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ABSTRACT 

An analytical model to predict the velocity-dip-position at the central section of open channels is presented in 
this study. Unlike the previous studies where empirical or semi-empirical models were suggested, in this 
study the model is derived by using entropy theory. Using the principle of maximum entropy, the model for 
dip-position is derived by maximizing the Shannon entropy function after assuming dimensionless dip-
position at the central section as a random variable. No estimation of empirical parameter is required for 
calculating dip-position from the proposed model. The model is able to predict the location of maximum 
velocity at the central section of an open channel with any aspect ratio. The developed model of velocity-dip-
position is tested with experimental data from twenty-two researchers reported in literature for a wide range 
of aspect ratio. The model is also compared with other existing empirical models. The present model shows 
good agreement with the observed data and provides least prediction error compared to other models. 

Keywords: Velocity-dip-phenomenon; Shannon entropy; Maximum entropy; Lagranges multiplier; Open 
channel turbulent flow. 

NOMENCLATURE 

a0,a1,b0 parameters        
Ar aspect ratio     
Arc critical aspect ratio 
b width of the open channel 

constraints   
D* maximum value of ξd 
f  probability density function(PDF) 
F cumulative distribution function 

(CDF) 
G a function 
h flow height 
H entropy function    
L0 Lagrange’s function 
L model index parameter 
m a parameter 
M entropy parameter 

N total number of data points 
r average percentage relative error   
s1 sum of square relative error     
s2 sum of logarithmic deviation error       
ū streamwise depth mean velocity      
umax streamwise maximum velocity 
y vertical co-ordinate        
yd location of umax from bed  
z lateral co-ordinate           
λ0,λ1 Lagrange multipliers   
ξd dimensionless dip-position          
 ξ* minimum value of ξd        
ξd,c calculated value of ξd         
ξd,0 observed value of ξd            
φ a function     

1. INTRODUCTION

The location of the maximum velocity from channel 
bed, has special interest among civil engineers. It 
has great application to find the stream wise 
velocity distribution. For more than a century ago, 
scientists Francis (1878), Stearns (1883), Murphy 
(1904), Gibson (1909) and Vanoni (1946) have 
found the position of the maximum mean velocity 
below the water surface. This phenomenon is 

known as velocity-dip-phenomenon and the 
location of maximum velocity from channel bottom 
is known as velocity-dip-position. The maximum 
velocity in an open-channel at any cross section 
may occur up to 55% of the flow height from 
channel bed. Even in the large river like the 
Mississippi River, the maximum velocity appears at 
two-third of the water depth from the channel 
bottom (Gordon 1992). From many experimental 
results and analysis it is widely accepted that at the 
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central section of any open channel the velocity-
dip-phenomenon occurs if the aspect ratio of the 
channel Ar (defined as the ratio of channel width b 
to flow depth h), is less than a certain value, called 
the critical aspect ratio Arc (Nezu and Rodi 1985; 
Hu and Hui 1995; Guo and Julien 2008; Guo 2013; 
Kundu and Ghoshal 2013). From their experimental 
observations Nezu and Rodi (1985) proposed that 
Arc ≈ 5. Whereas though at the central section of a 
wide open channel (where Ar>Arc) maximum 
velocity appears at the free surface, but near to the 
sidewall region the dip phenomenon appears 
(Vanoni 1941). Recent experiments of Wang and 
Cheng (2005) shows that for wide open channels, 
dip-phenomenon may appears at the central section 
due to the variation of bed roughness or bed 
elevation along lateral z direction. It is important to 
mention here that though dip-position may occur 
near to side wall region, this study focuses only on 
the prediction of dip-position at the central section 
(Fig. 1). 

 

 
Fig. 1. Variation of velocity-dip-position for (a) 

wide and (b) narrow open channels at the central 
section. 

