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ABSTRACT 

In this article, we present detailed numerical results concerning the 

hydrodynamic behavior of two distinct rigid bodies; a cylinder and a wedge; 

interacting with a free water surface. To analyze the temporal evolution of the 

free surface and the resulting motion of the rigid bodies, including their vertical 

displacements, two numerical techniques are employed: the Weakly 

Compressible Smoothed Particle Hydrodynamics (WCSPH) method and the 

Unsteady Reynolds-Averaged Navier–Stokes (URANS) approach with the 
Volume of Fluid (VOF) technique. Both approaches are used to predict key 

physical quantities such as the vertical motion and velocity of the rigid bodies, 

as well as the pressure distribution within the fluid domain. The results highlight 

the strengths and limitations of each method, showing that WCSPH excels in 

capturing free surface dynamics, while URANS provides more accurate pressure 

predictions, using measured data for validation. The findings offer valuable 

insights into the appropriate method selection for marine and coastal engineering 

applications. 
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1. INTRODUCTION 

Fluid-structure interaction is a common and 
significant physical phenomenon, particularly in 

engineering and environmental applications. It is often 

associated with highly unstable and complex events, 

especially within the fields of coastal, maritime, and river 

hydraulics. In this context, advanced numerical modeling 

techniques offer valuable tools to simulate and analyze 

such interactions, providing practical solutions to various 

industrial and environmental challenges. 

The study of fluid-structure interaction (FSI) requires 

the implementation of a coupling system that links the 

behavior of the fluid with that of the structure. Several 

researchers have investigated different coupling strategies.  
O’Brien et al. (2000) identified three main types of 

coupling: (i) a one-way coupling from the structure to the 

fluid, (ii) a one-way coupling from the fluid to the 

structure, and (iii) a two-way coupling where mutual 

interactions are considered. Chen and Da Vitoria Lobo 

(1995) applied a unidirectional coupling approach to 

numerically simulate fluid flow carrying obstacles, using 

the Navier-Stokes equations. Yuk et al. (2006) proposed a 

numerical model coupling the motion of a rigid object 

with the surrounding fluid. Greenhow and Lin (1983) 

conducted a fundamental study on the motion of a 

submerged circular cylinder. Earlier experiments by 
Hagiwara and Yuhara (1975), Faltinsen et al. (1977)  and 

Campbell and Weynberg (1980) focused on the free fall of 

rigid cylinders onto calm water, emphasizing the balance 

between gravitational and hydrodynamic forces. The 

displacement was calculated when these forces were more 

significant than the weight of the rigid body. 

Accurate numerical modeling of FSI remains 

challenging due to the complex coupling between fluid 

and structural domains.  

In recent years, numerous digital tools have been 

developed to independently model structural behavior and 
fluid flows. However, a major limitation of these tools lies 

in their lack of integrated coupling, which restricts their 

effectiveness in accurately resolving fluid-structure 

interaction (FSI) phenomena. Typically, the FSI process is 

divided into two sequential stages. The fluid equations are 

solved on the structure’s surface in the first stage. The 
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NOMENCLATURE 

A variable  Pk production of turbulence 

ALE Arbitrary Lagrangian-Eulerian  r specific point 

B compressibility coefficients  RANS Reynolds-Averaged Navier-Stokes 

C0 sound speed  SPH Smoothed Particle Hydrodynamics  

Cµ a dimensionless constant  Ui average velocity 

DEM Discrete Element Method  −𝒖𝒊𝒖𝒋 Reynolds stresses 

DOF Degree Of Freedom  VOF Volume of Fluid  
F forces applied on the solid  W kernel function 

Fi source term for the momentum    

FSI Fluid-Structure Interaction  δij Kronecker delta 

gi acceleration of gravity  𝜀 dissipation rate of turbulent energy 

h smoothing length   kinematic viscosity 

k turbulent kinetic energy  𝝂𝒕 eddy viscosity 

m mass of the rigid solid   density of the fluid 

P pressure  j viscous stresses 

P0 reference pressure  Π𝑎𝑏 artificial viscous pressure 
 

resulting pressure, stress, or force fields are then 

transferred to a structural solver, which computes the 

corresponding displacements and deformations of the 

structure. 

To model and track fluid flows, two primary 

numerical approaches are commonly employed: the 

Eulerian and Lagrangian methods. The Eulerian approach, 

which relies on a fixed computational mesh, is well-suited 

for simulating fluid flows ranging from single-phase to 

multiphase systems. It offers the advantage of facilitating 

mass conservation and is generally straightforward to 

implement. In contrast, the Lagrangian approach focuses 

on tracking individual fluid particles as they move through 

space. Its key advantage lies in being mesh-free, making it 
particularly effective for problems involving large 

deformations or significant displacements of rigid bodies 

within the fluid domain. 

According to the literature, Reynolds-Averaged 

Navier-Stokes (RANS) methods have been widely 

employed to investigate various fluid mechanics 

phenomena, particularly wave dynamics in coastal 

regions. For turbulence modeling, the standard k-ε closure 

model has frequently been used due to its robustness and 

simplicity. To capture the motion of the free surface, the 

RANS approach is typically coupled with the Volume of 

Fluid (VOF) method. This combination has proven 
effective in simulating complex free surface flows and has 

been adopted in several studies, including those by Chang 

et al. (2001) , Liu and Al-Banaa (2004), and Chang et al. 

(2005) . 

