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ABSTRACT 

This study investigates the effect of blade structural parameters on the power 

generation performance—specifically output current and voltage of a micro 

wind generator, using experimental testing and multi-objective optimization. 

The influence of blade diameter (BD), blade inclination angle (BA), blade 

number (BN), and blade root draft angle (BRA) on generator performance is 

analyzed. The Box-Behnken Design (BBD) of response surface methodology 

(RSM) is employed to assess variance and to establish a quadratic polynomial 

model linking structural parameters to performance metrics. Computational 

fluid dynamics (CFD) simulations are used to interpret experimental 

observations. The NSGA-III algorithm is applied to optimize the parameter set. 

Results indicate that BRA has negligible effect on performance. The ranking of 

influence on output current and voltage is BN > BA > BD, and on blade weight 

is BN > BD > BA. The optimal configuration comprises a BD of 105 mm, an 

inclination angle of 35.92°, and 6 blades. Validation by experiment and CFD 

confirms that this configuration yields higher output current and voltage with 

only a modest increase in blade weight, providing practical guidance for the 

structural design of micro wind generators. 
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1. INTRODUCTION 

Resource depletion and environmental pollution 

present significant challenges to economic and social 

development. Countries worldwide are increasingly 

exploring the use of emerging clean energy sources to 

address these issues (Rocha et al., 2018). Wind power, as 

a prominent clean energy source, has a considerably lower 

environmental effect compared to traditional thermal 

power generation (Sunderland et al., 2016; Kumar & 

Prakash, 2023). Additionally, wind energy experiences 

reduced transmission losses and offers greater generation 

efficiency than solar energy. Wind power technology has 

seen widespread adoption globally. According to China 

Financial Network, by the end of October 2024, China's 

cumulative installed wind power capacity is projected to 

exceed 500 million kilowatts, representing nearly 50% of 

the global total installed capacity. Furthermore, in the first 

quarter of 2024, China generated 266.5 billion kilowatt-

hours (kWh) of wind power, which constituted 10.81% of 

the country's total electricity generation. 

Various types of wind generators exist, with large, 

three-blade models being the most prevalent. These 

generators typically reach heights of 150 to 200 meters, 

with blade lengths ranging from 60 to 120 meters. 

However, large wind generators are associated with high 

production costs, expensive maintenance, and substantial 

investment requirements, limiting their application 

primarily to public power generation (Araújo et al., 2021;  

De Oliveira et al., 2021). The electricity generated by wind 

generators must be converted before integration into the 

grid, categorizing these generators as part of the national 

infrastructure. While large wind generators demonstrate 

high power generation efficiency, their deployment in 

urban, rural, and other low-wind-speed regions remains 

constrained. This limitation primarily arises from 

suboptimal economic performance, particularly regarding 

input-output efficiency (Tiam Kapen et al., 2022). 

Therefore, there is a pressing need to reduce the size of 

these generators and develop small or micro-scale, low-

cost wind generators suitable for rural areas and urban  
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NOMENCLATURE 

BD Blade Diameter  Tn composite population 

BA Blade Inclination Angle  n generation 

BN number of blades  Fw direct wind force 

BRA Blade Root Draft Angle  Fp normal thrust 

Cg generator output current  Fc tangential force 

Vg generator output voltage  Abbreviation 

Wb blade weight  RSM Response Surface Methodology 

Y(X) target response values 
 

NSGA-II 
Non-dominated Sorting Genetic 

Algorithm II 

X independent variables 
 NSGA-

III 

Non-dominated Sorting Genetic 

Algorithm III 

α0 intercept term  CFD Computational Fluid Dynamics 

αi first-order coefficients  FDM Fused Deposition Modeling 

αij interaction term coefficients  PLA Polylactic Acid 

αii quadratic term coefficients  DC Direct Current 

k number of experimental variables  BBD Box-Behnken Design 

Rn initial population  PEI Polyetherimide 

M population size  CCD Central Composite Design 

Sn offspring population  ANOVA Analysis of Variance 

high-rise buildings (Bourne et al., 2013; Akour et al., 

2018). 

Small wind generators can partially replace household 

power supplies or serve as supplementary sources to the 

universal power grid. A significant number of studies have 

been conducted on small wind generators. Sant et al. 

(2020) designed a nine-blade generator featuring a 

segmented blade structure, dividing the blade into four 

sections: the root at the hub end, shells with spar caps, a 

single shear web (with and without fillers), and the blade 

tip. Each section utilizes a different material and structural 

designs (utilizing adhesive fixation with resin) to meet 

specific requirements for strength and weight. Vedovelli 

et al. (2022) investigated the effect of blade count on the 

dynamic response of generators. Experimental results 

indicate that, compared to the three-blade configuration, 

the five-blade design sustains higher efficiency at low 

wind speeds and mitigates the risk of high-amplitude 

vibrations. Shen et al. (2016) optimized the aerodynamic 

performance of a small, three-bladed wind generator, 

demonstrating that the aerodynamic efficiency of small 

horizontal-axis wind generators is significantly influenced 

by their geometric design. They further emphasized that 

wind generator design involves a complex, multi-

objective optimization process, which must account for 

both blade geometry and operating conditions. 

Previous research has demonstrated that blade 

structure critically affects the power generation efficiency 

of generators, necessitating carefully engineered blades to 

effectively convert wind energy into electrical energy 

(Shen et al., 2016; Rocha et al., 2018; Sant et al., 2020; 

Vedovelli et al., 2022). However, the blade designs of 

small wind generators often mirror those of larger 

generators, resulting in complex structures, challenging 

manufacturing processes, and high-quality standards. 