 

It is a challenging task to scientists and engineers to 
predict the velocity-dip-position at the central 
section open channel flows. According to the best 
of the knowledge of the author, till now no 
theoretical model has been developed for predicting 
dip-position. Different analytical (empirical or 
semi-empirical) models are reported by several 
investigators. First Wang et al. (2001) proposed a 
relation for yd (the location of velocity-dip-position 
from channel bottom or bed) as a function of aspect 
ratio at the central section by observing the pat-tern 
of measured data obtained by Nezu and Rodi (1986) 
and other eight researchers. Their empirical model 
is applicable only to narrow open channels. Yang et 
al. (2004) analyzed data from five researchers and 

proposed another empirical model for dip position 
at the central section. This modelis valid both in 
narrow and wide open channels. 

They also found that velocity dip may occur very 
close to sidewall region even when channel aspect 
ratio is large. Absi (2011) modified this model to 
predict the velocity-dip-position for validating his 
proposed velocity model full dip-modified-
logwakelaw (fDMLW-law). Bonakdari et al. (2008) 
critically analyzed both the models of Wang et al. 
(2001) and Yang et al. (2004) for small channel 
aspect ratio. They found that both of these models 
overestimate the experimental results when Aris 
small. On the basis of experimental observation 
from five researchers, Bonakdari et al. (2008) 
proposed a sigmoid model for smooth open channel 
flows which is a ratio of two different functions of 
the aspect ratio Ar. The model is applicable to both 
wide and narrow open channel flows with smooth 
boundaries. It can be observed from the model 
(Table 2) that for Ar →0, ξd (= yd /h) →0.448, 
which indicates that it does not satisfy the 
asymptotic boundary conditions: Ar→ 0, ξd → 0.5 
and for Ar→∞, ξd →1 (Hu and Hui 1995). Guo 
(2013) studied velocity profile for smooth 
rectangular open channel flows. He found that the 
velocity-dipposition shifts exponentially from the 
water surface to half flow depth as the channel 
aspect ratio decreases from infinity to zero. He 
proposed an empirical model for dip position at the 
channel central section. Besides this, Guo (2013) 
analyzed the models of Wang et al. (2001), Yang et 
al. (2004)and Bonakdari et al. (2008) and found 
that none of these models satisfy the asymptotic 
condition 0.5 ≤ ξd ≤ 1 consistent with Hu and Hui 
(1995)observations. In this same year, Pu (2013) 
proposed an empirical model for velocity-dip-
position at the central section of open channels. 
This model satisfies both the asymptotic boundary 
conditions. Pu (2013) validated his model for both 
wide and narrow open channel flows with rough 
and smooth beds. As a consequence this model is 
universal to use for any kind of open channel flows 
with rough and smooth boundaries.  

Apart from these empirical and analytical models, 
many researchers proposed numerical models and 
methods to determine the velocity-dip-position. 
Wang and Cheng (2005) proposed a model for 
turbulent shear stress over the whole cross section 
of any open channel. From this model, velocity dip-
position can be computed numerically by applying 
the zero shear stress condition at the location of 
maximum velocity. Sarma et al. (2000) proposed a 
binary law which combines log law in inner region 
and a parabolic law in the outer region. They found 
that the junction point of log law and parabolic law 
is 0.5 when there is no dipphenomenonand the 
value decreases as ξd/2 when the dip-phenomenon 
occurs. This relation can beused to develop a 
method for finding velocity-dip-position. The 
method will fail if no satisfactory tangential 
parabola be obtained. Later, Guo and Julien (2008) 
describes a method to determine the dip position by 
fitting a parabola to the velocity data near the free 
surface region. 
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Since the development of the entropy theory by 
Shannon (1948) and of the principle of maximum 
entropy (POME) by Jaynes (1957a) there has been a 
number of applications of entropy theory in 
hydrological and environmental sciences. Chiu and 
his associates (Chiu 1987; Chiu 1989; Chiu and 
Tung 2002) have derived the probability density 
function for velocity and using the POME, they 
derived the models for mean velocity distribution, 
turbulent shear stress distribution and particle 
suspension concentration distribution. Later on, 
Singh (1997), Singh (1998), Singh (2010), Singh 
(2011), Luo and Singh (2011) and Singh and Luo 
(2011) performed a lot of studies on velocity of an 
open channel flow on the basis of Shannon entropy 
and Tsallis entropy theory developed by Tsallis 
(1988) and Gell-Mann and Tsallis (2004). Recently 
Kumbhakar and Ghoshal (2016a) and Kumbhakar 
and Ghoshal (2016b) studied one and two 
dimensional velocity distributions in open channels 
using Renyi entropy theory respectively. Till now 
no studies on dip-position using entropy theory has 
been reported in literature. However Chiu and Tung 
(2002) studied the maximum velocity and 
regularities in open channel flows. They derived an 
empirical model using regression technique for dip-
position which is expressed as 