The study conducted by Takahashi et al. (2003) 

explores and discusses the impact of a solid object on a 

liquid surface. However, their numerical model neglects 

the influence of hydrodynamic forces acting on the object 

itself. In response to this limitation, Singh et al. (2003) 

proposed an improved numerical approach based on the 

Arbitrary Lagrangian-Eulerian (ALE) method, originally 
introduced by Hirt et al. (1974), and later refined for fluid-

structure interaction problems, provides a compromise 

between Eulerian and Lagrangian frameworks. This 

method utilized two separate solvers, one for computing 

the fluid flow around obstacles and another for 

determining the displacement and deformation of the 

structures. A major drawback of this technique was the 
need for frequent remeshing as the object moved, which 

often led to difficulties in maintaining mesh quality and, 

in some cases, caused the system solver to fail. To address 

such limitations, Belytschko et al. (2014) developed a 

mixed Lagrangian-Eulerian formulation specifically 

designed to improve the modeling of fluid-structure 

interaction problems. 

As an alternative to overcome the challenges 

associated with coupling techniques, Müller et al. (2003) 

developed the Smoothed Particle Hydrodynamics (SPH) 

method to simulate fluid-object interactions. This mesh-
free approach has since been adopted and further extended 

in subsequent studies, including those by Losasso et al. 

(2008) and Fang et al. (2009), for modeling complex fluid-

structure interactions. 

Several studies have investigated the relative 

strengths of mesh-based and mesh-free methods for 

modeling fluid–structure interactions and free-surface 

impacts.  The study by Turhan et al. (2019) compared SPH 

and RANS (solved via Flow-3D) for dam-break flows 

involving density-varying fluids (salt water). Both 

methods accurately captured initial wave propagation, 

with close agreement to experimental data in early stages. 
However, the results highlight SPH’s utility for mesh-free 

simulations of complex flows but underscore RANS’s 

robustness for scenarios requiring precise turbulence 

modeling. The authors recommend further SPH parameter 

optimization (e.g., viscosity coefficients) to enhance 

accuracy. Neves et al. (2016) performed a direct 

comparison of RANS (OpenFOAM) and SPH 

(DualSPHysics) for wave breaking and found that while 

RANS predicted free-surface elevation more accurately, 

SPH better captured velocity fields during breaking. 

Brizzolara et al. (2009) and Hosain et al. (2018) have 
applied both SPH and RANS/VOF to sloshing problems. 

While SPH captured free-surface motion effectively, it 

showed pressure fluctuations unless carefully tuned. 

RANS/VOF produced more stable pressure fields but at 
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higher computational cost. Similarly, Sasson et al. (2016) 

compared mesh-based RANS and WCSPH methods in 

slamming problems, noting that RANS method slightly 

better predicts the acceleration values prior to peak 

acceleration, while the quick setup of SPH simulations, 

together with the use of GPU accelerated computing, gives 

advantages. Finally, Tafuni et al. (2022) reviewed recent 

SPH applications in fluid–structure interaction, 
emphasizing advancements and juxtaposing SPH with 

mesh-based  

Despite these efforts, and while both SPH and RANS 

methods have been widely used for water entry problems, 

comprehensive evaluations involving varied rigid body 

geometries using both approaches remain limited. Most 

prior studies focus on a single geometry typically wedges 

and apply either SPH or RANS independently. Few works 

directly compare the performance of both methods under 

identical initial and boundary conditions, particularly 

across geometries that induce different flow responses. 

This study addresses that gap by examining both 
cylindrical and wedge-shaped body entries using weakly 

compressible SPH (WCSPH) and RANS approaches, 

offering a broader and more balanced assessment of their 

capabilities 

In this study, the RANS and SPH numerical models 

are applied to address the problem of free surface flow and 

the penetration of two rigid bodies into water. The first is 

a cylindrical solid undergoing free fall, while the second 

is a triangular-shaped body introduced into the water with 

an initial horizontal velocity at the moment of contact. 
These geometries were selected due to their relevance in 
naval and coastal engineering applications, cylinders 

model offshore pile structures, while wedges simulate ship 

bow or breakwater impacts. 

The main objective is to evaluate the strengths and 

limitations of each method by comparing their numerical 

predictions with experimental data available in literature. 

It contributes to the literature by offering a detailed, side-

by-side numerical comparison between WCSPH and 

Unsteady RANS (URANS) methods for modeling two 

geometrically distinct rigid bodies, highlighting 

methodological trade-offs and validating results with 
experimental data. The first part of the paper introduces 

the RANS and SPH models along with their respective 

mathematical formulations. The second part presents a 

detailed analysis of the simulation results, followed by a 

discussion comparing the performance and accuracy of 

both approaches. Our goal is to provide practical guidance 

on method selection for real-world applications. 

2. METHODOLOGY AND EQUATIONS 

In this section, we present the mathematical 
formulations underlying the two numerical models RANS 

and SPH following the approaches proposed by Panizzo 

(2004a, 2004b); Panizzo and Dalrymple (2004) and Yuk 

et al. (2006). 

The SPH simulations were conducted using an open-

source code DualSPHysics developed in C + + language, 

based on the formulation described in (Crespo et al., 2011) 

and recently in (Crespo et al., 2015). The SPHysics code 

has been applied and validated across a range of scenarios 

(Dominguez et al., 2022), including wave breaking 

phenomena (Dalrymple & Rogers, 2006), dam-break 

events (Crespo et al., 2008; Gomez-Gesteira, 2010), and 

interactions with both fixed coastal structures (Gomez-

Gesteira et al., 2004) and mobile breakwaters (Rogers et 

al., 2010). Additionally, a shallow water adaptation of the 

code has been developed and tested (Vacondio et al., 2012, 
2013). Conversely, the RANS simulations were carried 

out using Ansys-CFX in conjunction with volume of fluid 

(VOF) scheme. They are widely validated for rigid body 

water-impact problems, capturing free-surface dynamics, 

pressure spikes, drag, and fluid-structure interaction with 

dynamic mesh and turbulence modelling  (Lal & 

Elangovan, 2008; Mahmoodi et al., 2018; Singh & Pal, 

2023). 

