝜆 =
𝑟𝑛

𝑟𝑛
′′

 β =
𝑟𝑛

′

𝑟𝑛
′′

 α =
𝑟𝑛

′′

𝑟𝑛−1

 

δ1 =
𝑙𝑛

𝑙𝑛
′
 δ2 =

𝑙𝑛
′

𝑙𝑛
′′

 𝛾 =
𝑙𝑛−1

𝑙𝑛

 

Here, and in the subsequent mathematical 

expressions, the prime (') and double prime ('') notation 

denote different branch levels in the trifurcation network. 

Dn-2 = 8mm 

 

Dn,asym=2mm 
 

Dn-1 = 6mm 

Dn-1 =6mm 

 

Dn = 4mm 
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Specifically, (') represents the first daughter branch, while 

('') denotes the second daughter branch. 

In flow systems, minimizing flow resistance and 

thermal resistance is an important principle in basic 

engineering practice. Only pressure differences are 

sufficient to cause flow to occur, and only resistance is 

sufficient to study the flow characteristics. According to 

the design of the branches given in Fig. 1, utilizing 

Murray's law at the N-1th and N-2th levels in fully 

developed incompressible laminar flow, the total flow 

resistances between the daughter and the parent can be 

expressed by the following equations. 

𝑅𝑛−1,𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑛−1 +
1

1
𝑅𝑛

+
1

𝑅𝑛
′ +

1
𝑅𝑛

′′

 
( 3 ) 

and 

𝑅𝑛−2,𝑡𝑜𝑡𝑎𝑙

= 𝑅𝑛−2 +
1

1
𝑅𝑛−1,𝑡𝑜𝑡𝑎𝑙

+
1

𝑅𝑛−1,𝑡𝑜𝑡𝑎𝑙
′ +

1
𝑅𝑛−1,𝑡𝑜𝑡𝑎𝑙

′′

 ( 4 ) 

The value of viscous resistance for flow in a single 

pipe in branched structures is determined by a Poiseuille-

type parabolic flow profile for Newtonian fluids. 

Poiseuille flow is given by Murray’s law in the following 

equation: 

𝑟𝑛−1
3 = 𝑟𝑛

3 + 𝑟𝑛
′3 + 𝑟𝑛

′′3 ( 5 ) 

𝑟𝑛−2
3 = 𝑟𝑛−1

3 + 𝑟𝑛−1
′3 + 𝑟𝑛−1

′′3  ( 6 ) 

For n number branched pipes, the general form of 

Murray’s law can be defined as 

𝑟𝑛
3 = ∑ 𝑟𝑛+1,𝑖

3

𝑘

𝑖=1

 ( 7 ) 

where n is the parent branch, n+1 is the daughter, and 

k is the branching level number in each furcation. For 

example, it departs from the first-order branch at the level 

k = 1, n=3, and the second-order branch at the level k = 2, 

n = 9. At each furcation, there are nth, n'th and n''th 

branches. To have branches with equal diameters, the β 

and λ values must be 1 according to the above definitions. 

If β=1, then 𝑟𝑛
′ = 𝑟𝑛 

′′, and if λ=1, then 𝑟𝑛 = 𝑟𝑛 
′′; thus, 𝑟𝑛 =

𝑟𝑛
′ = 𝑟𝑛 

′′, which means that the tree branches are equal. If 

β=1 but λ≠1 or β≠1 but λ=1, the branch diameter is equal 

(ED), but other branches are not equal. If β≠1 and λ≠1, 

then all three branches have different diameters (UD). The 

equation given according to the radii in Eq. 6 is further 

simplified according to the level and the number of 

branches. The relationships between them in terms of radii 

and lengths are as defined above. In each step/level of the 

network with unequal and multiple branches, the α, β, γ, λ, 

δ1 and δ2 parameters can be obtained as follows. 

𝛼 =
1

√1 + 𝜆3 + 𝛽33
 ( 8 ) 

𝑟𝑛

𝑟𝑛−1

=
𝑟𝑛

𝑟𝑛
′′

×
𝑟𝑛

′′

𝑟𝑛−1

= 𝛽𝛼 ( 9 ) 

𝑟𝑛−1

𝑟𝑛−2

=
𝑟𝑛−1

𝑟𝑛−1
′′ ×

𝑟𝑛−1
′′

𝑟𝑛−2

= 𝛽𝛼 ( 10 ) 

𝑟𝑛
′

𝑟𝑛−1

=
𝑟𝑛

′

𝑟𝑛
′′

×
𝑟𝑛

′′

𝑟𝑛−1

= 𝜆 ( 11 ) 

𝑟𝑛−1
′

𝑟𝑛−2

=
𝑟𝑛−1

′

𝑟𝑛−1
′′ ×

𝑟𝑛−1
′′

𝑟𝑛−2

= 𝜆 ( 12 ) 

𝑙𝑛−1

𝑙𝑛
′

=
𝛾. 𝑙𝑛

𝑙𝑛

𝛿

= 𝛾. 𝛿1 ( 13 ) 

𝑙𝑛−2

𝑙𝑛−1
′ =

𝛾. 𝑙𝑛−1

𝑙𝑛−1

𝛿

= 𝛾. 𝛿2 ( 14 ) 

𝑙𝑛−1

𝑙𝑛
′′

=
𝛾. 𝑙𝑛

𝑙𝑛
′

𝛿2

=
𝛾𝑙𝑛𝛿2

𝑙𝑛

𝛿1

= 𝛾. 𝛿1𝛿2 
( 15 ) 

𝑙𝑛−2

𝑙𝑛−1
′′ =

𝛾. 𝑙𝑛 − 1

𝑙𝑛−1
′

𝛿2

=
𝛾𝑙𝑛−1𝛿2

𝑙𝑛−1

𝛿1

= 𝛾. 𝛿1𝛿2 
( 16 ) 

The flow impedance (P/Q) of a tube is important 

information in the design of a flow system (Smink et al., 

2023). With the use of the Hagen–Poiseuille equation, the 

flow resistance and the flow rate in a channel of the kth 

level are obtained by the following equations: 

𝑅 =
𝑄

∆𝑃
=

8𝜇𝑙

𝜋𝑟4
 ( 17 ) 

and 

𝑄𝑘 =
𝜋𝑑𝑘

4

128𝜇

∆𝑃𝑘

𝑙𝑘

 ( 18 ) 

where ∆Pk and 𝑑𝑘, 𝑙𝑘 , represent the pressure drop, 

length, and hydraulic diameter of a branch at level kth, 

respectively, and the channel and µ are the liquid 

viscosities, respectively. Based on equations (4)-(11) in 

terms of the ratio flow resistance radii and lengths of 
𝑅𝑛−1

𝑅𝑛
 

and 
𝑅𝑛−2

𝑅𝑛−1
, the following relations are written. 

𝑅𝑛−1

𝑅𝑛

=
𝑟𝑛

4

𝑟𝑛−1
4 ×

𝑙𝑛−1

𝑙𝑛

 ( 19 ) 

𝑅𝑛−2

𝑅𝑛−1

=
𝑟𝑛−1

4

𝑟𝑛−2
4 ×

𝑙𝑛−2

𝑙𝑛−1

 ( 20 ) 

As a result, the resistances in terms of the ratio of the 

resistances of the flow system in terms of α, β and γ are 

defined in relation to each other as follows. 