1)1(

)1(
)(,

3.58

)(
ln2.01

2



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M
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d eM

e
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where M is the entropy parameter (Chiu 1987). The 
computation of velocity-dip-position from this 
model requires the knowledge of M. Chiu and Tung 
(2002) computed the value of M from the average 
value ū− umax relation. Therefore it gives an average 
relation between ξd and M which may indicate that 
exact value may fluctuate or deviate above or below 
that proposed relation. Though an explicit model for 
velocity-dip-position has been developed using the 
entropy concept, but the computation of dip-
position requires the knowledge of velocity 
distribution. Therefore a more rigorous and simple 
general model is still lacking in the literature. 

Our motivation for the present study stems from the 
fact that an analytical expression of velocity-dip-
position at the central section of open channels 
based on a theoretical approach is not proposed yet. 
Though empirical analytical and numerical models 
are found in literature, but most of these models are 
not satisfying the asymptotic boundary condition 
and applicable to limited data sets. Therefore, in 
this study we make an attempt to propose a simple 
entropy based model for velocity-dip-position for 
the central section of open channel flow. 

2. THEORETICAL FORMULATION 
USINGENTROPY THEORY 

It is observed by several investigators, that at the 
central section of a wide open channel velocity-dip-
position yd , appears at free surface and it gradually 
decreases with decrease of aspect ratio (Hu and Hui 
1995; Yan et al. 2011; Guo 2013). In their 
experiment, Hu and Hui (1995) found that for open 
channel flows, dip-position may appears up to 50% 

height of flow from bed. These facts suggest that 
velocity-dip-position at central section of open 
channels changes from lowest value 0.5h to highest 
value h with aspect ratio. Therefore the dip-position 
yd can be considered as random variable having 
some probability distribution. For the application of 
the entropy theory, dimensionless dip-position ξd (= 
yd /h) at the central section is assumed to be a 
random variable. 

2.1   Shannon Entropy for Dip-Position 

To find the probability density function f (ξd ) of ξd , 
in this study the Shannon entropy for dimension-
less random variable ξd is considered as (Shannon 
1948; Shannon and Weaver 1949). 

  d

D

ddd dffH 

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)(ln)()(                         (2) 

where ξ∗ and D∗(= D/h) are the lower and upper 
bounds of ξd respectively. Equation (2) defines a 
measure of uncertainty of the function f (ξd ). To 
find f (ξd ) the principle of maximum entropy 
(POME) developed by Jaynes (1957a), Jaynes 
(1957b), Jaynes (1982) is applied, which includes 
the specification of certain information, called 
constraints, on velocity-dip-position. According to 
the POME, to get the least biased probability of the 
random variable, we maximize the entropy function 
H subject to some specific constraints. 

2.2   Specification of Constraints 

If the dip-position data are available, one way to 
express information is in forms of the constraints. 
To define the constraints, the total probability law 
must be satisfied for the probability density func-
tion f (ξd ). Therefore the first constraint is given as 

  1
*

*
1   d

D
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   (3) 

The other constraint is taken as the mean of ξd 
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Equation (4) gives the mean of the values of ξd. In 
this study the mean value ξd is calculated from the 
available data found in literature. 