These factors limit their application in everyday contexts 

due to specialized technical requirements. In modern high-

rise buildings and rural agricultural applications, wireless 

remote sensors are extensively deployed to monitor 

environmental parameters, such as temperature, humidity, 

and light intensity. These sensors require relatively low 

power, typically below 10 mW. Connecting each sensor to 

the power grid would significantly increase wiring costs, 

including energy conversion expenses (Marin et al., 2016). 

In the case of battery-powered supplies, replacements will 

be necessary after a certain period, leading to considerable 

labor costs (Huda et al., 2022). From an energy cost 

perspective, solar power systems still require substantial 

economic investment. Therefore, developing a miniature 

wind power generation system to supply power for these 

devices is essential. 

The efficiency of power generation in micro wind 

generators is inherently limited. From a cost-effective 

deployment perspective, optimizing their blade structure 

without altering the system's overall composition can 

significantly enhance wind energy capture efficiency. 

Leung et al. (2011) conducted a parametric study on the 

performance of a micro wind generator designed for 

harnessing wind energy in urban and rural environments. 

After CFD simulation-based optimization, they identified 

that a five-bladed micro wind generator with a blade 

inclination angle (BA) of 60° exhibited a relatively high 

power coefficient. Umar et al. (2020) examined the 

influence of micro-generator blades made from PVC and 

rubber materials on wind energy capture and power 

output. They conducted tests on five configurations, each 

with 2 to 4 blades of varying diameters; however, the 

results did not definitively identify a superior blade 

structure. According to existing literature, research on 

blade structure optimization for micro generators remains 

limited. While numerous studies emphasize the 

significance of blade structural parameters, targeted 

investigations are still lacking. Specifically, comparative 

analyses examining the relationship between critical 

parameters, such as blade count and inclination angle, and 

their effects on the power generation performance of 

micro generators with blade diameters (BD) of 200 mm or 

less are scarce. 

This study examines a ring-shaped micro wind 

generator blade as the subject of investigation (Leung et 
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al., 2011). In the design phase, the overall blade structure 

was simplified by transforming the complex curved 

surface into a planar structure with uniform wall thickness. 

The selected structural parameter variables included BD, 

BA, blade number (BN), and blade root draft angle (BRA). 

Additive manufacturing technology, specifically fused 

deposition modeling (FDM) , was employed to fabricate 

the physical blades using polylactic acid (PLA) material 

(Akour et al., 2018; Suresh et al., 2024). The output 

current and voltage of a micro DC generator (Marin et al., 

2016) were measured, and blade weight was also 

considered a critical metric. Preliminary observations 

indicated that variations in structural parameters affect not 

only aerodynamic performance but also the blade's mass, 

which may influence rotational inertia and power 

generation efficiency. Thus, blade weight was 

incorporated as an additional factor to facilitate a more 

comprehensive interpretation of the performance effects 

of structural modifications. Experimental testing was 

carried out to elucidate the relationships between the 

variables and target metrics. Utilizing single-factor 

experiments, the Box-Behnken design (BBD) from 

response surface methodology (RSM) (Zuo et al., 2023; 

Mi et al., 2024) was employed to derive equations that 

characterize the relationships between structural variables 

and target metrics, and to analyze the influence of each 

variable on the target metrics, as well as the interactions 

among them. Furthermore, the derived equations 

underwent multi-objective optimization through the 

improved third-generation non-dominated sorting genetic 

algorithm (NSGA-III) (Deb & Jain, 2014; Liu et al., 2019; 

Gu et al., 2022; Deng et al., 2024), yielding predicted 

optimal targets and corresponding parameter values. 

Finally, experiments were conducted using the optimized 

parameters to validate both the effectiveness of the 

optimization and the accuracy of the predictions. This 

research serves as a valuable reference for the structural 

design of micro wind generator blades. 

2. EXPERIMENTAL AND METHOD 

2.1 Blade Design and Manufacture 

Micro- wind power generation represents a 

sustainable and environmentally friendly approach to 

energy harvesting. The blades utilized in these systems are 

fabricated from eco-friendly materials, aligning with 

design objectives. In this study, PLA was selected as the 

blade material (Miranda et al., 2022; Suresh et al., 2024). 

PLA, derived from starch-based plant resources through 

fermentation and subsequent polymerization, is 

biodegradable and can decompose entirely into water, 

carbon dioxide, and organic matter under appropriate 

conditions, thereby ensuring environmental safety. 

Additionally, FDM technology was employed to 3D print 

the designed blades (Zawadzki et al., 2020; Ramírez-Elías 

et al., 2022). This technique facilitates the rapid 

production and is particularly effective for the efficient 

printing of PLA materials, producing no additional waste, 

and ensuring full utilization of raw materials. 

To enhance manufacturing efficiency, the blade 

structure was simplified by omitting the twist deformation 

angle design. Additionally, to mitigate auxiliary forces  

Table 1 Blade parameters and their ranges 

Parameters Unit Range of value 

The blade diameter (BD) mm 103-127 

The blade inclination 

angle (BA) 
° 35-55 

The blade number (BN) No. 3-7 

The blade root draft angle 

(BRA) 
° 0-1.2 

 

 

Fig. 1 Blade structural parameters and the actual 3D-

printed blades 

 

and vibrations caused by deformation at the blade tips, a 

circular ring structure was employed to reinforce the blade 

perimeter (Leung et al., 2011). Based on preliminary 

experimental results, the blade thickness was set at 12 mm, 

and the BD was selected within the range of 103 mm to 

127 mm to accommodate installation and testing. The BA 

was chosen within the range of 35° to 55° to eliminate the 

necessity for additional support structures during 3D 

printing, thereby preventing material waste. The BN was 

established between 3 and 7; an excessive number may 

obstruct the windward surfaces of adjacent blades, thereby 

diminishing overall rotational efficiency. The BRA was set 

within the range of 0° to 1.2°to enhance rotational 

stability. The blade design adhered to the principle of 

uniform wall thickness, with the wall thickness maintained 

at 1.2 mm to reduce weight and ensure high-quality 3D 

printing performance. The structural parameters and their 

ranges are summarized in Table 1. 