𝑅𝑛−1

𝑅𝑛

= 𝛼4𝛽4𝛾 ( 21 ) 

𝑅𝑛−2

𝑅𝑛−1

= 𝛼4𝛽4𝛾 ( 22 ) 

The ratio of resistances between branches in terms of 

radii and lengths of 
𝑅𝑛−1

𝑅𝑛
′′  and 

𝑅𝑛−2

𝑅𝑛−1
′  can be written as 

follows: 
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𝑅𝑛−1

𝑅𝑛
′′

=
𝑟𝑛

′′4

𝑟𝑛−1
4 ×

𝑙𝑛−1

𝑙𝑛
′′

 ( 23 ) 

𝑅𝑛−2

𝑅𝑛−1
′′ =

𝑟𝑛−1
′′4

𝑟𝑛−2
4 ×

𝑙𝑛−2

𝑙𝑛−1
′′  ( 24 ) 

As a result, the resistances in terms of the ratio of the 

resistances of the flow system in terms of α, β, γ, λ, δ1 and 

δ2 are defined in relation to each other as follows: 

𝑅𝑛−1

𝑅𝑛
′′

= 𝛼4𝛾𝛿1𝛿2 ( 25 ) 

𝑅𝑛−2

𝑅𝑛−1
′′ = 𝛼4𝛾𝛿1𝛿2 ( 26 ) 

Eqs. (18-21) were obtained by rearranging Eq. (1) by 

using the above relations. Based on series and parallel 

relationships, the flow resistance of the Nth and (N-1)th 

branches is: 

𝑅𝑛−1,𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑛−1 (1 +
1

1
𝑅𝑛

+
1

𝑅𝑛
′ +

1
𝑅𝑛

′′

)

=  𝑅𝑛−1 (1 +
1

𝛼4𝛽4𝛾 + 𝛼4𝜆4 𝛾𝛿1 + 𝛼4𝛾𝛿1𝛿2

) 

( 27 ) 

The flow resistance of the Nth, (N - 1)th and (N - 2)th 

cycles is: 

𝑅𝑛−2,𝑡𝑜𝑡𝑎𝑙

= 𝑅𝑛−2 +
1

1
𝑅𝑛−1,𝑡𝑜𝑡𝑎𝑙

+
1

𝑅𝑛−1,𝑡𝑜𝑡𝑎𝑙
′ +

1
𝑅𝑛−1,𝑡𝑜𝑡𝑎𝑙

′′

= 𝑅𝑛−2 (1 +
1

𝑅𝑛−2

𝑅𝑛−1
+

𝑅𝑛−2

𝑅𝑛−1
′ +

𝑅𝑛−2

𝑅𝑛−1
′′

) 

= 𝑅𝑛−2 (1 +
1

𝛼4𝛽4𝛾 + 𝛼4𝜆4 𝛾𝛿1 + 𝛼4𝛾𝛿1𝛿2

+ (
1

𝛼4𝛽4𝛾 + 𝛼4𝜆4 𝛾𝛿1 + 𝛼4𝛾𝛿1𝛿2

)2) 

( 28 ) 

With the use of Eqs. (18) and (19) and mathematical 

relations: 

𝑅𝑛−𝑡,𝑡𝑜𝑡𝑎𝑙

= 𝑅𝑛−𝑡 (1 +
1

𝛼4𝛽4𝛾 + 𝛼4𝜆4 𝛾𝛿1 + 𝛼4𝛾𝛿1𝛿2

+ (
1

𝛼4𝛽4𝛾 + 𝛼4𝜆4 𝛾𝛿1 + 𝛼4𝛾𝛿1𝛿2

)2 + ⋯

+ (
1

𝛼4𝛽4𝛾 + 𝛼4𝜆4 𝛾𝛿1 + 𝛼4𝛾𝛿1𝛿2

)𝑡) 

( 29 ) 

where t < n, and t =1, 2,3,. and Rn-t,total is the total flow 

resistance from Nth to the (N - t)th branch. Eq. (20) is a 

geometric progression. According to Eq. (20), let t = n, the 

total flow resistance of a two-level trifurcation network is 

written. 

𝑅0,𝑡𝑜𝑡𝑎𝑙

= 𝑅0

1 − (
1

𝛼4𝛽4𝛾 + 𝛼4𝜆4 𝛾𝛿1 + 𝛼4𝛾𝛿1𝛿2
)𝑛+1

1 −
1

𝛼4𝛽4𝛾 + 𝛼4𝜆4 𝛾𝛿1 + 𝛼4𝛾𝛿1𝛿2

 
( 30 ) 

where R0 is obtained via Eq. (21). 

2.1.3. Trifurcation Structures in Flow Systems 

Cases of two-level trifurcation flow systems with 

almost the same radii are discussed. When examining a 

two-level trifurcation flow system, due to the non-uniform 

features, some furcations may decrease at each 

progressive branch level, but their radius cannot reach 

zero or reach a minimum. Such structures are called 

trifurcation flow systems. As a result of the multiplication 

of the 𝛼 and 𝜆 parameters (the ratio of the radii of the n''th 

and n-1th branches and the ratios of the radii of the nth and 

n''th branches), the following equation is obtained. 

 𝑟𝑛−1

𝑟𝑛

= (
1

𝛼𝜆
) ( 31 ) 

The 0th and nth ratio of the radii of the two branches 

are given by the following equation, depending on 

  𝛼 and 𝜆. 

 𝑟0

𝑟𝑛

= (
1

𝛼𝜆
)𝑛 ( 32 ) 

Given ε = r0/rn, n can be derived from Eq. (21) as 

follows: 

 
(

1

𝛼𝜆
)𝑛 = 𝜀     →   𝑛𝑙𝑛 (

1

𝛼𝜆
) = 𝑙𝑛𝜀   →     𝑛

= −
𝑙𝑛𝜀

ln (
1

𝛼𝜆
)
 

( 33 ) 

From Eq. 20, the two-level trifurcation network is 

constructed according to 𝑟𝑛 = 𝛼𝜆𝑟𝑛−1, 𝑟𝑛
′ = 𝛼𝛽𝑟𝑛−1; if 

𝑟𝑛
′

𝑟0
  

is less than ε, the nth trifurcation is terminal (the extreme) 

trifurcation. For the trifurcation flow system from the 

terminal trifurcation to the 1st trifurcation shown in Fig. 

1, the total flow resistance can be simply calculated by Eq. 

30. 

2.2. Computational Method 

Recent studies have demonstrated CFD as an 

effective tool in optimizing fluid networks. Jia (2020) used 

CFD effectively to analyze fluid behavior in in high-speed 

traction motors. Ren et al. (2023) utilized it to investigate 

the motion characteristics of coarse particles in hydraulic 

collection systems. Ren (2024) studied the interaction of 

flow-transported materials with solid surfaces. Similarly, 

Bao et al. (2023) employed CFD in conjunction with deep 

learning to optimize the propulsive performance of 

flapping foils. 