2.3 Maximization of Entropy Function H(ξd) 
In order to get the least biased probability density 
function f (ξd ), the Shannon entropy function given 
by Eq. (2) is maximized by POME subject to the 
constraints given by Eqs. (3) and (4). The method of 
Lagrange multiplier is employed here to maximize the 
function H(ξd ). The Lagrange maximization function 
is defined after neglecting the integration signs as 

L0 = − f (ξd )ln[ f (ξd )] + λ0 f (ξd ) + λ1ξd f (ξd )    (5) 

in which λ0 and λ1 are Lagrange multipliers. In or-
der to obtain f (ξd ) which maximizes L0, the Euler-
Lagrange equation of the calculus of variation is 
applied to Eq. (5) which gives 

   ddf
f

L  10
0 1ln0 


                  (6) 
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Rearranging Eq. (6), the probability density 
function f (ξd ) for velocity-dip-position containing 
the Lagrange multipliers is expressed as 

     ddf  10 exp1exp                                   (7) 

Therefore the cumulative distribution function F(ξd) 
of ξd is obtained by using Eq. 7 as 
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Similarly the Shannon entropy function is obtained 
by inserting Eq. (7) into Eq. (2) as 

        **
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whereϕ(D∗) and ϕ(ξ∗) are given as  

  *10* 2 DD                                         (10) 

  *10* 2                                          (11) 

One can observe from Eqs. (7)-(9) that the 
probability density function, cumulative distribution 
function and the Shannon entropy function depend 
on the value of Lagrange multipliers λ0 and λ1. 
Therefore to get the complete understanding of 
these functions, determination of these parameters 
are required. 

2.4   Determination of Lagrange Multipliers 

Two unknown Lagrange multipliers λ0 and λ1 are 
determined in the following way. Substitution of 
Eq. (7) into Eq. (3) gives 

       1expexp
1exp

*1*1
1
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
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Similarly, inserting Eq. (7) into Eq. (4) gives the 
other equation as             
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1

0 1exp1exp
1exp

 
(13)

 
 

Equations (12) and (13) constitute a system of two 
non-linear equations of the unknown Lagrange 
multipliers λ0 and λ1. These equations can be solved 
numerically to get the values of the multipliers. It 
can be observed from these equations that to 
compute the unknown multipliers, the value of ξ∗ 
and D∗ are required. There are no formulae 
available in literature to determine those values. 
Following the analysis of Hu and Hui (1995) and 
Guo (2013) the value of ξ∗ and D∗ are taken as 0.5 
and 1 respectively in this study. This system is 
solved in MATLAB by using non-linear equation 
solver and the values are obtained as λ0 = 0.5849 
and λ1 = 1.4487. 

2.5 Cumulative Distribution Function 
(CDF) 

To establish the relation between the probability 
domain and the flow domain, a hypothesis on the 

cumulative distribution function F(ξd ) in the flow 
do-main needs to be formulated. In Fig. 2 the 
computed values of the CDF are plotted from Eq. 
(8). From the figure it can be observed that dip-
position exponentially decreases with the decrease 
of aspect ratio. Similar conclusion also obtained by 
Guo (2013). Therefore the CDF model in flow 
domain is proposed as 

   01 exp m
dF b Ar      

                            (14) 

 

 
Fig. 2. Validation of the proposed CDF model 

(Eq. (14)). 
 