Figure 1 depicts the blade structure and relevant 

parameters designed in this study. The blade printing 

material employed is Bambu PLA Matte, produced by 

Bambu Lab, characterized by a white color and a material 

density of 1.31 g/cm³. The 3D printing was executed using 

the FDM printer P1P manufactured by Bambu Lab, 

featuring a build volume of 256 × 256 × 256 mm³. Printing 

parameters were maintained at default settings: a printing 

temperature of 220°C, a build plate temperature of 65°C, 

and a printing speed of 200 mm/s. Upon completion of 

printing, the blades were cooled to room temperature and 

subsequently removed from the metal PEI plate. After 

printing, all blades were placed in consistent environment 

and allowed to stabilize for 24 hours prior to subsequent 

experimental testing. 
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Fig. 2 Composition of the experimental device 

 

2.2 Experimental Setup and Procedure 

Blade weight was measured using an electronic 

balance (Model YT3204, Youkowit Co., Ltd. China) with 

an accuracy of 0.1 mg. Following weight measurement, 

experimental tests were conducted. The experimental 

setup is illustrated in Fig. 2. A small blower (Model A60S) 

was employed to provide a stable airflow output, with a 

wind duct diameter of 40 mm. The blower was positioned 

on the right side of the testing platform, while a small DC 

generator (Zhuoye Motor Co., Ltd. China) was mounted 

on the left side to generate electricity through blade 

rotation. The blades under examination were affixed to the 

shaft of the DC generator, ensuring alignment between the 

generator shaft and the blower centerline. The blower 

knob was adjusted to its maximum setting, and an 

anemometer (Model UT363, Uni-Trend Technology 

(China) Co., Ltd.) was positioned at the blower outlet to 

measure wind speed, recorded at 15 ± 0.2 m/s. During the 

experiments, a FLUKE digital multimeter (Model 17B+) 

was connected to the generator output to measure output 

current, while an oscilloscope (Model UPO1202S-E, Uni-

Trend Technology (China) Co., Ltd.) was used to 

determine the generator's output voltage. All experiments 

were conducted indoors under windless conditions. 

2.3 Single Factor Experiment and Parameter Level 

Design  

Single-factor variation experiments were conducted 

on selected blade structural features. This method allows 

for the investigation of the independent effect of each 

parameter on the target result. When the number of 

variables is limited and the experimental scale is 

manageable, single-factor experiments facilitate a clearer 

identification of the direct relationship between each 

structural feature and performance, providing a robust 

basis for future multifactor interaction studies. Although 

orthogonal experimental design is a powerful tool for 

analyzing multifactor interactions efficiently, it was not 

adopted in this study due to the exploratory nature of the 

investigation and the limited number of design variables. 

The primary objective was to gain a fundamental 

understanding of the individual influence of each 

parameter before moving on to more complex multifactor 

analyses. The experiments were categorized into four  

Table 2 Grouping of single-factor blade structures 

No. BD (mm) BA (°) BN BRA (°) 

1 103-127 45 5 0 

2 115 35-55 5 0 

3 115 45 3-7 0 

4 115 45 5 0-1.2 

 

groups according to the type of varying factor, with each 

group comprising five blades, as presented in Table 2. 

 Figure 3(a) illustrates the influence of BD on generator 

output current (Cg), output voltage (Vg), and blade weight 

(Wb). The results indicate that as BD increases, Cg exhibits 

a slight decreasing trend, with a maximum variation of 

8.27%. In contrast, Vg decreases significantly with 

increasing BD, reaching a variation of 32.84%. 

Meanwhile, Wb gradually increases with BD, with a 

variation of 21.47%. Figure 3(b) presents the effect of BA 

on the three target metrics. As BA increases, all three 

metrics show a decreasing trend, with Cg, Vg, and Wb 

decreasing by 51.54%, 52.05%, and 12.53%, respectively. 

Figure 3(c) displays the impact of BN on the target metrics. 

The findings indicate that as BN increases, all three 

metrics exhibit an increasing trend. Specifically, Cg 

increases by 286.57%, Vg by 128.57%, and Wb by 42.09%. 

Figure 3(d) shows the effect of BRA on the target metrics. 

It is evident that Cg and Vg remain relatively stable with 

changes in BRA, while Wb increases as BRA becomes 

larger. 

The single-factor experiments reveal that BD, BN, and 

BA significantly influence Cg, Vg, and Wb, while changes 

in BRA do not notably affect the generator's power output. 

Therefore, BRA was excluded from further analysis. The 

final design parameters and their levels are summarized in 

Table 3. 
 