2.1 RANS Model 

In flow modeling, using unsteady 2D RANS 

equations, water and air are considered as a single 

homogeneously mixed fluid, whose equation is:  

∂𝑈𝑖

∂𝑥𝑖
= 0                                                                                          (1) 

∂𝑈𝑖

∂𝑡
+
∂(𝑈𝑗𝑈𝑖)

∂𝑥𝑗
=

−1

𝜌

∂𝑃

∂𝑥𝑖
+

∂

∂𝑥𝑗
[𝜈 (

∂𝑈𝑖

∂𝑥𝑗
+
∂𝑈𝑗

∂𝑥𝑖
) −

𝒖𝒊𝒖𝒋̅̅ ̅̅ ̅] + 𝑔𝑖 + 𝐹𝑖                                                            (2) 

where the average velocity and pressure are given by Ui 

and P, the acceleration of gravity and the kinematic 

viscosity are respectively represented by gi and , the 

density of the fluid is given by , and Fi is the source term 

for the momentum. These equations include new terms, 

called Reynolds stresses −𝒖𝒊𝒖𝒋, which reflect the 

production of velocity fluctuations and constitute the 

transfer of convective motion due to velocity fluctuations. 

They pose a problem of closing the governing equations. 

Therefore, the turbulence models make it possible to 

provide phenomenological laws to close the problem. The 

first-order closure is based on turbulent viscosity, and it is 

considered the best way to approximate the Reynolds tensor. 

The Reynolds stress is given by Eq. (3): 

−𝒖𝒊𝒖𝒋̅̅ ̅̅ ̅ = 𝝂𝒕 (
𝛛𝑼𝒊

𝛛𝒙𝒋
+
𝛛𝑼𝒋

𝛛𝒙𝒊
) −

𝟐

𝟑
𝒌𝜹𝒊𝒋                                      (3)  

where the Kronecker delta is given by δij, the turbulent 

kinetic energy is represented by k. 

𝑘 =
𝑢𝑖
2̅̅ ̅̅

2
                                                                                         (4) 

and the eddy viscosity is given by: 

𝜈𝑡 = 𝐶𝜇
𝑘2

𝜀
                                                                                           (5) 

where Cµ is a dimensionless constant. Two-equation 

models are widely used. The turbulent length scale is 
defined from the turbulent kinetic energy and the 

dissipation rate. They are determined by their transport 

equations. 

The transport equations of k and ε are given by Eqs (6) and 

(7):
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∂𝑘

∂𝑡
+
∂(𝑈𝑗𝑘)

∂𝑥𝑗
=

∂

∂𝑥𝑗
[(𝜈 +

𝜈𝑡

𝜎k
)
∂𝑘

∂𝑥𝑗
] + Pk − ε                  (6) 

∂𝜀

∂𝑡
+
∂(𝑈𝑗𝜀)

∂𝑥𝑗
=

∂

∂𝑥𝑗
[(𝜈 +

𝜈𝑡
𝜎𝜀
)
∂𝜀

∂𝑥𝑗
] 

+
𝜀

𝑘
(𝐶𝜀1𝑃𝑘 − 𝐶𝜀2𝜀)                                                        (7) 

Where kP denotes the production of turbulence: 

𝑃𝑘 = 𝜈𝑡 (
∂𝑈𝑖

∂𝑥𝑗
+
∂𝑈𝑗

∂𝑥𝑖
)
∂𝑈𝑗

∂𝑥𝑗
                                                            (8) 

The values of these constants Cµ = 0.09, Cε1 = 1.44, 

Cε2 = 1.92 and of the turbulent Schmidt numbers σk = 1 

and σε = 1.3 are used in the present computations.  

VOF-Based Free Surface Tracking in URANS 

Based on Landau and Lifshitz (2014), the free surface 

can be evaluated as a tangential discontinuity, and the 
surface speed shows continuity in the normal and 

tangential directions. On the other hand, there is 

discontinuity in the normal direction between two 

domains of different densities. 

By adopting the VOF method, continuous free 

surfaces can be controlled and tracked using a scalar 

variable, where a zero value indicates an empty area or 

volume. On the other hand, a unit value suggests a small 

area, or a small volume occupied by the fluid. Thus, a 

fractional value of F between 0 and 1 in a discrete mesh 

represents a segment of the interfacial region of two fluids: 

𝐹 (𝑥
→
, 𝑡) = {

1                           In fluid    
[0 < F < 1]             At the free surface
       0                      In the void        

       (9) 

For incompressible flows, ( ),F x t


 is given by the 

following expression (Hirt et al., 1974): 

𝐹 (𝑥
→
, 𝑡) =

𝜌(𝑥
→
,𝑡)

𝜌𝑓
                                                           (10) 

with: 

∂𝐹

∂𝑡
+
∂(𝐹 𝑈𝑖)

∂𝑥𝑖
= 0                                                                           (11) 

Governing Equations for Rigid Body Translation 

The displacement of the object in a fluid is modeled 

by its movement equations. In our study, we assume that 

a displacement is a translation along the Y axis (one-

Degree-Of-Freedom (DOF) method). This choice is 

related to experimental measurements available for the 

confrontation of the proposed numerical model. 

The balance of forces on a rigid body is given by Eq. (12): 

𝑚𝑥
¨
= 𝐹                                                                                     (12) 

where m and F respectively denote the mass of the rigid 

solid and the forces applied on the solid (see Fig. 1). 