Based on the literature review on CFD applications in 

furcation flow systems, we employed CFD to analyze two 

alternative two-level trifurcation flow systems, while 

extending the application of Murray’s Law to these 

configurations. To thoroughly analyze the flow behavior 

in trifurcation networks, CFD simulations were conducted 

using ANSYS Fluent. The governing equations for fluid 

motion, specifically the Navier-Stokes equations, were 

solved under the assumption of incompressible, steady-

state, laminar flow. For all simulations, the working fluid 

was assumed to be water, as an incompressible fluid, with 

a constant density of 998.2 kg/m3. 
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Table 2 Flow characteristics of branches of the trifurcation networks 

Branch Hydraulic Diameter (mm) Velocity (m/s) ~Re 

Main inlet 8.0 0.0800 400 

First trifurcation 6.0 0.0504 190 

Second trifurcation (side branches) 4.0 0.0390 100 

Second trifurcation (middle branch in UD) 2.0 0.0400 150 

 

To further validate the numerical approach, we report 

the Reynolds numbers (Re) at different branches of the 

trifurcation network. The Reynolds number is defined as: 

𝑅𝑒 =
𝜌𝑈𝐷

𝜇
 ( 34 ) 

where 𝜌 is fluid density, 𝑈 is velocity, 𝐷 is hydraulic 

diameter, and 𝜇 is dynamic viscosity. Based on the flow 

conditions, the Reynolds numbers for the primary inlet 

and individual branches are expected as detailed in Table 

2. 

These values confirm that the overall flow remains 

within the laminar regime (Re < 2000), supporting our 

choice of a laminar flow (White, 2006) model. However, 

prior research has demonstrated that flow separation and 

secondary vortices can occur even in laminar conditions 

due to geometric-induced instabilities. For instance, Guha 

and Pradhan (2017) investigated secondary flow 

structures in three-dimensional branching networks and 

found that even at moderate Reynolds numbers, local 

velocity gradients near furcations could introduce non-

negligible shear effects. Similarly, Ostalowski and Tan 

(2022) performed direct simulations of blood flow in 

patient-specific microvascular bifurcations and observed 

that even for flows classified as laminar, small-scale 

turbulent fluctuations could arise due to junction-induced 

instabilities. Therefore, a secondary analysis was also 

conducted using the k-omega SST turbulence model in 

order to ensure robustness and account for potential local 

turbulence effects near junctions as well as to assess near-

wall shear effects. The dimensionless wall distance 

parameter 𝑦+ was evaluated and kept below 5 to ensure 

that the boundary layer is adequately and accurately 

resolved, and the turbulence model does not introduce 

unnecessary numerical artifacts (Zhao et al., 2020). 

This approach allows (1) ensuring that the 

computational model captures any local deviations from 

purely laminar behavior, and (2) validating whether 

turbulence-induced pressure losses or vortex formations 

significantly impact flow characteristics, such as alter 

flow resistance and pressure loss predictions. This 

methodology have been used in previous studies to resolve 

near-wall effects and secondary flow phenomena more 

accurately where complex geometries like trifurcation 

networks can exhibit localized turbulence effects even 

when the bulk flow is nominally laminar (Wilcox, 2006; 

Wang et al., 2018; Zhao et al., 2020). 

The k-omega SST model is particularly well-suited 

for capturing shear layer effects in branching networks, as 

it provides a more refined treatment of near-wall regions 

compared to other models such as k-epsilon (Menter, 

1994). On the other hand, Large Eddy Simulation (LES) 

is highly accurate for capturing transient turbulent 

structures but is computationally expensive for steady-

state flow studies. Given the primarily laminar nature of 

the system, LES was deemed unnecessary. 

2.3. Mesh Generation and Validation 

Meshing is required before any CFD analysis. Mesh 

generation is a critical step to ensure accurate resolution 

of the flow field of a trifurcation model. For the accuracy 

of the results, the most suitable mesh structure must first 

be determined. Especially in the entrance sections close to 

the fractions, the mesh structure should be given in more 

detail for correct resolution. The computational domain 

was discretized using a tetrahedral mesh, with a total of 

29,439,479 elements. To evaluate the mesh quality, 

metrics such as element skewness and orthogonality were 

monitored such that the final mesh ensures minimal 

numerical diffusion. Fig. 2 shows the final mesh produced 

by a quadratic equation at the endpoint of second level 

furcation. Meshing was applied to the whole model under 

the same conditions throughout the trifurcation flow 

system.  

 

 

 

Fig. 2 A close-up views of generated mesh structure 

for CFD simulations 
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Table 3 Mesh quality and characteristics 

Number of Nodes 11,458,347 

Number of Elements 29,439,479 

Skewness 
Minimum 0.007 

Maximum 0.714 

Orthogonality 
Minimum 0.806 

Maximum 0.990 

Aspect Ratio 

Minimum 1.1186 

Average 1.6930 

Maximum 3.7560 

Meshing Method 

Patch Conforming 

(with tetrahedral 

elements) 

 

The mesh used for the numerical simulations was 

created using the Patch Conforming method with 

tetrahedral elements to ensure high element quality and 

smooth transitions between flow regions. Instead of 

performing a formal grid independence study, we 

validated the accuracy of the mesh through quality metrics 

detailed in Table 3. As shown in Table 3, the mesh 

consisted of 11,458,347 nodes and 29,439,479 elements.  

The mesh quality was confirmed by monitoring the 

skewness value. Skewness is a critical parameter in 

determining how well the elements are shaped and how 

accurately they represent the geometry. Skewness values 

below 0.9 are considered acceptable and values below 

0.75 indicate good mesh quality. The skewness values of 

the generated mesh ranged from a minimum of 0.007 to a 

maximum of 0.714 and was well within acceptable limits 

for accurate CFD simulations (Ferziger & Perić, 2002). 

While creating the solution mesh structure, the 

primary quality criterion considered for element quality 

was chosen the dimensionless wall distance parameter 

(y+). In the flow system, for the boundary layer between 

the liquid and the fluid on the inner surface of the flow 

pipe, the (y+) parameter is also examined by specifying 

the Wall Law region where the governing equations are 

solved due to the boundary layer, which is greatly affected 

by the fluid separation stress. In our case, for the selected 

mesh configuration of the designed trifurcation flow 

system, the minimum orthogonality was 0.806, and the y+ 

value is 4.7. Further, the mesh has an aspect ratio close to 

1, ensuring uniform cell distribution without excessive 

stretching, which is evident from the finely-meshed model 

shown in Fig. 2. 

The values of mesh quality metrics confirm that the 

chosen mesh provides accurate numerical results without 

requiring further refinement and tests. Since changes in 

flow parameters are dominated by physical conditions 

rather than numerical artifacts, additional grid refinement 

was deemed unnecessary. 

Nevertheless, to ensure that numerical solution is 

independent of mesh refinement and accurately capture 

the flow physics without performing a full grid 

independence study, velocity gradients were evaluated 

across different regions of the computational domain, 

particularly in regions of high shear such as trifurcations, 

boundary layers, and recirculation zones. 