Table 3 Parameters design and levels 

Parameters 
Level 

-1 0 1 

BD (mm) 103 115 127 

BA (°) 35 45 55 

BN 3 5 7 
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Fig. 3 (a) Effect of BD on Cg, Vg and Wb (b) effect of BA on Cg, Vg and Wb (c) effect of BN on Cg, Vg and Wb (d) 

effect of BRA on Cg, Vg and Wb 

 

2.4 Response Surface Methodology and BBD 

Experimental Design 

Based on the results of single-factor experiments, 

RSM was employed to further evaluate the effect of each 

structural parameter on the target values and to explore the 

interactions between parameters. This experimental 

design approach is particularly suitable for multivariable 

problems (Yu et al., 2022), as it enables effective 

assessment of the individual effects of variables on the 

target values and their interactions with a relatively small 

number of experimental runs (Sharma et al., 2023; Zhao et 

al., 2023; Minhas et al., 2021). RSM employs a second-

order polynomial as the fitting function to derive a 

predictive relationship equation between the variables and 

the target values (Li et al., 2024; Zhang et al., 2023), as 

expressed in Eq. (1). The choice of a second-order 

polynomial is based on its capacity to model both linear 

and quadratic effects of variables, which is crucial for 

capturing potential interactions between factors and their 

non-linear effects. A second-order polynomial strikes a 

balance between model complexity and the number of 

experimental runs, making it suitable for capturing key 

relationships without overfitting the model. 

2
0

1 2 1

( )
i

k k k

i i ij i j ii

i i j j i

Y X X X X X   
=  = =

= + + +              (1) 

where Y(X) represents the target response values, X 

denotes the independent variables (structural parameters), 

α0 is the intercept term, αi represents the first-order 

coefficients, αij corresponds to the interaction term 

coefficients, αii denotes the quadratic term coefficients, 

and k is the number of experimental variables. 

In response surface experimental design, the central 

composite design (CCD) and BBD are both widely used 

methodologies. However, for an equivalent number of 

variable parameters, BBD requires fewer experimental 

runs (Yu et al., 2022; Zhao et al., 2023). Therefore, based 

on the parameters and corresponding levels listed in Table 

3, the BBD method was selected to construct the 

experimental grouping design. The detailed grouping 

parameters and experimental results are provided in Table 

4. 

2.5 NSGA-III Optimization Method 

In this study, the correlation equations established 

between each variable and the three target response values 

using RSM serve as objective functions. The NSGA-III 

was selected to solve these three functions, with the goal 

of maximizing the Cg and Vg values while minimizing Wb. 

As a key algorithm for multi-objective optimization, 

NSGA-III is particularly suited to high-dimensional 

problems involving three or more conflicting objectives 

(Gu et al., 2022; Wang et al., 2023). Its structure is similar 

to that of NSGA-II, but it introduces well-distributed 

reference points in the objective space, which improve 

population diversity and facilitate a more uniform 

coverage of the Pareto front (Yu et al., 2024). Compared 

to commonly used methods, NSGA-III demonstrates clear 

advantages in addressing many-objective scenarios. 

Traditional algorithms such as Genetic Algorithms (GA) 

and NSGA-II perform effectively for two objectives but  

(a) (b) 

(c) (d) 
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Table 4 BBD experimental design and test data 

Std Run BD (mm) BA (°) BN Cg (mA) Wb (g) Vg (mV) 

7 1 -1 0 1 11.47 14.3678 600 

3 2 -1 1 0 5.18 12.0779 368 

2 3 1 -1 0 8.98 16.9263 480 

5 4 -1 0 -1 2.64 10.3596 264 

1 5 -1 -1 0 10.13 13.6235 688 

6 6 1 0 -1 2.59 12.5674 176 

17 7 0 0 0 7.64 13.7345 432 

12 8 0 1 1 7.98 15.6952 360 

11 9 0 -1 1 11.92 18.2286 592 

16 10 0 0 0 7.66 13.8558 440 

10 11 0 1 -1 1.03 11.2758 80 

9 12 0 -1 -1 4.18 12.3682 400 

8 13 1 0 1 10.31 17.8231 432 

13 14 0 0 0 7.42 13.8598 424 

14 15 0 0 0 7.52 13.8889 432 

4 16 1 1 0 4.72 14.8004 240 

15 17 0 0 0 7.48 13.9137 440 

 

 

Fig. 4 Flowchart of NSGA-Ⅲ 

 

typically show reduced diversity and convergence 

accuracy as the number of objectives increases. Particle 

Swarm Optimization (PSO), though computationally 

efficient, is prone to premature convergence and has 

limited performance in complex, multi-modal design 

spaces. Sequential quadratic programming (SQP), a 

gradient-based method, is more applicable to smooth and 

convex problems, but it frequently becomes trapped in 

local optima in nonlinear and non-convex contexts, such 

as those described by RSM equations with interaction 

terms. 

NSGA-III, as an evolutionary algorithm, 

demonstrates strong robustness in exploring complex, 

nonlinear, and non-convex design spaces while 

maintaining both diversity and convergence. Its 

effectiveness has been widely validated across various 

engineering design applications. Therefore, NSGA-III 

was chosen as the optimization framework in this study to 

enable a comprehensive exploration of trade-offs among 

mechanical and electrical performance objectives and to 

yield a well-distributed set of high-quality Pareto-optimal 

solutions. 

Figure 4 outlines the NSGA-III optimization process. 

The process begins with the random generation of an 

initial population R0 of size M, following the specified 

objective function directions and variable bounds. The 

fitness of each individual in population Rn is evaluated, 

and an offspring population S0 is generated via crossover 

and mutation. The fitness of the offspring is then 

calculated. The original population Rn and offspring 

population Sn are merged to form a composite population 

Tn (with n representing the generation number), which is 

subjected to non-dominated sorting. Non-dominated 

layers are successively included in the next-generation 

population Rn+1 until its size reaches M. If the size does 

not exactly equal M, reference points are generated in the 

objective space, and both objective functions and the 

population are normalized into this space. The distance 

between each individual and the reference points is 

determined, and the closest reference point is identified. 