𝐹 = 𝐹𝑓𝑙𝑜𝑤 +𝑚𝑔+ 𝐹𝐸𝑥𝑡                                                         (13) 

where the force exerted by the water, the force of gravity 

and the external forces are given respectively by Fflow, mg 

and Fext.  The force applied by the fluid (water) is given by 

Eq. (14): 

𝐹𝑓𝑙𝑜𝑤 =∑ (−𝑝𝑗𝑛𝑗 + 𝜏𝑗)
𝑛

𝑗=1
𝑠𝑗                                          (14) 

where the pressure applied to the surface Sj of the normal 

vector nj of a control volume is given by pj, and wherej 

represents the viscous stresses: 

2.2 Weakly Compressible SPH Model for Free 

Surface Flows 

The Smoothed Particle Hydrodynamics (SPH) 

method was originally developed by Gingold and 

Monaghan (1977) and Lucy (1977) for the simulation of 

astrophysical phenomena. It was later extended by 

Monaghan (1994) to address problems involving free 

surface flows and fluid-structure interactions. 

Mathematical formulation of fluid method  

The transformation of fluid equations into integral 
form is carried out using a kernel function W, which has a 

radius of 2h. This kernel serves as a weighting function 

that defines a physical variable A at a specific point r. The 

estimate of the kernel for variable A is given by the 

following expression (Morris, 1996). 

𝐴(𝑟) = ∫ 𝐴(𝑟′)𝑊(𝑟 − 𝑟′, ℎ)𝑑𝑟′
𝑠𝑝𝑎𝑐𝑒

                   (15) 

The spatial discretization is defined by the smoothing 

length h. The W function has several properties, such as: 

∫ 𝑊(𝑟 − 𝑟′, ℎ)𝑑𝑟′ = 1
𝑠𝑝𝑎𝑐𝑒

                                      (16) 

lim
ℎ→0

𝑊(𝑟 − 𝑟′, ℎ) = 𝛿(𝑟 − 𝑟′)                                  (17) 

The gradient of function A is given by the following 

expression (Morris, 1996): 

∇𝑟𝐴(𝑟) = ∫ 𝐴(𝑟′)∇𝑟𝑊(𝑟 − 𝑟
′, ℎ)𝑑𝑟′

𝑠𝑝𝑎𝑐𝑒
           (18) 

In SPH, the determination of physical variables is 

carried out at each individual particle. From Eqs. (15) and 

(18), the physical variable A and its gradient can be 
expressed as a summation over the neighboring particles b 

of particle a, as follows: 

 𝐴𝑎 = ∑ 𝑉𝑏𝐴𝑏𝑊𝑎𝑏
𝑁
𝑏=1   and  

∇𝑎𝐴𝑎 = ∑ 𝑉𝑏𝐴𝑏∇𝑎𝑊𝑎𝑏
𝑁
𝑏=1                                              (19)

 
where  𝑊𝑎𝑏 = 𝑊(𝑟𝑎 − 𝑟𝑏 , ℎ) and   

𝑉𝑖 =
𝑚𝑖

𝜌𝑖
                                                                         (20) 

Hence the gradient of A is given by: 

   ∇𝑎𝐴𝑎 =
1

ρa
∑ 𝑚𝑏(𝐴𝑏 −𝐴𝑎) ∇𝑎𝑊𝑎𝑏
𝑁
𝑏=1                      (21) 

Thus, the continuity and momentum equations can 

be reformulated in the following form: 

𝑑𝜌𝑎

𝑑𝑡
= ∑ 𝑚𝑏(𝑣𝑎 − 𝑣𝑏)∇aWab

𝑁
𝑏=1                             (22) 

𝑑𝑣𝑎

𝑑𝑡
= −∑ 𝑚𝑏 (

𝑃𝑏

𝜌𝑏
2 −

𝑃𝑎

𝜌𝑎
2)∇𝑎𝑊𝑎𝑏

𝑁

𝑏=1
                    (23) 
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We consider the fluid to be real. We rewrite Eq. (23) 

as follows: 

𝑑𝑣𝑎

𝑑𝑡
= −∑ 𝑚𝑏 (

𝑃𝑏

𝜌𝑏
2 −

𝑃𝑎

𝜌𝑎
2 +∏  ab ) ∇𝑎𝑊𝑎𝑏

𝑁

𝑏=1
              (24) 

where  ∏  𝑎𝑏  denotes the artificial viscous pressure, and it 

is given by Eq. (25): 

   𝛱𝑖𝑗 =

{
 
 

 
 
 

2

ab ab ab

ab

C  



− +
       𝑖𝑓    .ab abv r < 0

 
0                                     otherwise     

      (25)  

with
2 2. ( )ab ab ab abhv r r = + ;  

where Ca and Cb are the speed of sound for particles a and 

b; ℎ is the smoothing length, 𝛼 = 0.01, and 𝛽 = 0 are two 

constants for general hydraulic problems. 

We adopt the kernel function developed by Johnson 

et al. (1996) .This function is very suitable for studying the 
interaction of the object with the free surface. It is given 

by the following expression: 

𝑠 = 𝑟 ℎ ∈  [0.0; 2.0]⁄ as:  

𝑊(𝑟, ℎ) =
1

𝜋ℎ2
(
3

8
𝑠2 −

3

2
s +

3

2
)                           (26) 

𝑊′(𝑟, ℎ) =
1

𝜋ℎ3
(
3

4
𝑠 −

3

2
)                                        (27) 

We calculate the pressure of the fluid based on the 

equation of state, which takes into account the 

compressibility of the fluid (Batchelor, 2000). 