In a poor mesh, the velocity gradients would exhibit 

excessive fluctuations or irregularities that do not align 

with physical expectations, which suggest that the grid is 

too coarse to resolve the flow structures adequately. 

Conversely, if velocity gradients are smooth and remain 

stable across successively refined meshes, it indicates that 

the numerical solution is grid-independent. 

By evaluating velocity gradients given in in Fig. 6, 

Fig. 7 and Fig. 8, it can be ensured that the numerical 

diffusion introduced by discretization remains within 

acceptable limits and the key flow features, such as 

separation, recirculation, and boundary layer 

development, are all well-resolved since no artificial 

oscillations or unphysical behavior caused by under-

resolution are identifiable. 

By verifying the smoothness and consistency of 

velocity gradient distributions across the computational 

domain, we can gain confidence in the adequacy of the 

chosen mesh resolution without the need for excessive 

refinement studies. 

2.3.1. Boundary Conditions and Solver Settings 

The necessary boundary conditions for CFD 

simulations should be sufficient. The boundary conditions 

were carefully selected to replicate real-world scenarios. 

To evaluate the velocity in the trifurcation branched 

structures given in Fig. 5 and Fig. 6, the upstream inlet 

fluid velocity and atmospheric pressure are taken as 

boundary conditions. As the velocity boundary condition, 

the fluid uniform inlet velocity is taken as 𝑈∞= 0.08 m/s, 

and for the wall boundary condition, at r =0, the fluid 

velocity is u = 𝑈𝑚𝑎𝑥. No-slip boundary conditions were 

applied at r=R as u=0 to account for viscous effects. 

As the pressure boundary condition, the atmospheric 

pressure boundary condition at the inlet and the reference 

pressure at the branch outlets were used. These boundary 

conditions should be redefined at the beginning of the 

branching (junction) at each level so that they can be 

evaluated in detail. For this, experimental data of these 

points are needed. Then, more logical approaches can be 

developed. A detailed boundary condition information is 

presented in Table 4. 

The simulations were performed in ANSYS Fluent 

using a pressure-based solver with a k-omega SST 

turbulence model to account for any turbulence effects in 

the flow. The initial simulations were conducted using the 

k-ω SST model, not because turbulence was expected, but 

rather as a verification strategy to ensure that no localized 

turbulence would affect the validity of a laminar flow 

assumption. 

As per best practices in computational fluid dynamics 

(CFD), when the flow regime is uncertain or close to the 

laminar-turbulent transition, it is advisable to initially run 

turbulence models to identify any regions with potential 

flow instabilities or separation. In our case, the k-ω SST 

model served as a diagnostic tool to assess whether 

turbulent effects might arise in specific geometrical 

features or at higher local Reynolds numbers due to branching. 
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Table 4 Boundary conditions and solver settings 

Boundary Type Applied Condition Description Remarks 

Inlet Velocity Inlet: 0.08 m/s 
Uniform velocity profile 

applied at the inlet. 
Ensures controlled inflow conditions. 

Outlet 
Pressure Outlet: 0 Pa 

(Gauge) 

Atmospheric pressure assumed 

at the outflow boundaries. 

Prevents artificial backflow effects and 

allows natural outflow development 

Walls 
No-slip boundary 

condition 
Zero velocity at solid walls. 

Ensures adherence of fluid at the pipe 

walls, necessary for capturing boundary 

layer effects 

Turbulence Model k-omega SST 

Used only for validation of 

local shear-layer effects near 

trifurcations. 

Superior to k-epsilon for near-wall effects 

and flow separation 

Wall Treatment 
Low-Re Wall Functions 

with y+ < 5 

Near-wall resolution ensures 

accurate boundary layer 

capture. 

Essential for resolving shear stress 

distributions in trifurcations 

Solver Scheme Pressure-based solver 

Steady-state incompressible 

Navier-Stokes equations 

solved. 

Used in studies where compressibility is 

negligible 

Discretization Second-order upwind 
Applied for momentum and 

turbulence equations. 

Reduces numerical diffusion errors, 

ensuring accuracy in flow variables 

 

 

Fig. 3 Comparison of n against lambda for UD 

(solid) and ED (dashed) networks 

 

The results from this preliminary step indicated that while 

some flow separation and minor recirculation zones could 

be detected—particularly near trifurcations or sharp 

curvature regions—these effects did not develop into 

sustained turbulence throughout the computational 

domain. Therefore, the flow regime was determined to 

remain predominantly laminar for the inlet velocity and 

Reynolds number range considered. Accordingly, all final 

simulations were performed using a laminar solver, which 

also simplified computation, avoided unnecessary 

turbulence modeling complexity, and aligned with the 

actual flow behavior in the model. 

 

 

Fig. 4 Comparison R/R0 against lambda for UD 

(solid) and ED (dashed) networks 

 

To improve the accuracy of the solutions, second-

order upwind schemes were employed for momentum and 

pressure interpolation. The convergence criterion was set 

to a residual value of 10-5. 

 RESULTS AND DISCUSSION 

3.1. Analytic Results 

With Eqs. (21) and (22), we can calculate the value of 

n for trifurcation with equal and different radii per stage, 

and the results are illustrated in Fig. 3 and Fig. 4 for the 

six conditions. The number of terminal trifurcations in ED  

trifurcation network is 3n (n = 1, 2, 3). Therefore, for 

convenient comparison with the UD trifurcation networks,  
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Table 5 Comparison of geometrical parameters with a minimum radius 

Parameters 

(β, λ, ε) 

β=1, 

λ=1, 

ε=0.1 

β=1, 

λ=1.25, 

ε=0.1 

β=1.2, 

λ=1.25, 

ε=0.1 

β=1, 

λ=1, 

ε=0.44 

β=1, λ=1.25, 

ε=0.44 

β=1.2, λ=1.25, 

ε=0.44 

n 6.29 9.80 7.90 2.24 3.49 2.82 

R/R0 5.50 9.56 9.95 2.92 4.30 3.97 

 

the number of terminal trifurcations in an UD trifurcation 

network must be 3n. When 𝜀=0.1 and β=1, the number of 

terminal trifurcation operations depends on λ, e.g., λ=1 is 

only 6, and for this number of terminal furcations, the 

resistance ratio is 5.5 for λ=1.4.  

The terminal trifurcation number is 13, and for this 

number of terminal furcations, the resistance ratio is 14. 

For other values for β=1.2 and 𝜀 =0.1, we obtain the 

terminal trifurcation for λ=1 at approximately 6, the 

resistance ratio is 7, and for λ=1.4, it is 10, and the 

resistance ratio is 17. If we change the value of 𝜀, for 

example, if 𝜀 is set to 0.44 for λ=1.25 and β=1.2, the 

terminal trifurcation will be 3, and the resistance ratio will 

be 3.97.  

All these calculated values are shown in Table 5 and 

Table 6 as n and R/R0 values calculated according to 

different values of λ, β and ε. We can determine the values 

of n and the resistance ratio for different values of λ, β and 

ε by using Eqs. 21 and 23, and then we can create the n 

and 
𝑅

𝑅0
 diagrams based on these geometrical parameters (λ, 

β and ε). Finally, we can construct the diagrams according 

to Fig. 3 and Fig. 4.  