Elite individuals are selected from each layer and added to 

Rn+1 to reach the target population size M. This approach 

maintains solution diversity and convergence throughout 

the objective space. 

In this study, higher generator output current and 

voltage represent improved blade rotational performance, 

necessitating the maximization of Cg and Vg. At the same 

time, Wb is minimized to reduce material use under  

these operational conditions. According to the predictive  
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Fig. 5 (a) Flow field space (b) the overall mesh (c) the sectional mesh 

 

model established by RSM and practical design 

requirements, the optimized multi-objective equation 

model is formulated as shown in Eq. (2) and Eq. (3). 

1

2

3

Maximize

Min

( , , )

( , , ) imize

Maxim, e( , ) iz

g

b

g

f C BD BA BN

f W BD BA BN

f V BD BA BN

= →


= →
 = →                                        (2) 

[103,127]

[35,55]

[3,7]

BD

BA

BN





                                                                (3) 

No additional nonlinear constraints are imposed. The 

design variable bounds are determined based on 

preliminary experimental results, manufacturability, and 

additive manufacturing limitations. The objective 

functions are derived from the second-order polynomial 

equations developed via RSM, and the NSGA-III 

algorithm is applied to identify Pareto-optimal solutions 

within the defined design space. 

2.6 CFD Simulation Method 

To further examine the experimental findings, 

computational fluid dynamics (CFD) simulation was 

conducted. From an aerodynamic perspective, the effects 

of changes in structural parameters on blade surface 

pressure and turbulence intensity were assessed, providing 

an indirect explanation for their influence on power 

generation performance. Generally, an increase in wind 

pressure on the blade surface results in a higher rotational 

speed of the blade, which subsequently enhances the 

electromagnetic induction in the generator, leading to 

increased output voltage and current. 

As depicted in Fig. 5(a), the computational domain 

was defined as a flow field space with a diameter of 200 

mm and a length of 355 mm. Blades were aligned along 

the axis and positioned 112.5 mm from the velocity inlet, 

consistent with the experimental configuration. To 

balance computational efficiency and accuracy, the 

overall flow field mesh size was set at 4mm, with a refined 

mesh size of 0.6 mm near the blades. Tetrahedral meshing 

was used for the domain. The resulting overall and 

sectional meshes are shown in Figs. 5(b) and 5(c). A 

transient simulation was performed using the standard k-

epsilon turbulence model with enhanced wall treatment, 

allowing accurate resolution of the boundary layer for a 

wide range of near-wall y+ values. In this study, the y+ 

values near the blade surfaces were controlled between 1 

and 25, aligning with the requirements of the turbulence 

model and wall treatment. The inlet wind speed was set at 

15 m/s. A six-degree-of-freedom (6-DOF) dynamic mesh 

was applied, using the measured blade mass. The blade's 

center of mass and moment of inertia were determined via 

3D modeling software. The simulation employed 200 time 

steps, with a time step size of 0.001 s. Following the 

calculations, data regarding blade surface pressure 

distribution, static and dynamic pressure on the blade's 

mid-plane, and turbulence intensity were extracted. 

3.  RESULT AND DISCUSSION 

3.1 ANOVA for RSM and Fitting Formula 

The ANOVA results obtained from RSM enable 

effective evaluation of the effect of various factors on the 

target values, with p-value and F-value serving as key 

indicators. The p-value denotes the probability of rejecting 

the null hypothesis. A smaller p-value indicates greater 

statistical significance of the model. Specifically, a p-

value below 0.05 suggests statistical significance, whereas 

a p-value below 0.0001 indicates high significance and 

reflects a high degree of accuracy or reliability (Maleki et 

al., 2021). The F-value, calculated as the ratio of the mean 

square between groups to the mean square within groups, 

assesses whether changes in the independent variables 

account for significant variation in the target values. A 

larger F-value demonstrates that variation between groups 

substantially exceeds that within groups, indicating a 

significant effect of the independent variables on the target 

values. 

In the statistical analysis of RSM, C.V. % quantifies 

the model's prediction error as a percentage of the mean 

response values. A lower C.V. % indicates enhanced 

model stability, with a widely accepted threshold of less  

(c) 

(a) 

(b) 
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Table 5 Quadratic model ANOVA for Cg 

Source Sum of Squares df Mean Square F-value p-value  

Model 7.38 9 0.8205 966.14 < 0.0001 significant 

BD 0.0289 1 0.0289 34.02 0.0006  

BA 1.43 1 1.43 1689.73 < 0.0001  

BN 5.41 1 5.41 6375.89 < 0.0001  

(BD×BA) 0.0017 1 0.0017 2.01 0.1989  

(BD×BN) 0.0064 1 0.0064 7.57 0.0284  

(BA×BN) 0.0404 1 0.0404 47.57 0.0002  

(BD)2 0.0012 1 0.0012 1.45 0.2683  

(BA)2 0.0479 1 0.0479 56.42 0.0001  

(BN)2 0.3935 1 0.3935 463.36 < 0.0001  

C.V. % 1.14  Predicted R2 0.9899   

Adjusted R2 0.9982  Adeq Precision 111.5155   

 