𝑃 = 𝑃0 + 𝐵 [(
𝜌

𝜌0
)
𝛾

− 1]                                                  (28)  

where P0 represents the reference pressure, γ=7 and B 

represents the compressibility coefficients. 

𝐵 =
𝐶0
2𝜌0

𝛾
                                                              (29) 

where ρ0 denotes the reference density, and C0 is the sound 

speed. 

Motion of Rigid Body 

To track and evaluate rigid body motions, which are 
categorized into translational and rotational movements, 

the SPH model utilizes the Discrete Element Method 

(DEM), originally developed by Cundall and Strack 

(1979). The two types of motion are illustrated in Fig. 1. 

Newton's equations allow for the calculation of 

rotational motion. 

𝑀𝐼
𝑑𝑉𝐼

𝑑𝑡
= ∑ 𝑚𝑘𝑓𝑘𝑘∈𝐼                                                  (30) 

I
dΩ

dt
= ∑ 𝑚𝑘(𝑟𝑘 − 𝑅𝐼)𝑓𝑘𝑘∈𝐼                                         (31) 

where 𝑀𝐼,  𝑉𝐼 , 𝐼𝐼,  𝛺𝐼, and
 
𝑅𝐼 respectively represent the 

mass, the speed, the inertia tensor, the angular speed and 

the center of gravity of object I, and where 𝑓𝑘  represents 

the mass force applied to particle k. 

The main numerical parameters adopted for the SPH 

simulations are summarized in Table 1. These values were 

selected based on recommended practices for free-surface  

 

Fig. 1 (a) Movement of rigid body in liquid, where the 

arrows represent the pressure of the fluid acting on 

the faces of the solid. (b) Rotation of rigid body along 

x, y, z axes  

 

Table 1 Key SPH simulation parameters  

Parameter Value Parameter Value 

Δp 0.004 m γ 7 

Tank size 
2.0 × 0.5 m 

(L×H) 
coesound 20 

Interaction 

kernel 

Johnson et 

al. (1996) 
speedsound auto 

coefh 1.2 cflnumber      0.2 

ρ0 1000 kg/m³ α 0.01 

 

impact problems and are consistent with parameter ranges 

reported in previous DualSPHysics studies (Altomare et 

al., 2015; Crespo et al., 2011, 2015; Dominguez et al., 

2022) ensuring both numerical stability and physical 

accuracy. 

With this parameter setup, the SPH model is expected 

to accurately capture the free-surface dynamics and rigid 

body motions under study, providing a consistent basis for 

comparison with the RANS/VOF simulations presented in 

the following section. 

3. RESULTS AND DISCUSSION 

To evaluate the predictive capabilities of the 

previously presented RANS and SPH approaches, two 

different rigid bodies are considered in their interaction 

with a free water surface. The first body is a cylinder with 
two distinct densities, while the second is a wedge. The 

computational domain for the first solid is illustrated in 

Fig. 2. For both numerical approaches, it is assumed that 

the rigid body is in free fall, perfectly vertical, and does 

not undergo any rotation during its motion. In the RANS 

approach, free-slip boundary conditions are applied at all 

surfaces. In the SPH model, the computational domain is 

confined to a height of 2.0 m and a width of 0.5 m, with a 

particle diameter of 0.004 m. Particles are spaced 0.004 m 

apart throughout the domain. 

For both RANS and SPH methods, convergence was 
tested by halving the mesh size and particle spacing, 

respectively, and verifying that the resulting penetration 

depth and velocity predictions differed by less than 5%. 
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Further refinement showed no significant change, 

confirming numerical convergence 

3.1 Water Entry of Cylinder 

The numerical results for the free fall of rigid bodies 

in stable water are compared with the experimental data 

presented by Greenhow and Lin (1983). Two different 

models are tested in their experiments: a neutral buoyancy 

cylinder and a semi-floating cylinder. The term "neutral 
buoyancy" refers to the condition where the object's 

weight is exactly balanced by the buoyant force, while 

"half buoyancy" indicates that the object's weight is half 

of the buoyant force acting on a fully submerged body. An 

explanatory diagram of the experimental setup is shown in 

Fig. 2. The distance between the rigid body, with a 

diameter of 0.11 m, and the free water surface is 0.5 m. 

The initial velocity of the rigid body at the water surface 

is determined using the equation V0 = (2gh)1/2 = 2.955 m/s. 

Therefore, the time required for the body to reach the 

water surface is calculated as t0 = V0/g = 0.301s. 

 

 

Fig. 2 Description of water entry of cylinder 

 

Case I: d=0.5 

We consider that the density of water is 1000 kg / m3, 

the kinematic viscosity is 10-6 m2/s, and the surface tension 
is 0.0736 N/m. An explanatory diagram of the problem as 

well as the initial pressure contour are presented in Fig. 3. 

The water is initially stable, and the variation of pressure 

is due to the hydrostatic pressure. 

The time evolution of the cylinder's penetration into 

the water, as predicted by both numerical approaches, is 

shown in Fig. 4. The results indicate that the RANS 

approach yields a slightly greater penetration depth 

compared to the SPH method. However, both numerical 

models demonstrate good agreement with the 

experimental measurements, confirming the reliability of  

 

Fig. 3 Initial conditions of cylinder considered for 

simulation for RANS approach 

 

 

Fig. 4 Comparison between calculated and measured 

cylinder penetration depths: SPH (blue line), RANS 

(red line) results, and experimental measurements 

(black square dots (Greenhow & Lin, 1983)) 

 
the simulations for modeling the fluid-structure interaction 

during the cylinder's descent. 

The time evolution of the cylinder's velocity is 

illustrated in Fig. 5. It is observed that the cylinder’s speed 

initially decreases before reaching the water surface. 