Fig. 3 and Fig. 4 show a comparison of flow resistance 

and branching behavior of the two trifurcation networks as 

described by the parameters λ, β, and ϵ. In Fig. 2, the 

relationship between n and λ show how different furcation 

configurations respond to changes. 

Fig. 3 show that the increase in λ correspond to lesser 

flow resistance values in ED network. Notably in UD 

network, when β=1.2 and ϵ=0.1, the flow resistance rises 

sharply as λ exceeds 1.2, reaching up to 16 when λ=1.4. 

This sharp increase in resistance suggests that this specific 

configuration may become less efficient as the network 

branches further, leading to higher energy losses. In 

contrast, configurations with ϵ=0.44 show a much more 

gradual increase in flow resistance, staying below 8 even 

at the highest λ values, which is advantageous for efficient 

fluid transport. 

A more comprehensive set of calculations for 

optimizing the trifurcation networks are presented in 

Table 6, which details the relationship between λ, β, and α 

that indicate how each branch in the network compares to 

its counterparts at different levels and the resulting flow 

resistance in combinations of these factors. 

When ϵ=0.1, it is evident that the branching level n 

increases with as λ, accompanied by a proportional 

increase in R/R0. This suggests that the network becomes 

more complex. For instance, in ED network when β=1.00 

and λ=1.40, n reaches 12.62, with a corresponding R/R0 

value of 14.13 whereas in the UD network, n is 6.20 and 

flow resistance R/R0 is 6.83 when β=1.20 and λ=1.10. As 

λ increases, both n and R/R0 continue to rise, but the rate 

of increase in flow resistance appears to be more 

pronounced in UD networks compared to ED networks. 

This suggests that the introduction of variability in branch 

diameter leads to higher flow resistance.  

When comparing the data across ϵ values, a lower ϵ 

resulting in higher values of n and R/R0 can be said to be 

a reflection of denser network with greater resistance, vice 

versa. For instance, with β=1.40 and λ=1.4, the R/R0 value 

for a UD network is 14.02 at ϵ=0.1, while it is significantly 

lower at 4.49 when ϵ=0.44, even though the network is still 

an UD type. The branching level k and ratios δ1, δ2, and 

γ provide additional understanding of the relation between 

geometric configurations of the network and flow 

characteristics. 

The analysis shows that abrupt redirection of fluid 

results in localized flow separation and leads to higher 

energy dissipation and greater pressure losses, which are 

prominent in trifurcation networks with sharp branching 

transitions. For UD networks with a high λ value, the 

significant difference in branch diameters leads to velocity 

redistribution and can induce formation of recirculating 

vortices near the smaller branches. 

3.1.1. Correlation Analysis 

Previous studies (Zhao et al., 2020; Aghajannezhad & 

Sellier, 2022) have highlighted the importance of robust 

relational analyses in fluid systems. In this respect, a 

correlation analysis was performed to identify 

relationships between various parameters. Data obtained 

from theoretical calculations was analyzed to quantify the 

strength of relationships between parameters ε, λ, β, and n 

and their influences on the flow resistance, R/R0. By 

employing correlation analysis, we aim to uncover the 

strength and direction of relationships among these 

variables. Table 7 presents the correlation matrix that 

indicates the relative strength of parameters that reflect 

different aspects of the system, such as network 

complexity and flow resistance, on each other on a scale -

1 to 1, where -1 implies perfect negative relationship, 1 

perfect positive relationship and 0 a linear relationship.  

The correlation analysis reveals several key 

relationships between the variables. Firstly, there is a 

strong negative correlation between ε and n (-0.852), 

indicating that as ε increases, n tends to decrease. This 

suggests an inverse relationship between these two 

parameters, where changes in one are closely mirrored by 

opposite changes in the other. When analyzing R/R0, it is 

strongly positively correlated with n (0.922), meaning that 

increases in n are accompanied by increases in R/R0. 

Additionally, R/R0 has a moderate positive correlation 

with λ (0.507), suggesting that λ also plays a role  

in influencing R/R0, though to a lesser extent than n. In  
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Table 6 Calculation table of all geometrical parameters 