Table 6 Quadratic model ANOVA for Wb 

Source Sum of Squares df Mean Square F-value p-value  

Model 1.29 9 0.1437 501.79 < 0.0001 significant 

BD 0.3013 1 0.3013 1051.99 < 0.0001  

BA 0.1127 1 0.1127 393.33 < 0.0001  

BN 0.8482 1 0.8482 2961.28 < 0.0001  

(BD×BA) 0.0007 1 0.0007 2.3 0.173  

(BD×BN) 0.0027 1 0.0027 9.59 0.0174  

(BA×BN) 0.0055 1 0.0055 19.35 0.0032  

(BD)2 0.0005 1 0.0005 1.82 0.2196  

(BA)2 0.0215 1 0.0215 74.94 < 0.0001  

(BN)2 0.0011 1 0.0011 4.01 0.0852  

C.V. % 0.4523  Predicted R2 0.9791   

Adjusted R2 0.9965  Adeq Precision 81.4702   

 

Table 7 Quadratic model ANOVA for Vg 

Source Sum of Squares df Mean Square F-value p-value  

Model 285.41 9 31.71 134.08 < 0.0001 significant 

BD 27.03 1 27.03 114.26 < 0.0001  

BA 111.58 1 111.58 471.73 < 0.0001  

BN 113.44 1 113.44 479.62 < 0.0001  

(BD×BA) 0.0991 1 0.0991 0.4188 0.5382  

(BD×BN) 0.1328 1 0.1328 0.5613 0.4782  

(BA×BN) 8.12 1 8.12 34.32 0.0006  

(BD)2 0.2816 1 0.2816 1.19 0.3114  

(BA)2 0.6006 1 0.6006 2.54 0.1551  

(BN)2 23.9 1 23.9 101.06 < 0.0001  

C.V. % 2.48  Predicted R2 0.9129   

Adjusted R2 0.9868  Adeq Precision 46.3694   

 

than 10%. The Predicted R2 assesses the model's capacity 

to predict new data not used in model fitting; values 

approaching 1 signify superior predictive performance. 

The Adjusted R2 reflects the model's fit for the current 

dataset, with higher values indicating stronger explanatory 

power and improved fit. It is advisable that the difference 

between Predicted R2 and Adjusted R2 remains below 0.2 

to ensure alignment between the model's predictive and 

fitting capabilities. Adequate Precision (Adeq Precision), 

which evaluates the ratio of the model's signal to noise, 

should exceed 4 to confirm that the signal is significantly 

stronger than the noise, thus ensuring effective predictive 

performance. 

Tables 5, 6, and 7 provide the ANOVA results for the 

quadratic models of Cg, Wb, and Vg , respectively. The p-

values for all three models are less than 0.0001, 

demonstrating high significance. The variables BN, BA, 

and BD emerge as significant factors across all models. 

Based on the F-value, the order of influence for Cg and Vg 

is BN > BA > BD, while for Wb, it is BN > BD> BA. 

Regarding interaction terms, the order of influence on Cg, 

Wb, and Vg is consistently (BA × BN) > (BD × BN) > (BD 

× BA). The statistical results in Tables 4, 5, and 6 show 

C.V. % values of 1.14, 0.4523, and 2.48, respectively. The 

Predicted R2 values are all close to 1, and the differences 

between Predicted R2 and Adjusted R2 are all less than 0.2,  



C. Wang et al. / JAFM, Vol. 18, No. 11, pp. 2680-2696, 2025.  

 

2688 

 
(a)                                                             (b)                                                          (c) 

Fig. 6 (a) Effect of BD and BA on Cg (b) effect of BD and BN on Cg (c) effect of BA and BN on Cg 

 

confirming the models' consistency and reliability. The 

Adeq Precision values are 111.5155, 81.4702, and 

46.3694 for Cg, Wb, and Vg, respectively, indicating robust 

signal-to-noise ratios and strong predictive capabilities. 

These results affirm that the models exhibit a good fit and 

reliable predictive performance. The corresponding 

quadratic regression equations for predicting Cg, Wb, and 

Vg are presented in Eqs. (4), (5), and (6). 

2 2 2 2

(1.73079 0.031684 0.008717

1.1416 0.000172 0.00167

0.005025 0.000119

( ) 0.001067 ( ) 0.076426 ( ) )

gC BD BA

BN BD BA

BD BN BA BN

BD BA BN

= −  +  +

 +   − 

 +   + 

−  −          (4) 

- 2

2 2 2

5

1.55856 0.033289 0.05452

0.162282 0.00011 0.001092

0.00186 7.

(

.

( )

( )

7e

0.000714 0 004 ( ) )13

bW BD BA

BN BD BA

BD BN BA BN BD

BA BN

= +  − 

 − 



+



  − 

+ 

+

 − 

−         (5) 

2 2 2 2

65.48623 0.58726 0.5405

5.50705 0.001311 0.00759

0.071229 0.001796

0.00378 0. 5

(

( ) ( ) ( ) )59 66

gV BD BA

BN BD BA

BD BN BA BN

BD BA BN

= −  −  +

 +   −

  +   + 

−  −            (6) 

3.2 Interactive Effects of Structural Parameters on 

Generator Output Current and Output Voltage 

Figure 6 illustrates the contour plots and 

corresponding 3D diagrams depicting the interactive 

effects of three structural parameters on Cg. In Fig. 6(a), 

with BN fixed at 5 and BA constant, Cg decreases slowly 

as BD increases. However, an increase in BA significantly 

reduces Cg, largely unaffected by variations in BD. Figure 

6 (b) shows that when BA is set at 45° and BN is constant, 

BD minimally influences Cg, while an increase in BN leads 

to a notable rise in Cg. According to Fig. 6 (c), when BD 

is set to 115 mm, Cg decreases as BA increases. However, 

this reduction is limited when BN remains constant, 

whereas an increase in BN effectively enhances Cg, 

particularly at smaller BA values. 