Table 1 Details of selected data set 

Data Aspect ratio range 

Hu(1985) 1.6642 ~11.1319 

Sarma et al.(1983) 2.0240~7.9835 

Coleman(1986) 2.0578~2.1317 

Knight and Macdonald (1979) 1.0120~1.012 

Rajaratnam and Muralidhar 
(1969) 

3.2834~10.8396 

Yan et al. (2011) 2.3058~6.9988 

Cardoso et al. (1989) 4.6729~7.3529 

Vanoni (1946) 4.9973~11.8951 

Wang and Qian (1989) 3~3.75 

Murphy (1904) 0.1552~1.3460 

Nezu and Rodi (1986) 0.1888~5.42 

Gibson (1909) 0.256~2 

Wang and Fu (1991) 4.1664~4.2913 

Zippe and Graf (1983) 6.1728~7.6336 

Kironoto and Graf (1994) 2.069~6.8966 

Wang and An (1994) 3.7975~4.1667 

Guy et al. (1966) 7.94~8.54 

Larrarte (2006) 1.7562~2.9248 

Nezu and Rodi (1985) 1.0086~6.0011 

Tominaga et al. (1989) 2.0054~7.9946 

Song and Graf (1994) 3.0039~4.5878 

Montes and Ippen (1973) 5.5056~7.6563 

 

Where Ar denotes the aspect ratio of channel, b0 is a 
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parameter and the exponent m is a fitting parameter 
which describes the rate of declination of the CFD 
curve with decrease of aspect ratio. It is to be 
mentioned here that the proposed model for F(ξd ) 
lies in the range (0,1). When Ar → 0, 
exp[−b0(Ar)m] → 1 and consequently F(ξd ) → 0. 
Also when Ar → ∞, exp[−b0(Ar)m] → 0 and 
consequently F(ξd ) → 1. The validation of the pro-
posed CDF model i.e. Eq. (14) is presented in Fig. 2 
by comparing with the experimental data of 22 
different researchers given in Table 1. The values of 
b0 and the exponent m are obtained as 0.0698 and 
1.8767 respectively after fitting Eq. (14) with the 
experimental data. From the Fig. 2 one can observe 
that the proposed cumulative distribution function 
agrees well with the experimental data for large 
range of aspect ratio. 

3. PROPOSED MODEL OF 
VELOCITY-DIP-POSITION FOR 
CENTRAL SECTION 

Substituting Eq. (12) into Eq. (8), the CDF of dip-
position is further expressed as 

     
   *1*1
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expexp

expexp








D

F d
d

                           (15) 

Equating Eq. (14) and Eq. (15) the dimensionless 
velocity-dip-position model is obtained as 

   88.1
10

1

07.0exp1ln
1

Araad 


               (16) 

where 

a0 = exp(λ1ξ∗)     and     a1 = exp(λ1D∗) − a0      (17) 

The velocity-dip-position can be calculated from 
Eq. (16) at the central section of open channels with 
any given aspect ratio. 

3.1   Re-Parametrization of the Model 

To represent the proposed model in a more 
appropriate form, a dimensionless parameter L is 
introduced herein as 

 **1   DL                                                   (18) 

Therefore using Eq. (18) the model for dip-position 
can be expressed in terms of the parameter L as 

   88.107.0
* 111ln

2

1 ArL
d ee

L
                (19) 

From Eq. (19) it can be observed that dip-position 
changes only with the parameter L and therefore it 
can be used as an index for determining the 
distribution of dip position. For given values of the 
parameters ξ∗ = 0.5, the variation of the dip-
position with parameter L is presented in the Fig. 3 
for six values of L = −1, −0.9, −0.8, 0.8, 0.9 and 1. 
From the figure it is observed that dip-position 
decreases with increase of L from −1 to −0.8 
without changing the pattern and dip-position 
increases with in-crease of L from 0.8 to 1. It is also 
observed that the variation becomes significant 
when Ar lies in the range 0 to 8. It is important to 

mention here that the model can also be applied to 
those flows through wide open channels where dip-
phenomenon occurs at the central section. In this 
case, the value of L could be modified from Eq. 
(18). 