During this phase, the velocity drops from an initial value 

of 0.95 m/s to 0.5 m/s at t=0.3. Upon contact with the 

water surface, the speed continues to decrease, reaching a 

minimum of 0.35 m/s at t=0.45s. After this point, the 

velocity begins to increase again, reaching 0.4 m/s by 

t=0.8 s. Throughout the simulation, both the RANS and 

SPH approaches follow similar trends. Between t0 and the 
moment of water entry (t=0.301 s), the two models exhibit 

nearly identical behavior. However, after this point, the 

SPH curve begins to diverge, ultimately returning to a 

value of 0.52 m/s by the end of the simulation. The speed 

evolution can be divided into two distinct phases. The first 

phase, referred to as the descent phase, is characterized by 

deceleration. The second phase, beginning at t=0.5 s, 

corresponds to the rigid body's upward movement,  

which explains the observed increase in speed. At the free  

4
4

5
 m

m

110 mm
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Fig. 5 Velocity field computed by RANS and SPH 

models 

 

 

Fig. 6 Comparison between digital and experimental 

free surface profiles for a semi-floating cylinder at 

three times (a) t = 0.005 s, (b) t = 0.033 s and (c) t = 

0.085 s. On the right (SPH method), on the left (RANS 

method), and in the center (experimental photos 

according to Greenhow and Lin (1983)) 

 

surface, the SPH model reaches a speed of 0.52 m/s, while 

the RANS model reaches 0.45 m/s. It is evident that, 

during this upward phase, the RANS model provides more 

accurate results, as the final velocity calculated by the 

RANS approach is closer to the expected value at water 

entry. 

Figure 6 presents a comparison between the free 

surface state and the positions of the cylinders, as 
calculated and measured, at t=0.005 s, t=0.033 s, and 

t=0.085 s. The free surface of the fluid (water) is 

considered as the temporal origin of the simulation. Once 

the rigid body is submerged, ripples and fragmentation 

begin to appear on the free surface, promoting the 

separation of the flow and the formation of a jet around the 

cylinder. This jet intensifies progressively as the 

simulation time increases. Both the RANS and SPH 

methods capture the overall dynamics of the phenomenon; 

however, the SPH model better predicts the shape of the 

water surface, the formation of nearly vertical jets, and the 

height of the resulting water column. This is primarily due  

 

Fig. 7 Comparison between calculated and measured 

cylinder penetration depths: SPH (blue line), RANS 

(red line) results, and experimental measurements 

(black square dots, (Greenhow & Lin, 1983)) 

 

to the reflective nature of the SPH method, which 

minimizes particle clumping through its disorderly 

scattering of particles and the artificial stress in the core 
function, leading to a more accurate representation of the 

free surface dynamics. 

Case II: d=1 

After testing both approaches with a half-buoyancy 

cylinder, this section explores the case of a cylinder with 

neutral buoyancy.  

Figure 7 presents a comparison between the temporal 

variations in the cylinder's penetration depth into the 

water, as calculated using both the SPH and RANS 

approaches, along with the corresponding experimental 

measurements. It is observed that the measured values are 
slightly higher than the calculated ones. In this case, the 

RANS approach provides results that are closer to the 

measured penetration depth, as compared to the SPH 

method, which shows a slight deviation. This suggests that 

the RANS model better captures the dynamics of the 

neutral buoyancy cylinder's interaction with the water 

surface in this specific scenario 

Figure 8 illustrates the velocity of the neutrally 

buoyant cylinder, as obtained from both the RANS and 

SPH models. Three distinct phases can be observed in the 

velocity evolution. The first phase is an acceleration 
phase, where the cylinder moves vertically from the top to 

the water surface, with the velocity increasing from an 

initial value of 0 m/s. This is followed by a deceleration 

phase, during which the cylinder moves from the water 

surface downward, losing speed. Finally, the imbalance 

between the cylinder's gravity and the buoyant force 

causes the body to rise back to the free surface, marking 

the onset of the third phase. In this phase, a certain stability 

in the velocity becomes evident. Both the RANS and SPH 

models capture these phases, albeit with a phase shift, and 

the RANS curve exceeds the SPH curve in terms of 

velocity 

The numerically predicted free surfaces, shown in 

Fig. 9, align well with the actual states of the free surface. 

The penetration process is both deeper and faster due to  
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Fig. 8 Velocity field computed by RANS and SPH 

models 

 

 

Fig. 9 Comparison between digital and experimental 

free surface profiles for semi-floating cylinder at 

three times (a) t = 0.015 s, (b) t = 0.11 s and (c) t = 0.2 

s. On the right (SPH method), on the left (RANS 

method), and in the center (Experimental photos 

according to Greenhow and Lin (1983)) 

 

the increased gravitational effect. As the cylinder’s weight 

increases, the free surface condition becomes more 

pronounced, and the size of the jet intensifies. The results 
indicate that the SPH model closely matches the 

experimental measurements. Further analysis reveals that 

the SPH model provides more accurate predictions of the 

interaction between the rigid body and the free surface 

compared to the RANS method.  

One key reason for this improved performance is the 

nature of the SPH approach, which uses a particle-based 

method to simulate fluid flow. This allows the SPH model 

to more accurately capture complex fluid behaviors such 

as free surface deformations, jet formation, and particle 

interactions. In contrast, the RANS method, which relies 
on averaged flow equations, tends to smooth out these 

fine-scale dynamics, potentially leading to less accurate 

predictions in cases involving sharp changes in fluid 

velocity or pressure, such as during the impact and 

interaction with a rigid body. Additionally, the SPH 

model’s "meshless" nature helps in handling large 

displacements and complex interactions without the issues  

 

Fig. 10 Description of study domain and wedge details 

 

of mesh distortion or remeshing, which can occur in 

traditional grid-based methods like RANS. As a result, the 

SPH model is better suited to capture the detailed, 
localized effects of the rigid body’s motion on the fluid, 

leading to a more faithful representation of the free surface 

dynamics. 