Figure 7 demonstrates the interactive effects of the 

three structural parameters on Vg. As indicated in Fig. 7(a), 

when BN is fixed at 5, Vg increases as both BA and BD 

decrease. Conversely, increases in either BA or BD result 

in a reduction in Vg. From Fig. 7(b), it is evident that when 

BA is set at 45°, Vg achieves relatively higher values when 

BD is less than 115 mm and BN exceeds 5. According to 

Fig. 7(c), when BD is fixed at 115 mm, Vg exceeds 500 

mV under conditions where BA is less than 45° and BN is 

greater than 4. 

The rationale for the aforementioned results is that 

under fixed experimental conditions, the outlet diameter 

remains constant. The independent increase in BD does 

not significantly enlarge the core region of wind load on 

the blade, as illustrated in Figs. 8 and 9. Furthermore, a 

comparison of the CFD simulation results for the BBD 

experimental group (Table 4), specifically between run-1 

and run-13 as well as run-2 and run-16—where the blade 

parameters are identical except for diameter—reveals 

consistent distributions of static pressure, dynamic 

pressure, and turbulence intensity across the center planes 

of the blades within each pair, as shown in Figs. 10(a), 

10(e), 10(b), and 10(f). This consistency suggests that the  
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(a)                                                             (b)                                                          (c) 

Fig. 7 (a) Effect of BD and BA on Vg (b) effect of BD and BN on Vg (c) effect of BA and BN on Vg 

 

 

 

(d)                                                             (e)                                                          (f) 

Fig. 8 Blade pressure of the BBD experimental group: (a) run-1 (b) run-2 (c) run-4 (d) run-5 (e) run-13 (f) run-16 

   

(a)                                                    (b)                                                           (c)  
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Fig. 9 Schematic of blade wind load area and the force condition of the blades 

 

aerodynamic forces acting on each blade within the 

respective pairs remain unchanged during airflow passage, 

with the key difference being the increase in BD, resulting 

in greater weight. Therefore, with the same applied force, 

moving a heavier object becomes more challenging, 

leading to superior experimental performance in run-1 

compared to run-13, and similarly, in run-2 over run-16. 

Additionally, the reduction in Cg due to the increased 

diameter is less pronounced than that in Vg, as the 

aerodynamic forces on the blades remain similar. An 

increase in BD directly lowers the generator's output 

voltage. Meanwhile, the increased blade weight raises the 

load on the generator, thereby enhancing rotational 

stability, which aids in maintaining the output current. 

Therefore, the overall variation remains relatively minor. 

When the BD and BA are held constant, a comparison 

between run-1 and run-4 shows that, as illustrated in Figs. 

8(a) and 8(c), an increase in the BN directly expands the 

overall surface area subjected to aerodynamic forces. This, 

in turn, indirectly increases the driving force for blade 

rotation, resulting in higher Cg and Vg. Furthermore, as 

shown in Figs. 10(a) and 10(c), increasing the BN 

broadens the distribution area of both static and dynamic 

pressure on the blades, while the turbulence intensity 

region becomes more uniform. This indicates enhanced 

stability in blade rotation. 

3.3 Interactive Effects of Structural Parameters on 

Blade Weight 

The interactive effects of BD, BA, and BN on Wb are 

depicted in Fig. 11. As illustrated in Fig. 11(a), when BN 

is fixed at 5, Wb increases with BD but decreases with BA, 

although the influence of BA is less significant than that of 

BD. In Fig. 11(b), when BA is set at 45°, Wb increases with 

both BN and BD; however, when BN is held constant, BD 

exerts a limited effect on Wb. From Fig. 11(c), it can be 

observed that when BD is fixed at 115 mm, Wb increases 

with BN, while the impact of BA on Wb remains minimal. 

The primary reason for these trends is that increasing BD, 

increasing BN, and reducing BA directly lead to an 

increase in blade volume, which subsequently raises blade 

weight. Among these factors, under the current 

experimental conditions, changes in BN have the most 

pronounced impact on blade volume, followed by BD, 

while changes in BA contribute relatively little to the 

variation in blade volume. 

3.4 Optimization Results of NSGA-III and 

Comparison of Experimental Tests 

To comprehensively cover the target space, reduce the 

risk of converging on local optima, and ensure 

computational efficiency, reference points were set to 20, 

the maximum number of iterations to 100, and the 

population size to 200. Additionally, to enhance the 

population's search capability and maintain diversity, the 

crossover probability was established at 0.7, the mutation 

participation rate at 0.4, and the mutation rate at 0.02. 

Figure 12 presents the Pareto front solutions derived 

from iterative calculations. Based on the objective 

conditions, solutions were prioritized according to the 

criteria where Vg exceeds 720 mV, Cg exceeds 12 mA, and 

Wb is less than 15 g. Two sets of optimized data were 

generated, as displayed in Table 8. In both sets, the BD 

value is 103 mm, and the BN must be an integer, selected 

as 6. The BA values exhibit minor differences, recorded as 

35.92° and 35.42°, respectively. Utilizing the optimized 

structural parameters, the three-dimensional models of the 

blade were refined and 3D printed. Experimental tests  
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Fig. 10 Static pressure, dynamic pressure and turbulence intensity of the blade in the BBD experimental group: 

(a) run-1 (b) run-2 (c) run-4 (d) run-5 (e) run-13 (f) run-16 

 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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(a)                                                             (b)                                                          (c) 

Fig. 11 (a) Effect of BD and BA on Wb (b) effect of BD and BN on Wb (c) effect of BA and BN on Wb 

 

Table 8 Comparison between the optimized predicted data and actual test data 

S.no. BD (mm) BA (°) BN Cg (mA) Wb (g) Vg (mV) 