ε β λ n α δ1 δ2 γ k R/R0 ED/UD 

0.1 1.00 1.00 6.29 0.70 1.00 1.00 1.44 0.91 5.50 ED 

0.1 1.00 1.10 7.53 0.67 1.00 1.10 1.49 0.94 6.76 ED 

0.1 1.00 1.15 8.23 0.66 1.00 1.15 1.51 0.95 7.56 ED 

0.1 1.00 1.20 8.98 0.65 1.00 1.20 1.54 0.96 8.48 ED 

0.1 1.00 1.25 9.80 0.64 1.00 1.25 1.57 0.97 9.56 ED 

0.1 1.00 1.30 10.67 0.62 1.00 1.30 1.61 0.99 10.84 ED 

0.1 1.00 1.35 11.61 0.61 1.00 1.35 1.64 1.00 12.34 ED 

0.1 1.00 1.40 12.62 0.60 1.00 1.40 1.67 1.01 14.13 ED 

0.1 1.20 1.00 5.25 0.65 1.20 1.00 1.29 0.95 5.52 ED 

0.1 1.20 1.10 6.20 0.63 1.20 1.10 1.32 0.98 6.83 UD 

0.1 1.20 1.15 6.72 0.62 1.20 1.15 1.34 1.00 7.68 UD 

0.1 1.20 1.20 7.29 0.61 1.20 1.20 1.36 1.01 8.70 UD 

0.1 1.20 1.25 7.90 0.60 1.20 1.25 1.39 1.03 9.95 UD 

0.1 1.20 1.30 8.56 0.59 1.20 1.30 1.41 1.04 11.50 UD 

0.1 1.20 1.35 9.26 0.58 1.20 1.35 1.43 1.06 13.42 UD 

0.1 1.20 1.40 10.01 0.57 1.20 1.40 1.46 1.07 15.84 UD 

0.1 1.40 1.00 4.44 0.60 1.40 1.00 1.19 0.98 5.21 ED 

0.1 1.40 1.10 5.16 0.59 1.40 1.10 1.22 1.01 6.32 UD 

0.1 1.40 1.15 5.56 0.58 1.40 1.15 1.24 1.03 7.04 UD 

0.1 1.40 1.20 5.99 0.57 1.40 1.20 1.25 1.04 7.91 UD 

0.1 1.40 1.25 6.45 0.56 1.40 1.25 1.27 1.06 8.98 UD 

0.1 1.40 1.30 6.94 0.56 1.40 1.30 1.29 1.07 10.29 UD 

0.1 1.40 1.35 7.47 0.55 1.40 1.35 1.30 1.09 11.94 UD 

0.1 1.40 1.40 8.03 0.54 1.40 1.40 1.32 1.11 14.02 UD 

0.44 1.00 1.00 2.24 0.70 1.00 1.00 1.44 0.91 2.92 ED 

0.44 1.00 1.10 2.68 0.67 1.00 1.10 1.49 0.94 3.38 ED 

0.44 1.00 1.15 2.93 0.66 1.00 1.15 1.51 0.95 3.66 ED 

0.44 1.00 1.20 3.20 0.65 1.00 1.20 1.54 0.96 3.96 ED 

0.44 1.00 1.25 3.49 0.64 1.00 1.25 1.57 0.97 4.30 ED 

0.44 1.00 1.30 3.81 0.62 1.00 1.30 1.61 0.99 4.68 ED 

0.44 1.00 1.35 4.14 0.61 1.00 1.35 1.64 1.00 5.10 ED 

0.44 1.00 1.40 4.50 0.60 1.00 1.40 1.67 1.01 5.57 ED 

0.44 1.20 1.00 1.87 0.65 1.20 1.00 1.29 0.95 2.75 ED 

0.44 1.20 1.10 2.21 0.63 1.20 1.10 1.32 0.98 3.15 UD 

0.44 1.20 1.15 2.40 0.62 1.20 1.15 1.34 1.00 3.39 UD 

0.44 1.20 1.20 2.60 0.61 1.20 1.20 1.36 1.01 3.66 UD 

0.44 1.20 1.25 2.82 0.60 1.20 1.25 1.39 1.03 3.97 UD 

0.44 1.20 1.30 3.05 0.59 1.20 1.30 1.41 1.04 4.32 UD 

0.44 1.20 1.35 3.30 0.58 1.20 1.35 1.43 1.06 4.72 UD 

0.44 1.20 1.40 3.57 0.57 1.20 1.40 1.46 1.07 5.18 UD 

0.44 1.40 1.00 1.58 0.60 1.40 1.00 1.19 0.98 2.54 ED 

0.44 1.40 1.10 1.84 0.59 1.40 1.10 1.22 1.01 2.87 UD 

0.44 1.40 1.15 1.98 0.58 1.40 1.15 1.24 1.03 3.06 UD 

0.44 1.40 1.20 2.14 0.57 1.40 1.20 1.25 1.04 3.28 UD 

0.44 1.40 1.25 2.30 0.56 1.40 1.25 1.27 1.06 3.52 UD 

0.44 1.40 1.30 2.48 0.56 1.40 1.30 1.29 1.07 3.80 UD 

0.44 1.40 1.35 2.66 0.55 1.40 1.35 1.30 1.09 4.12 UD 

0.44 1.40 1.40 2.86 0.54 1.40 1.40 1.32 1.11 4.49 UD 

 

contrast, β shows a very weak correlation with R/R0 (-

0.067), implying that it has little to no direct influence on 

this variable. However, β is highly correlated with other 

variables like γ (-0.898), δ1 (1.000), and k (0.675), 

indicating strong associations within this set of 

parameters, particularly between β, δ1, and γ. 

The variable λ demonstrates moderate correlations 

with both R/R0 (0.507) and k (0.726). This suggests that λ 

exerts some positive influence on these variables, 

indicating its role in the overall system dynamics, though 

its effect is not as pronounced as that of n on R/R0. 

The analysis highlights that n is the most strongly 

correlated variable with R/R0, while λ and k also show 

moderate relationships with both. Although β has strong 

relationships with other internal variables, it does not 

significantly influence R/R0. 
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Table 7 Correlation matrix of system parameters with flow resistance 

 ε β λ n α δ1 δ2 γ k R/R0 

ε 1,000 0,000 0,000 -0,852 0,000 0,000 0,000 0,000 0,000 -0,789 

β 0,000 1,000 0,000 -0,302 -0,768 1,000 0,000 -0,898 0,675 -0,067 

λ 0,000 0,000 1,000 0,353 -0,626 0,000 1,000 0,411 0,726 0,507 

n -0,852 -0,302 0,353 1,000 0,001 -0,302 0,353 0,428 0,045 0,922 

α 0,000 -0,768 -0,626 0,001 1,000 -0,768 -0,626 0,419 -0,966 -0,267 

δ1 0,000 1,000 0,000 -0,302 -0,768 1,000 0,000 -0,898 0,675 -0,067 

δ2 0,000 0,000 1,000 0,353 -0,626 0,000 1,000 0,411 0,726 0,507 

γ 0,000 -0,898 0,411 0,428 0,419 -0,898 0,411 1,000 -0,325 0,266 

k 0,000 0,675 0,726 0,045 -0,966 0,675 0,726 -0,325 1,000 0,328 

R/R0 -0,789 -0,067 0,507 0,922 -0,267 -0,067 0,507 0,266 0,328 1,000 

 

 

Fig. 5 Zones of fluid flow inspection illustrating 

velocity distribution 

 

This can be explained by the fact that while β directly 

affects velocity redistribution and flow separation, its 

impact on overall resistance is dependent on R/R0. In 

configurations where R/R0 is close to 1 (ED networks), β 

has minimal influence on resistance. However, in UD 

networks, the relationship between branching angle and 

diameter variation creates complex secondary flow 

effects, which contribute to resistance in a non-linear 

manner. Furthermore, the strong correlation between β 

and energy dissipation highlights the role of branching 

geometry in determining shear-layer behavior and vortex 

formation. These findings suggest that branching 

geometry influence flow characteristics. 

3.2. Numerical Results 

The characteristics of the fluid flow through the 

trifurcation networks were evaluated comprehensively 

and discussed by analyzing velocity contours at various 

cross-sections of the network marked in Fig. 5. This figure 

shows the zones (A, B, and C) where various cross-

sectional velocity profiles detailed in subsequent figures 

belong to. 

In this section, one of the most important criteria in 

the tree-like ED and UD branched flow systems given in 

Fig. 6 and Fig. 7 is the analysis of velocity distributions at 

different levels and numbers of branches. Since the 

channels are generally symmetrical in such flow systems, 

it is ensured that the flow distribution is smooth in the 

relevant channel. The fluid flowing through the main inlet 

pipe divides into three groups at each branching point. The 

fluid flowing through three separate channels develops 

again until the next branching point. In the flow system, 

the analyses were performed under incompressible fluid 

and laminar flow conditions. Flow is simulated at each 

branch level and section to observe the flow patterns of the 

fluid passing through the trifurcation flow geometry 

shown in Fig. 5. 

While the results are being examined during the 

solution process of the problem, for the ANSYS solutions, 

the numerical simulation results of the velocity 

distributions, especially around the furcation, are given for 

all three zones separately in Fig. 6, Fig. 7 and Fig. 8 for 

the 1st and 2nd branch levels at the x-y plane. Since 

velocity is a vector quantity, when the vector velocity 

distributions shown in Fig. 6 are examined, it is 

understood that the velocity values are different at the 1st 

and 2nd branch levels  

In such flow systems, the simulated velocity vectors 

at the 1st and 2nd level furcation points and the eddy 

magnitude at low fluid velocity are shown. Likewise, 

while the velocity is maximal in the branch axes, it 

approaches zero toward the wall. In B and C zones, the 

flow is divided into three and new boundaries are formed 

on the inner walls of the ED and UD branches, 

respectively. Secondary flows and velocities occur due to 

flow separations in the furcation zone. The velocity of 

secondary flows occurring in the furcation zone is lower 

than the velocity of axial flows. 