3.2 Water Entry of Wedge 

This section presents the study of the interaction 

between a wedge in free fall and the free surface of water. 

The investigation involves immersing a wedge with a 

mass of 94 kg, a lifting angle of 25°, and a square upper 

section measuring 1.2 x 1.2 m, into a free water surface at 

a speed of 5 m/s, as shown in Fig. 10. 

As in the previous two cases, the objective of this 

study is to compare the results from both the SPH and 
RANS approaches with the experimental measurements 

reported by Yettou et al. (2006).  

In this section, we present the temporal distribution of 

pressure on one side of the wedge (2D), as calculated by 

both models. The pressure is measured using 12 

transducers spaced 50 mm apart, as shown in Fig. 10. 

At t = 0 s and before the bilge penetrates the water, 

the water pressure increases as a function of the depth. 

Thus, the hydrostatic pressure is given by the following 

expression. 

𝑃 = 𝜌. 𝑔. ℎ = 9670 𝑃𝑎  

The pressure results found by the numerical simulation for 

the SPH and RANS methods are illustrated in Fig. 11. 

The displacement of the wedge as a function of time 

is calculated using both the SPH and RANS numerical 

approaches. A comparison between the numerical results 

and the experimental measurements is presented in Fig. 12.  

Between t = 0s and t = 0.8s, there is a good agreement 

between the different results in terms of both phase and 

amplitude. However, from t = 0.8s onwards, a 
displacement offset is observed, with the SPH approach 

diverging from both the RANS results and the 

experimental measurements. At t = 0.4s, an imbalance 

between the gravity of the wedge and the buoyancy of the 

fluid causes the rigid body to move back towards the free 

surface, which is reached at t = 0.8s. Once the solid 

reaches the free surface, waves begin to form due to the 

separation between the fluid and air domains. It is also 

noticeable that the RANS method is better able to track the 

solid’s movement at the free surface level compared to the 

SPH method. Additionally, it is observed that the 

simulated displacement of the rigid body does not reach 

the bottom of the channel. 
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(a) RANS 

 

(b) SPH 

 

Fig. 11 Distribution of pressure field calculated at t = 

0s by two approaches RANS (a); SPH (b) 

 

 

Fig. 12 Confrontation between calculated and 

measured values of wedge penetration depths: SPH 

approach (blue line), RANS approach (red line), and 

experimental measurements (black square points 

(Yettou et al., 2006)) 

 
Figure 13 presents the temporal evolution of the 

wedge speed for both the SPH and RANS numerical 
approaches. These results are compared with the 

experimental measurements. The speed cycle is defined by 

three phases: 

First phase: During the vertical movement from top 

to bottom, the wedge's speed decreases from an initial 

value of V₀ = 5 m/s to zero at t = 0.4s. This is the 

deceleration phase, which can be further divided into two 

sub-phases. In the first sub-phase, the speed decreases 

linearly from 5 m/s to 2 m/s over 0.01s, corresponding to 

a deceleration of 300 m/s². The simulation results show a  

 

Fig. 13 Confrontation between calculated and 

measured values of the temporal evolution of speed of 

the wedge 

 

good agreement with the experimental data during this 

phase. 

In the second sub-phase, the speed drops from 2 m/s 

to 0 m/s over a time interval of 0.35s, corresponding to a 

deceleration of 5.71 m/s². In the SPH simulated speed 

signal, oscillations are observed, which are attributed to 

pressure waves in the field reflecting at the bottom. 

Second phase: At t = 0.4s, the solid begins moving 
from bottom to top with an initial speed of 0 m/s, reaching 

a speed of 0.5 m/s at the surface. 

Third phase: This phase is characterized by a further 

reduction in speed, and it is evident that the RANS method 

produces more reliable results than the SPH method in this 

context. 

Figure 14 presents the pressure oscillations calculated 

and measured at the different transducers. Transducer 1, 

which is the first to encounter the water, displays a 

maximum pressure value at t = 0.005s. At this moment, all 

other transducers show zero values, as they are not 
submerged. This explains the phase shift between the 

maximum values recorded by each transducer during the 

wedge’s penetration process. For instance, for transducer 

number 5, the maximum pressure occurs at t = 0.017s. 

From the data in Fig. 14, it can be seen that the 

pressures calculated by the RANS approach closely match 

the measured pressures, in contrast to the SPH approach, 

which shows a significant deviation. This discrepancy is 

attributed to the empirical pressure model used by the SPH 

method. 

The high-frequency pressure oscillations observed in 

the WCSPH simulation in Fig. 14 are a known limitation 
of standard SPH formulations. Recent advances such as 

the δ-SPH method (Antuono et al., 2010) offer improved 

pressure stability through density diffusion terms and 

could be considered for future improvements. 

Figure 15 illustrates the pressure field distributions 

calculated by both methods around the wedge at t = 

0.045s. High pressures, approximately 24 kPa, are 

observed beneath the wedge. These high-pressure zones  

 

Pa 



A. Bel Hadj Taher et al. / JAFM, Vol. 19, No. 1, pp. 3254-3267, 2026.  

3263 

 
Transducer 1 

 
Transducer 3 

 
Transducer 5 

 
Transducer 7 

 
Transducer 9 

 
Transducer 11 

Fig. 14 Experimental data and numerical results RANS model; SPH model for time histories of pressure for six 

transducers 

 

diffuse laterally as the water beneath the wedge is 

displaced, a behavior captured by both numerical 
approaches. It is also noted that the RANS method 

produces a symmetrical pressure field relative to the 

wedge's vertical axis, while the SPH method results in 

asymmetrical pressure waves moving through the field. 