Optimization 1 103.0001 35.9187 6.2360 12.2677 14.9191 721.9479 

Optimization 2 103.0005 35.4249 6.1503 12.2106 14.9159 728.6831 

Experimental test 1 103 35.92 6 11.95 14.6152 720 

Experimental test 2 103 35.42 6 11.78 14.8219 720 

Error 1    2.59% 2.04% 0.27% 

Error 2    3.53% 0.63% 1.19% 

 

 

Fig. 12 Pareto front solution set for multi-objective 

optimization and the selected target solutions 

 

were subsequently performed, comparing the calculated 

target results with the actual test results. In the first set, the 

errors in the Cg and Vg values were smaller than in the 

second set, although the current value was somewhat 

higher. For Wb, the error in the second set was smaller than 

in the first set; however, the blade weight in the first set 

was lighter. Therefore, the final selected optimized 

structural parameters were: BD = 105 mm, BA = 35.92°,  

Table 9 Optimized parameters and RSM 

experimental parameters 

No. BD (mm) BA (°) BN 

Optimization 103 35.92 6 

Run-5 103 35 5 

Run-9 115 35 7 

Run-4 103 45 3 

 

 
Fig. 13 Comparison of the optimized results with 

RSM experimental groups 
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Fig. 14 (a) Optimized Vg value (b) run-5 Vg value (c) run-9 Vg value (d) run-4 Vg value 

 

 

Fig. 15 Static pressure, dynamic pressure and turbulence intensity of the blade: (a) optimization (b) run-4 (c) 

run-5 (d) run-9 

 

(a) 

(b) 

(c) 

(d) 
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and BN = 6. The experimental target results obtained were: 

output current 11.95 mA, output voltage 720 mV, and 

blade weight 14.6152 g. 

The optimized blade was compared with those from 

run-4, run-5, and run-9. The structural parameters of each 

blade are detailed in Table 9, with experimental test results 

illustrated in Figs. 13 and 14, and simulation results 

presented in Fig. 15. Compared to run-4, the optimized 

blade achieved a 352.65% increase in Cg and a 172.73% 

increase in Vg. Although the blade in run-4 is lighter, the 

configuration involving the adjustment of the blade tilt 

angle and reduction in the BN significantly compromises 

rotational performance, as demonstrated in Figs. 15(a) and 

15(b). In run-4, the static and dynamic pressure 

distributions are overly concentrated, and the turbulence 

intensity distribution is uneven, leading to suboptimal 

blade rotation performance. 

When compared to run-5, the optimized blade 

resulted in a 17.97% increase in Cg and a 4.65% increase 

in Vg. Although the blade weight increased by 1 g, this 

marginal increase remains acceptable. Additionally, as 

illustrated in Figs. 15(a) and 15(c), the turbulence intensity 

distribution around the optimized blade is more uniform, 

forming a ring-like pattern that indicates improved 

rotational stability.  

In comparison to run-9, while maintaining a higher Cg 

value, the optimized blade achieved a 21.62% increase in 

Vg and a 19.8% reduction in blade weight. According to 

Figs. 15(a) and 15(d), the static and dynamic pressure 

distributions for run-9 and the optimized blade are quite 

similar; however, the turbulence intensity region around 

the blade exhibits clustered peak formations, which 

degrade rotational performance and negatively affect 

power generation efficiency. In summary, the optimized 

blade structural parameters achieve a favorable balance 

between reducing blade weight, enhancing output current, 

and improving output voltage. 

4. CONCLUSION 

This study systematically analyzes the effects of 

structural parameters of micro wind generator blades on 

blade weight, generator output current, and output voltage 

using RSM. Accurate predictive models for these targets 

were developed, and the NSGA-III algorithm was applied 

to perform multi-objective optimization. The main 

findings are as follows: 

(1) Single-factor experiments confirm that changes 

in the root draft angle of micro wind generator blades have 

negligible effects on generator output current and voltage. 

(2) Using the BBD method of RSM, 17 experimental 

runs were conducted to develop quadratic predictive 

models for blade weight, generator output current, and 

output voltage, based on BD, BA, and BN. ANOVA shows 

that these models are stable and have strong predictive 

capability. 

(3) ANOVA results indicate all three models are 

statistically significant. The influence of the three 

structural parameters on generator output current and 

voltage follows the order: BN > BA > BD. For blade 

weight, the order is: BN > BD > BA. 

(4) Based on the RSM models, the NSGA-III 

algorithm was used for optimization. The optimal 

parameters are: BD 103 mm, BA 35.92°, and 6 blades. The 

corresponding predicted generator output current is 

12.2677 mA, output voltage is 721.9479 mV, and blade 

weight is 14.9191 g. 

(5) Experimental validation using the optimized 

parameters, yields a generator output current of 11.95 mA, 

output voltage of 720 mV, and blade weight of 14.6152 g. 

Compared with results from the RSM experimental group, 

these findings confirm that the optimized structural 

parameters produce high output current and voltage with 

a relatively low blade weight, supporting the effectiveness 

of the optimization approach. 

(6) The prediction errors for output current, output 

voltage, and blade weight are 2.59%, 2.04%, and 0.27%, 

respectively, demonstrating the high accuracy of the 

multi-objective optimization approach integrating RSM 

and NSGA-III. This method is applicable to similar 

analysis and prediction problems. 

(7) Future work will include blade shape 

optimization, upscaling to larger generators, and 

integrated aerodynamic-electromagnetic analysis. 

Additional studies will consider comparisons with 

vertical-axis designs, the use of advanced materials, 

environmental and durability testing, FSI simulations, and 

cost-effectiveness evaluation to further improve 

performance and practical application. 
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