Velocity profiles across the trifurcation network 

exhibit significant gradients near furcation points, 

particularly in UD configurations. In ED networks, 

velocity remains uniformly distributed across branches, 

resulting in minimal pressure losses. However, in UD 

systems, the presence of higher velocity gradients leads to  

 

A B C 
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ED 

 

 
  

UD 

 

 

  

  A Zone B Zone C Zone 

Fig. 6 Velocity profiles in the three inspection zones in the trifurcation fluid network 

 
 Upstream Side (in the A Zone) Downstream Side (in the B Zone) 

ED 

  

UD 

  
Fig. 7 Velocity profile in the main branch at the far side and near side of the furcation 

 

increased shear stresses, which in turn amplify energy 

dissipation. 

A direct relationship is observed between velocity 

gradients, pressure losses, and flow resistance, where: 

Energy Dissipation ∝
∂𝑢

∂𝑥
× Viscous Shear Stress ( 35 ) 

This suggests that regions with high velocity 

gradients experience more significant energy losses. In 

practical applications, such inefficiencies can be mitigated 

through gradual diameter transitions rather than abrupt 

variations in size and other geometrical parameters. 

The velocity is very low where there are flow 

separations in the wall following the separation zone and 

in the regions close to the wall. The size of the furcation 

angle is important here. As the number of levels increases, 

the speed gradually decreases. Due to the structural design 
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features of fractal structures, the pipe diameter decreases 

at each level.  

As shown in Fig. 6, cross-sections A-A, B-B, and C-

C were taken separately on the flow system with two 

levels and three branches, and the fluid flow behavior in 

each branch section is shown. When the velocity profiles 

taken according to the cross sections are evaluated, it can 

be seen from the velocity profiles that the velocity values 

gradually decrease in successive similar cross sections. 

For the ED network, in zone A, velocity distribution 

across the circular cross-section is relatively uniform, with 

the velocity highest in the center. The velocity gradually 

decreases toward the walls by forming concentric layers. 

This pattern is typical for laminar flow in a straight 

channel, where the fluid near the centerline moves faster 

due to reduced viscous drag compared to the fluid near the 

boundaries. The velocity in zone A reaches a maximum of 

approximately 0.064 m/s, indicating a stable and smooth 

flow before entering the furcation regions. The velocity 

distribution remains centered in zone B, but it shows a 

slight elongation along one axis, which indicates the 

beginning of the flow split as it encounters the furcation 

zone. As expected, the maximum velocity increases 

slightly to around 0.078 m/s as the flow accelerates to 

navigate through the narrowing channel.  

In the 1st trifurcation, the flow has highly non-uniform 

velocity distribution and the velocity profile shows two 

distinct regions of high velocity surrounded by slower-

moving fluid, which indicates that the flow is experiencing 

significant shear and acceleration at the furcation due to 

the convergence of streams from the parent branch into the 

daughter branches. The flow separation and reattachment 

in this zone contribute to the formation of vortices and 

complex flow patterns that are less stable than those 

observed in the previous zones. 

In zone C, although contours are still slightly 

elliptical, velocity distribution shows a return to a more 

stable condition as the flow progresses through the 

trifurcation. The maximum velocity decreases to around 

0.055 m/s, indicating that the flow has partially stabilized 

after the initial disturbances encountered in the 1st 

furcation in zone B. The overall pattern suggests that the 

flow is redistributing across the cross-section as it prepares 

to navigate further furcations or branch outs. Finally, in 

the second-level furcation, a velocity profile similar to that 

of the first-level furcation in zone B is evident with a more 

pronounced dumbbell-shaped distribution. The maximum 

velocity is slightly lower at approximately 0.049 m/s due 

to the energy losses incurred during the complex flow 

transitions and the continued redistribution of velocity 

within the trifurcation network. The symmetry observed 

in the velocity contours indicates that, the flow is moving 

towards a more uniform distribution as it progresses 

through the network. 

For the UD network, shown in Fig. 6, the profiles are 

quite similar, but the impact of unequi-diameter furcation 

in the second-level, shown in zone C, can be seen to be 

influential all throughout the flow network. The highest 

velocity in zone A reaches approximately 0.0746 m/s, and 

around 0.1128 m/s zone B, followed by 0.0819 m/s in zone 

B and about 0.0697 m/sin zone C, all higher compared to 

the ED network. The maximum velocity in zone C, about 

0.0659 m/s, is still around 25% higher compared the ED 

network.  

It is clear that the flow undergoes significant changes 

in velocity and distribution as it navigates through the 

network. The highest velocities are observed near the 

initial trifurcation (zone B), where the flow accelerates 

into the narrower channels. The complexity of the flow 

reaches its peak at the 2nd trifurcation point (zone C), 

where the velocity profile exhibits the greatest degree of 

disturbance. This is likely attributable to the combined 

effects of flow splitting, acceleration, and local flow 

separation effects that result in transient velocity 

gradients. Although minor recirculation zones that are 

most suitable for the onset of turbulence were observed in 

the preliminary k-omega SST turbulence model 

simulations, no sustained turbulence developed across the 

domain and the flow remained predominantly laminar in 

the region under the investigated conditions. As the flow 

moves further downstream, it gradually stabilizes, with 

zone C showing a return to more organized and laminar 

flow patterns, though still influenced by the network’s 

branching structure.  

As a graphical representation of velocity plots given 

in Fig. 6, Fig. 7 and Fig. 8, the velocity distribution along 

the ED and UD networks are presented in Fig. 9. 

As shown in Fig. 4 and Fig. 5, the forms of the 

average velocity of the liquid flow at different levels at 

different cross-sections are given for the inlet velocity of 

0.08 m/s from the designed flow system. It can be seen 

from the graphs that the velocities in the flow center of the 

branches are greater than the velocities around the single 

and triple pipes. 

To compare the results obtained from the CFD 

analysis against Murray’s Law, we can see the drawbacks 

the analytical approach has. First of all, Murray’s law 

assumes equal or directly proportional division of flow 

among all daughter branches, as given in Eq. (2), but 

numerical results show that it does not hold in the case of 

unequal diameter branching. As can be seen in Fig. 6, the 

center daughter in the second level has a remarkably lower 

velocity profile in the UD network than in the ED network, 

as a result that unequal branching disrupts mass 

conservation assumptions and leads to higher localized 

resistance in the smaller diameter branch. It is also 

noticeable in Fig. 7 that velocity gradients are asymmetric 

in the C zone in UD network. This can be attributed to the 

fact that additional energy dissipation, which is a 

phenomenon not accounted by Murray’s Law, occurred 

and localized turbulent effects may have developed and 

increased effective flow resistance beyond what was 

predicted by the equations. This suggests that flow 

resistance is not evenly distributed among daughters as 

well. 