The pressure calculation is considered one of the 

limitations of the SPH method. Pressure discrepancies are 

due to SPH's dependence on an empirical equation of state 

and its poor resolution near solid boundaries. 

Figure 16 illustrates the water velocity vectors 

calculated by both the RANS and SPH methods at t = 

0.045s. When the wedge is immersed in water, the fluid is 

displaced to both sides of the solid, generating water jets. 

One of the limitations of the SPH method is its modeling 
of velocity at the free surface. This is evident from the 

velocity vectors, which appear to exit the fluid domain, 

highlighting the method’s difficulty in accurately 

capturing the behavior at the free surface. 

The differences observed between WCSPH and 

RANS/VOF results particularly in pressure, velocity, and 

streamlines stem from their distinct numerical 

frameworks. WCSPH, being mesh-free, better captures 

the violent free-surface breakup during wedge entry  

but shows more pressure noise, especially near impact 

zones. RANS/VOF, with its mesh-based formulation and  
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a) RANS 

 

b) SPH 

 
Fig. 15 Distribution of pressure field calculated by 

RANS model (a); SPH model (b), at t=0.045 s 

 

 
a) RANS 

 
b) SPH 

Fig. 16 Numerical speed vector distribution: RANS 

approach (a); SPH model (b), at t=0.045 s 

turbulence modeling, produces smoother fields and more 

stable pressure predictions, especially for the cylindrical 

case. These differences affect the representation of cavity 

dynamics, splash behavior, and velocity gradients near the 

body and free surface. 

4. CONCLUSION 

This article investigates the free fall of two rigid 

bodies—a cylinder and a wedge—into a fluid initially at 

rest. The study employs two 2D numerical approaches to 

describe the temporal evolution of speed, displacement, 

and pressure for these objects: the Reynolds-Averaged 

Navier-Stokes (RANS) approach and the Smoothed-

Particle Hydrodynamics (SPH) method. These two 

approaches are compared with experimental 

measurements to evaluate their accuracy and determine 

which method provides the most reliable predictions for 

the physical variables involved. 

The main objective of this work is to assess the 

performance of the RANS and SPH models in simulating 

the interaction between the rigid bodies and the fluid, 

particularly focusing on displacement, pressure, and 

velocity. Both models give good predictions of the rigid 

body displacement when compared to the experimental 

data. However, while the RANS approach demonstrates a 

clear advantage in accurately predicting the pressure field, 

especially in cases of complex fluid behavior like the 

discontinuity between the fluid and air domains, the SPH 

model shows limitations. The SPH method, which relies 

on empirical formulations, struggles with accurately 
modeling pressure fields under such conditions due to the 

inherent challenges of particle scattering and boundary 

reflections. 

In terms of speed prediction, both models capture the 

general trend, but the SPH model tends to deviate as the 

object approaches the free surface, especially when large 

displacements occur. The RANS method, in contrast, 

provides more stable results throughout the simulation, 

particularly in scenarios involving complex fluid-structure 

interactions, such as during the break between fluid and 

air domains. 

Future developments in SPH may focus on reducing 

spurious pressure oscillations through improved pressure 

stabilization methods (e.g., δ-SPH, ISPH), while adaptive 

particle refinement and hybrid turbulence models 

(RANS/LES) can help minimize differences observed in 

velocity fields, pressure distributions, and streamline 

patterns. These enhancements would improve the 

accuracy and robustness of SPH for simulating rigid body 

impacts with free-surface flows. 

Similarly, further enhancements to the RANS 

approach could involve improving free-surface resolution 
using advanced VOF interface-capturing schemes and 

pressure-peak modeling near impact regions. The 

integration of dynamic mesh techniques and hybrid 

turbulence models (e.g., RANS/LES) may also help 

reduce discrepancies observed in the velocity and pressure 

fields, as well as streamline representation, particularly in 

highly transient rigid body–fluid interaction scenarios. 

 
 Pa 
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This study highlights the strengths and weaknesses of 

both approaches and demonstrates that while the RANS 

model is more reliable for pressure predictions and cases 

involving significant fluid-structure interactions, the SPH 

method can still provide valuable insights, particularly in 

cases involving large rigid body displacements. 

Ultimately, this research provides a solid foundation for 

the design of floating bodies and guides future efforts to 
enhance numerical methods for fluid–structure 

interactions. The findings inform the selection of 

modeling approaches in applications such as wave-

structure interactions, slamming loads on hulls, and 

coastal impact scenarios. Specifically, RANS methods are 

preferred for accurate pressure prediction, while SPH 

demonstrates superior capability in capturing violent free-

surface deformations. 

Future improvements of both WCSPH and 

RANS/VOF methods should prioritize extending 2D 

simulations to fully three-dimensional models, enabling 

better capture of asymmetric cavity formation, splashing, 
and lateral flow effects inherent to rigid body water entry. 

For this rigid body study, 3D modeling offers the most 

significant enhancement by improving accuracy in flow 

features underrepresented in 2D. Additionally, 

incorporating deformable coupling in WCSPH would 

allow simulation of structural responses relevant to 

flexible bodies, while RANS/VOF could benefit from 

advanced interface capturing, turbulence models, and 

deformable structural coupling to better handle fluid–

structure interactions during impacts. These developments 

would help reduce discrepancies in velocity, pressure, and 

streamline predictions, enhancing overall reliability. 
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