It is observed from Eq. (19) that the proposed 
model satisfies the asymptotic boundary conditions: 
ξd → 0.5 when Ar → 0 and ξd → 1 when Ar → ∞ as 
mentioned by Hu and Hui (1995) and Guo (2013). 
To discuss the asymptotic behavior, first we 
consider that Ar → 0. Therefore one can observe 
that 

1.88exp 0.07 1Ar                                           (20) 

Therefore from Eq. (19) one gets 

5.0*  d                                                  (21) 

 

 
Fig. 3. Variation of dip-position (Eq. (19)) with 

the parameter L. 
 

Similarly, as a second case we consider Ar → ∞. 

Then 

1.88exp 0.07 0Ar                                      
 (22) 

and consequently 

1
2

1
* d

                                                  (23) 

This suggests that the proposed model satisfies both 
the asymptotic boundary conditions. 

4. COMPARISON WITH 
EXPERIMENTAL DATA AND 
OTHER EXISTING MODELS 

To test the validity of the entropy based proposed 
model for a wide range of experimental data, 
existing data reported in literature from 22 
researchers are considered. All the details of the 
data sets are given in Table 1. Including all the data 
sets, the aspect ratio has a wide range from 0.1552 
to 12. 

The validity of the proposed model (Eq. (16) or 
(19)) with the experimental data is plotted in Fig. 4. 
The value of the model parameter L is computed 
from Eq. (18) after computing the Lagrange 
multiplier λ1 solving Eqs. (12) and (13) using 
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Matlab nonlinear solver. From the figure it is 
observed that the proposed model based on the 
entropy theory agrees well with the experimental 
data over a large range of channel aspect ratio. The 
R2 value for this modelis obtained as 0.84. Due to 
the scatteredness of the experimental data points 
when Ar< 5, the low R2value is obtained. Also to 
get a quantitative idea about the overall goodness of 
fitting of all the models, five error terms (Mean 
absolute standard error, Average percentage relative 
error, Sum of squared relative error, Sum of 
logarithmic deviation error and Root mean square 
error) are calculated which are discussed in details 
in the next section. 

 

 
Fig. 4. Validation of the proposed entropy model 

with experimental data. 
 

Proposed model (Eq. (19)) is also compared with 
other existing models from Wang et al. (2001), 
Yang et al. (2004), Bonakdari et al. (2008), Guo 
(2013) and Pu (2013) at the central section for 
different open channels. The explicit form of the 
models for all aforementioned researchers are 
shown in Table 2. All these selected models are also 
plotted in Fig. 4. From the figure it is clear that 
computed values of velocity-dip-position by all 
these models are comparable to each other except 
for the model of Wang et al. (2001) for entire range 
of aspect ratio. It is found from the figure that the 

model of Wang et al. (2001) is applicable to narrow 
open channels only. To measure the accuracy of 
these models five different aforementioned error 
terms are also computed and shown in Table 2. 
From the table it is seen that prediction accuracy of 
the pro-posed model is good than all other existing 
models. This results suggest that dip-position is best 
described by an exponential decay type model. It is 
important to mention here that though Yang et al. 
(2004), Guo (2013) proposed similar type models 
but no theoretical basis was mentioned. Therefore 
this study not only provides good model for dip- 
position but also gives a theoretical base which was 
lacking in the literature till now. 

5. ERROR ANALYSIS 

To compare the proposed model with other existing 
models in literature, detail error analysis has been 
carried out. Instead of calculating a single error 
term and determining the result, in this study we 
consider five different statistical parameters in or-
der to get a detail idea about the comparison of all 
the models. These five different statistical quantities 
are: (i) Mean absolute standard error (MASE),(ii) 
Average percentage relative error (r%), (iii) Sum of 
squared relative error (s1), (iv) Sum of logarithmic 
deviation error (s2) and (v) Root mean square error 
(RMSE). The detail definition of these errors are as 
follows: 

Mean absolute standard error (MASE) is de- fined 
as 
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(i) Average percentage relative error is denoted by 
r and is defined as 

 %100
1

1 0,

0,,



 