The CFD results for the system were validated against 

the analytical solutions. An error percentage was 

calculated using the formula: 
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 1st Furcation (B Zone) 1st center branch 2nd Furcation (C Zone) 

ED 

 

 

 

UD 

 
 

 
Fig. 8 Velocity distribution in the first furcation zone and center branches 

 

 
Error% = (

∣ Analytical − Numerical ∣

Analytical
) × 100 ( 36 ) 

The relative error between the CFD results and the 

analytical predictions for flow velocity was consistently 

below 5% for the ED network. For the UD network, 

however, the error percentages are almost always around 

15%. This suggests that the Murray’s law has serious 

drawbacks in asymmetric or non-uniform network 

configurations. 

3.3. Comparison of the Two Trifurcation Networks 

In both networks, the flow in zone A shows a 

relatively constant and laminar distribution. But the 

maximum velocity was approximately 0.064 m/s in the 

ED network and 0.0746 m/s in the UD network. When the 

flow moves towards the zone B, the differences between 

the networks become apparent. In the ED network, the 

maximum velocity increases to about 0.078 m/s, and the 

velocity distribution extends along one axis due to the 

approaching furcation. In contrast, there is a more 

pronounced acceleration in the UD network, with the 

maximum velocity reaching 0.1128 m/s, and the 

asymmetry in the velocity profile becomes more 

pronounced. This suggests that the UD network has a more 

sudden transition at the furcation point, which can result 

in higher flow rates and increased shear forces. 

 

Fig. 9. Comparison of maximum velocity at cross-

sections in two flow networks 

 

In B zone, in both networks the most complex flow 

behaviors were observed. At the 1st furcation in zone B, 

both networks revert to a more symmetrical and circular 

velocity distribution, while the maximum velocity in the 

UD network (0.0697 m/s) is slightly higher than in the ED 

network (0.055 m/s). These findings reveal that both 

networks allowed the flow to stabilize after the initial 

furcation, but the UD network showed a slower recovery 

due to higher speeds and complex flow patterns. In the ED, 

the maximum velocity was approximately 0.062 m/s 

whereas in UD velocity is higher at 0.0819 m/s. The more 
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pronounced velocity gradients and complex flow patterns 

in the UD network clearly indicate a higher degree of 

disruption to the flow due to the narrower center-branch 

diameter. As the flow progresses towards the second-level 

furcation point, it appears that the velocity profiles on both 

networks begins to stabilize. In the 2nd furcation in zone 

C, the velocity in the ED network (0.049 m/s) was lower 

than in the UD network (0.0659 m/s), indicating lower 

energy dissipate. 

In terms of velocity distribution and energy 

dissipation, the UD network is more prone to energy losses 

and turbulence formation than the ED network with higher 

maximum speeds and more complex flow patterns. In both 

the ED and UD network, the flow distribution stabilized 

after the first furcation, but the recovery in the UD 

network was slower, indicating that the narrower diameter 

in the middle channel increased the furcation effect and 

increased energy losses. Therefore, it becomes clear that 

channel diameters should be carefully evaluated in the 

optimization of trifurcation networks. CFD simulations 

show distinct differences in flow behavior between ED 

and UD trifurcation networks. In the ED network, the flow 

is distributed more evenly across the branches, resulting in 

lower vorticity and reduced flow separation at branching 

points. This supports the predictions of Murray’s Law, 

which suggests that flow resistance is minimized when 

branch diameters are balanced.  

From a fluid dynamics standpoint, the higher flow 

resistance in the UD network suggests that careful 

attention must be given to the geometric design of 

trifurcation systems to optimize flow efficiency. Our 

results underscore the importance of balancing branch 

diameters to maintain smooth flow transitions and 

minimize pressure losses.  

 CONCLUSION 

This study confirmed that Murray’s law can be 

effectively applied in optimization of flow distribution in 

trifurcation flow networks. Using computational fluid 

dynamics (CFD) simulations, we evaluated both equi-

diameter (ED) and unequal-diameter (UD) trifurcation 

networks to analyze flow resistance, velocity distribution, 

and energy losses. The results confirmed that the losses in 

the trifurcation flow systems are directly linked to the 

geometrical properties of the network, with a strong 

correlation between vortex formation and energy 

dissipation. Additionally, analyses were performed to 

determine a more effective flow profile around the branch 

departure point. 

Changes in the angle, level, furcation number and 

fluid flow rate significantly affect the flow resistance and 

pressure of the system. In a fractal-like trifurcation flow 

system, the inlet and outlet of the flowing fluid and the 

resistance can significantly reduce the pressure drop 

between the inlet and outlet of the system. Analytical 

solutions become more complex as the level of branching 

and the number of furcations increase. Therefore, to 

provide the appropriate flow profile formed at the 

furcation zones, analyses of the flowing fluid are 

performed in ANSYS.  

In the ED network, flow resistance was minimized, 

and vorticity remained low due to more uniform flow 

distribution across the branches. This finding is consistent 

with the predictions of Murray’s Law, which posits that 

equal branch diameters lead to optimized flow efficiency. 

The UD network exhibited higher velocities in the 

narrower branches, which resulted in greater shear forces, 

flow separation, and the formation of localized vortices. 

Increased pressure drops and energy losses were observed, 

particularly in the first and second-level furcation. 

Velocity profiles across the ED network were smoother 

and more symmetric compared to the UD network, which 

exhibited sharper velocity gradients and more turbulence, 

highlighting the inefficiencies introduced by unequal 

diameters. 

According to the results obtained in this study, it is 

thought that trifurcation microflow systems with such 

branched properties will be very important in engineering 

applications in terms of future designs. Specifically, 

designing systems with more balanced branch diameters, 

as in ED networks, can minimize pressure drops and 

enhance flow efficiency. On the other hand, careful 

consideration must be given to the design of UD systems, 

which, although potentially more flexible, can lead to 

increased energy loss. The implications can practical in 

lab-on-chip systems in improvement of fluidic channel 

designs for controlled sample distribution and reagent 

mixing, as well as optimizing droplet generation and flow 

partitioning. Cooling systems and heat exchangers are 

another application field that can draw conclusions from 

the finding of this study in improving coolant distribution 

efficiency and in minimizing pumping power losses. 

Future research could extend these findings by using 

different and more complex designs, incorporating diverse 

fluid properties, introducing varying viscosities and 

densities in the simulation models. Using more 

sophisticated optimization algorithms, particularly for 

complex geometries and non-linear fluid behaviors, will 

add further insight into enhancing the efficiency of 

trifurcation networks. Moreover, non-uniform, 

asymmetric and complex trifurcation systems require 

further investigation and exploration, machine learning or 

genetic algorithms can be used to optimize trifurcation 

network designs for minimal energy dissipation. Future 

research can also address high Reynolds numbers and 

advanced turbulence modelling such as Large Eddy 

Simulation (LES) or Direct Numerical Simulation (DNS) 

to capture turbulence-induced flow instabilities near 

trifurcation points.  

 LIMITATIONS 

The present study relies solely on analytical and 

numerical simulation. While CFD is a powerful tool for 

analyzing fluid flow, it can be sensitive to boundary 

conditions and turbulence models. Therefore, 

experimental studies are necessary to validate these 

findings. Additionally, Murray’s law does not account for 

dynamic fluid properties, such as viscosity and density. 

Future research could benefit from integrating these 

factors into the optimization framework in order to 

accurately reflect fluid behavior under diverse conditions. 
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