N

i d

dcd

N
r



                             (25) 

(ii) Sum of squared relative error is denoted by s1 
and is defined as 

 






N

i cd

dcds
1

2
,

2
0,,

1 
                                           (26) 

(iii) Sum of logarithmic deviation error defined 
using the logarithmic value of dip position is 
de-noted by s2 and is expressed as 

 
2

1
0,,2 loglog




N

i
dcds                                   (27) 

And 

(iv) The root mean square error (RMSE) is defined as 
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Table 2 Previous and present model on velocity-dip-position applicable at the central section of any 
open channel (∗ corresponds to minimum error) 

NO. Investigators Proposed formula 
Prediction error 

MASE          r(%)            s1                         s2      
RMSE 

1 
Wang et al. 

(2001) 















26.2

2
05.0

2
212.044.0

Ar
Sin

Ar
d

 1.1422 14.0451 9.1920 6.6540 0.1773 

2 
Yang et al. 

(2004) 

1

2
exp3.11



















Ar
d  1.0775 7.4840 2.5493 2.2220 0.0672 

3 
Bonakdari et 

al. (2008) 2.4

2.4

7.94

4.42

Ar

Ar
d 


  1.1187 9.8232 4.2367 5.3431 0.0957 

4 Absi (2011) 

1

2
exp3.11



















Ar
d  1.0775 7.4840 2.5493 2.2220 0.0672 

5 Guo (2013) 

1
5.1

exp1




































 Ar
d

 1.0793 7.3184 2.2700 2.2357 0.0683 

6 Pu (2013) 
4.4

4.4

5.80

1.40

Ar

Ar
d 


  1.1006 9.2778 3.4655 3.4906 0.0861 

7 
Proposed 

model 
   88.107.0

* 111ln
2

1 ArL
d ee

L
   1.0770* 7.2980* 2.1564* 2.0858* 0.0655* 

 

 

 



N

i
dcdN

RMSE
1

2
0,,

1                                (28)   

where in all these error terms N denotes the total 
number of data points, ξd,c and ξd,o denote the 
computed and observed or experimental values of 
velocity-dip-position. 

The computed values of all these errors for the 
models (detail formulas are given in Table 1) are 
presented in the Table 1 for all the selected 
experimental data. In the table, star (∗) denotes the 
least error among all these models. From the error 
results in this table one can observe that the 
proposed model has the least average percentage 
relative error of 7.2980% which gives the best 
representation of the experimental measurements. 
From the table it can also be observed that in most 
of the cases the least value of all these error 
corresponds to the proposed model. This 
comparison and error results show the good 
prediction accuracy of the proposed entropy based 
model. 

6. CONCLUSIONS 

Applying the entropy theory based on probability 
distribution of random variable and using the 
principle of maximum entropy, an analytical model 
to predict velocity-dip-position at the central section 
of open channels is derived in this study. The model 
has been developed on theoretical basis. The 
following conclusions are obtained from this study. 

1. The model is able to predict the velocity-
dip-position at the central section of any 
open channel with given aspect ratio. 

2. No estimation of parameter is required to 
compute the dip-position from the proposed 
model for any given aspect ratio. 

3. For general applicability of the model, the 
model is expressed using one parameter L 
introduced in this study. The variation of 
dip-position with aspect ratio for different L 
is also shown in this study. Results show 
that the model can also be applied in those 
wide open channel flows where dip-position 
occurs at the central section by suitable 
choice of L. 

4. Finally the model is tested and validated 
over a large number of twenty-four different 
experimental data sets published in 
literature and is also compared with all 
other possible existing models found in 
literature. 

5. To get an idea about the accuracy of these 
models, five different errors are calculated 
for all these selected data sets. The obtained 
results of error analysis show that proposed 
model gives least error compared to other 
models. 

6. Furthermore this study can be extended to 
find a more general model for velocity-dip 
position which will be applicable over the 
entire cross section.  
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